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Abstract

Fast, efficient, and reliable algorithms for up- and downdating discrete least-
squares approximations of a real-valued function given at arbitrary distinct nodes
in [0, 27) by trigonometric polynomials are presented. A combination of the up- and
downdating algorithms yields a sliding window scheme. The algorithms are based on
schemes for the solution of (inverse) unitary eigenproblems and require only O(mn)
arithmetic operations as compared to O(mn?) operations needed for algorithms
that ignore the structure of the problem. Numerical examples are presented that
show that the proposed algorithms produce consistently accurate results that are
often better than those obtained by general QR decomposition methods for the
least-squares problem.

Key words. trigonometric approximation, unitary Hessenberg matrix, Schur parameter,
Szegod polynomial, updating, downdating, sliding window scheme

1 Introduction

A problem in signal processing is the approximation of a function known only at some
measured points by a trigonometric polynomial. A number of different models for repre-
senting the measured points as a finite superposition of sine- and cosine-oscillations are
possible. One choice could be to compute the trigonometric interpolating function. Then
several numerical algorithms are available [14]. But in general a large number of measured
points are given, such that this approach leads to a trigonometric polynomial with a lot of
superposed oscillations (and a large linear system to be solved ). In practical applications
it is often sufficient to compute a trigonometric polynomial with only a small number of
superposed oscillations. A different, often chosen approach is the (fast) Fourier transform
[14]. In this case the frequencies of the sine- and cosine-oscillations have to be chosen
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equidistant. The following approach gives more freedom in the choice of the frequencies
and the number of superposed oscillations. Given a set of m arbitrary distinct nodes
{0k}, in the interval [0,27), a set of m positive weights {w?}7 ,, and a real-valued
function f whose values at the nodes 6, are explicitly known. Then the trigonometric
function ,
t(0) = ao + >_(a; cos jO + b; sin j6), aj,b; € R, (1)
j=1

of order at most £ < m/2 is sought that minimizes the discrete least-squares error

f=tlg = \Igj | (Ok) — £(0) [Pwi. (2)

In general, m (the number of measured functional values) is much larger than n = 2¢+ 1
(the number of coefficients to be determined).
The problem (2) can easily be reformulated as the standard least-squares problem of
minimizing B B
||DAt — Dfl|> = min (3)
over all coefficient vectors ¢ in the Euclidean norm, where D = diag(wy, ..., W) € R™*™
is a diagonal matrix with the given weights on the diagonal, f = (f(61),..., f(0m))T is a
vector of the measured values of the function f, and

1 sinf; cosf; --- sinfh; costb,
A= :

. : : : € R™ .
1 sin#,, cos6,, --- sinfl,, costl,,

A different approach is used by Reichel, Ammar, and Gragg in [15]. They noted that
the problem (2) can be reformulated as the following standard least-squares problem:
Minimize

|DAc — DglJ; = min, (4)
where A is a transposed Vandermonde matrix
1 21 . .. Z?_l
n—1
A= 1z - 2 e Qmxn
1 zn, zn=t

with z;, = exp(1bi),2 = vV—1. g = (9(21), -, 9(2m))T € C™ is a vector of the values of
a complex function g(z) and ¢ = (cq, ..., ca—1)” € C" is the solution vector. With the
proper choice of g (g = A‘f, f as above, A = diag(z1, ..., 2y,)) it is easy to see that the
coefficients of the trigonometric polynomial (1) that minimizes the error (2) can be read
off of the least-squares solution ¢ of (4) (see [15])

ay =
aj = 2Re(cji) 1< <0
bj = —2Im(cjse)
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The usual way to solve these least-squares problem is to compute the QR decompo-
sition of DA or DA. Ignoring the special structure of DA or DA this requires O(mn?)
arithmetic operations. It can be observed however, that Szeg6 polynomials, that is poly-
nomials that are orthogonal with respect to an inner product on the unit circle, arise
naturally as a convenient basis for solving the above standard least-squares problems.
This observation can be used to develop fast, efficient and reliable algorithms for solving
the approximation problem (2).

Since DA has full column rank, there is an m x m unitary matrix ¢) with orthonormal
columns and an m X n upper triangular matrix R with positive diagonal elements such
that

DA =QR=(Q1|Q2) ( ]?)1 > = Q1 Ry,

where @; € C™*" has orthonormal columns and R; € C"*" has positive diagonal elements.
The solution of (4) is given by ¢ = R; 'Q¥ Dg. The following interpretation of the elements
of @1 and R; in terms of Szegd polynomials can be given [15]: @) is determined by the
values of the Szegd polynomials at the nodes z;. R; expresses the power basis in terms
of the orthonormal Szegd polynomials. Therefore, the columns of Ry ' are the coefficients
of the Szego polynomials in the power basis. There exist algorithms for determining the
values of the Szegé polynomials at nodes z; which require O(mn) arithmetic operations
[15, 9].
Observe that

w1 wiz wiZ e w2t
Wi WimZm Wmze, o wmah !
(¢,Aq, A%, ..., A" 1q)
= 00(q, Ago, A*qo, -, A™ o)
with ¢ = (w1, ..., w) T, 00 = ||q||2, g0 := 09 *q and A = diag(z1, ..., z). Thus, the matrix

DA is given by the first n columns of the Krylov matrix K (A, g, m) = (qo, Ago, ---, A™ ' qq).
We may therefore use the following consequence of the Implicit Q Theorem [11] to com-
pute the desired QR decomposition. If there exists a unitary matrix U with Ue; = qq
such that U¥ AU = H is a unitary upper Hessenberg matrix with positive subdiagonal el-
ements, then the QR decomposition of K (A, go, m) is given by UR with R = K(H, e;,m).
The construction of such a unitary Hessenberg matrix from spectral data, here contained
in A and qq, is an inverse eigenproblem. Hence the best trigonometric approximation to
f can be computed via solving this inverse eigenproblem. Because of the uniqueness of
the here given QR decomposition of K (A, g, m), it follows from the above given interpre-
tation of the elements of (; that the elements in the first n columns of U are the values
of the Szeg6 polynomials at the nodes z;. Thus solving the inverse unitary Hessenberg
eigenvalue problem U AU = H is equivalent to computing Szegd polynomials.

Unitary Hessenberg matrices have special properties which allow the development of
efficient algorithms for this class of matrices. Any n x n unitary Hessenberg matrix with
positive subdiagonal elements can be uniquely parameterized by n complex parameters,
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that is
H =G1(1)Ga2(72) -+ - Gn(7n)

for certain complex-valued parameters |y;| < 1,1 < k < n, and |y,| = 1. Here Gg(y)
denotes the n x n elementary reflector in the (k, k£ + 1) plane

Gr = Gk () = diag(L—1, ( _o:k % ) n—k—1)

with v, € C, o, € R™, |%|* + 0 = 1, and

Gn(’yn) = diag(ln—la _’Yn)

with 7, € C, |y,| = 1. The nontrivial entries 7, are called Schur parameters and the oy, are
called complementary Schur parameters. This parameterization can be used to develop
an efficient and reliable algorithm for solving the inverse unitary Hessenberg eigenvalue
problem. The algorithm manipulates the n complex parameters instead of the n? matrix
elements. An adaption of this scheme to the computation of the vector ¢ = Q¥ Dg can
be given, which requires O(mn) arithmetic operations. After computing the vector ¢,
the least-squares solution ¢ = oy 'Ry "¢’ of (4) can be obtained using an algorithm closely
related to the Levinson algorithm. For details see Section 2.1 or [15].

Altogether, the algorithm to construct the least-squares solution ¢ of (4) requires
O(mn + n?) arithmetic operations. The coefficients of the optimal trigonometric polyno-
mial ¢ of (2) can be recovered from ¢. This representation of ¢ is convenient if we desire to
integrate or differentiate the polynomial or if we wish to evaluate it at many equidistant
points on a circle with a center at the origin. If we, on the other hand, only desire to
evaluate ¢ at a few points, then we can use the representation of ¢ in terms of Szego
polynomials.

As DA in (3) is a real m x n matrix with full column rank, there exists a unique
”skinny” real QR decomposition Q1 R; of DA where Q; € R™*" has orthonormal columns
and R; € R™™ is upper triangular with positive diagonal entries. Analogous to the inter-
pretation of the QR decomposition of DA in (4), an interpretation of the elements of Qy
and R, can be given. This leads to orthogonal Laurent polynomials and the (generalized)
inverse unitary eigenproblem (~]H(A — /\I)f]Ge = G, — MG, where G, and G, are unitary
block diagonal matrices with 1 x 1 or 2 x 2-blocks on the diagonal. The nonzero entries
of G, and G, are just the Schur parameters and the complementary Schur parameters:

Go = G1(1)G3(73) - - - Gonr1)/2-1 (Vaf(mr1) /21-1) =
-7 01
g1 W
= —73 O3

o3 V3
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is the product of the odd numbered elementary reflectors and

1

—7Y2 02
GP = Gy(72)Ga() - -+ Gapnya (Volns2) = o2 72

is the product of the even numbered elementary reflectors. The (generalized) inverse
eigenproblem U (A=AI )ﬁGe = G,— \G,, where a Schur parameter pencil is constructed
from spectral data, is equivalent to the inverse unitary Hessenberg eigenproblem U AU =
H = Gi().-.. Guly) 1)

Observe that

2
— 1
- 1 1 1
DA = Z(q,Aq, Mg, N, (M), Mg, (A™)q)
—7 1
1 1
1
= 500(%, Aqo, AH‘]O: AQQoa (AH)2q07 ceey AZQO, (AH)ZQO)F

1
= §GOK(Aaq0a£)F

with ¢, 09, o and A as before. A QR-like decomposition of DA can be obtained using the
following result [8, 10] : If there exists a unitary matrix V such that V(A — A\)VEG, =
G, — MG, Ve, = gy, then the QR decomposition of k(A,qg, ) is given by VR with
R = k(G,G¥ e, £). Hence DA = %V RF and the optimal solution of (3) is given by ¢ =
200 ' F'R'WHED f . The construction of such a Schur parameter pencil from spectral data
is a (generalized) inverse eigenproblem. Thus the best trigonometric approximation to f
can be computed via solving this inverse eigenproblem. As explained in [9], the elements
of V are the values of orthogonal Laurent polynomials at the nodes 6. Thus solving
the inverse unitary eigenproblem V(A — AXI)\W = G, — MG, is equivalent to computing
orthogonal Laurent polynomials.

The special structure of the inverse eigenproblem V(A - A)V#G, = G, — AG,, can be
used to develop an efficient and reliable algorithm for computing V,v; and 05,7 =1, ..., n.
The advantage of this approach over (4) is that here an algorithm can be given which
solves the real-valued problem (2) using only real arithmetic. For details see Section 2.2
or [10].

The two algorithms sketched above are updating procedures in the sense that the
least-squares fit is obtained by incorporating the nodes of the inner product one at a
time. In certain applications it may be desirable to replace certain node-weight pairs
(0, w?). This can be carried out by successively removing a node-weight pair from the
current approximation, and then adding a new node-weight pair. Downdating Szego
polynomials/orthogonal Laurent polynomials and a given least-squares fit when one node
is deleted from the inner product can easily be implemented solving unitary eigenproblems.
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The updating and downdating procedures, based on solving inverse unitary eigenproblem
and unitary eigenproblems, can be combined to yield a sliding window scheme, in which
one node is replaced by another.

Updating and downdating of polynomial approximations when all nodes z; are real
has received a lot of attention in the literature, see [16] and the references therein. A
collection of algorithms for updating and downdating based on orthogonal polynomials is
presented in [7]. Downdating Szegd polynomials is considered in [3], while the updating
process is the topic of [15, 2, 9].

In the following we will discuss the up- and downdating process for solving the ap-
proximation problem (2) via the Vandermonde approach (4) and the sin-cos-approach
(3). The connection of the presented algorithms to algorithms for computing Szegd poly-
nomials/orthogonal Laurent polynomials will not be discussed any further, see [9] for a
detailed discussion in the updating context and [3] for a discussion of downdating Szegd
polynomials.

Updating schemes are discussed in Section 2, while downdating schemes are presented
in Section 3. In Section 4 we compare the different algorithms based on solving (inverse)
unitary eigenproblems with each other and with a general QR decomposition. We will see
that the proposed algorithms produce consistently accurate results that are often better
than those obtained by general QR decomposition methods for the least-squares problem.

2 Updating

Let the trigonometric polynomial ¢(0) = ag + Zﬁzl(aj cos jO + b;sin j6) be the optimal
solution of the approximation problem (2) corresponding to the data Y;, = {6, w2} .
Suppose Y, is obtained from Y, by augmenting a new node-weight pair (6,41, w2, 41)-
Solving the approximation problem for Y;,,; assuming the knowledge of its solution for
Y, is called updating the least-squares fit.

As explained in the introduction, the least-squares fit can be represented by the coef-
ficients of its expansion in terms of Szegd polynomials (orthogonal Laurent polynomials).
Using matrix notation the approximation problem can be solved via an inverse unitary
eigenproblem. Hence, the problem of updating the optimal trigonometric approximation
t of (2) can be expressed as follows:

Given
og > 0
H, unitary upper Hessenberg matrix of size m x m
dpm a vector of length m

(A\,v?) a node-weight pair
(00, Hp, dp, Tepresenting the solution of (2) for some data set Y;,) find oy > 0, a vector
d+1 and a unitary upper Hessenberg matrix H,,; such that
+ g +

1. the eigenvalues of H,,,; are e** and those of H,,

2. the vector d,,,1 contains the first components of the eigenvectors of H,,., that is
. . 1 .
if the entries of d,,, are d1/0y,...,8,/00 and og = (X5, 62)2, then the new oy will
be ¢ = (07 + 1/2)% and the entries of d,,, .1 are d;/0y for k= 1,...,m and v/0y.
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A similar definition of the updating process in terms of Schur parameter pencil can be
given.

The approximation problem (2) can entirely be solved by updating, starting from the
trivial solution for m = 1.

2.1 The Vandermonde Approach

As we have seen in the introduction, the computation of the best least-squares fit f of (2)
via the approach (4) involves solving an inverse unitary Hessenberg eigenvalue problem
AU = UH. Here we will outline an algorithm for the construction of the matrices H and
U from spectral data. This algorithm, called TUHQR algorithm, can be regarded as an
inverse QR algorithm for unitary Hessenberg matrices and was first described by Ammar,
Gragg and Reichel in [2].

The problem of constructing a unitary upper Hessenberg matrix from spectral data
can be formulated more generally as follows. Given m distinct unimodular complex num-
bers {\;}™ , and associated positive weights {v2}7 ,, we wish to construct a unitary
Hessenberg matrix H with the \; and v, equal to the eigenvalues and first components
of the corresponding eigenvectors of H, respectively. The following proposition is a con-
sequence of the "Implicit ) Theorem” ([11, §7.4.5]) and gives existence and uniqueness
of the unitary transformation to an unreduced unitary upper Hessenberg matrix H.

Proposition 2.1 Given m distinct complex numbers {\}7, on the unit circle and as-
sociated positive weights {v2}T™ ,, there is a unique m X m unitary Hessenberg matriz H
with positive subdiagonal elements and a unique unitary matriz U satisfying

H, _ -1
U = o0y (V1. U

UNU? = H
A = diag(A, ..., A\p),

)T

where og = (X, V2)2.

The required upper Hessenberg matrix H is obtained by performing a sequence of
elementary unitary similarity transformations whose composition results in the m x m
unitary matrix U such that

(o )G ) (o) = (i)

is an upper Hessenberg matrix with positive subdiagonal elements. The number ¢ is
arbitrary and remains unchanged during the execution of the algorithm. Then H = UAU#
has the desired eigenvalues and associated eigenvectors.

Ammar, Gragg and Reichel describe in [2] an inverse unitary QR algorithm to solve
this problem (analogous to the method by Gragg and Harrod [13] to solve the inverse
eigenvalue problem for symmetric tridiagonal matrices, see also [5]). The idea is to build
up the Hessenberg matrix successively by adding node-weight pairs (g, #2) one at a time.



Fafibender 8

Suppose we have constructed an upper Hessenberg matrix H, corresponding to the
p node-weight pairs {(Ax,})}it,,_ps1- The eigenvalues of H, are {\;}7",, .., and
the first components of its normalized eigenvectors are {(vx/0y)}it,,_p41 Where o, =

> v2)2. That is, an p X p unitary matrix @Q, is constructed such that
k=m—-p+1 "~k P

(= o)D) or)-

u A

J Ui - Uppi|Upplop 0 - 0
v A1

Vm—p—1 /\mfpfl

|
I

and Q er = 05 (Vin—ps1s oo Vm) -

Now we perform a sequence of unitary similarity transformations in order to add the

next node-weight pair (Ap,_p, Vm—p) and to construct the corresponding (p + 1) x (p +
1) Hessenberg matrix. Let 0,41 = (07 + v7,_ p)5 and opi1 = —Vy_p/0p+1. Then for
Gg—p(o‘pH)Hp = Hp+1a
0 U1 pm—p—l Pm_p Op 0 0
12} Al
- Vm—p—1 )\m—p—l
H,. = Op+1 X X X x |,
0 X X X X
0 X X X
0 X X

the trailing principal (p + 1)
On the completion of the similarity transformation we obtain

ﬁpHGm—p(O‘pH) =

X (p + 1) submatrix is a unitary upper Hessenberg matrix.

) 141 vm_p_l Op+1 0 0 0
151 Al
Vm—p—1 )\mfpfl
Op+1 X X X X
0 X X X X
0 ® X X X
0 X X
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The ® element is chased down along the subdiagonal by unitary similarity transfor-
mations with a sequence of matrices Gp_pt1, ..., G until the (p + 1) x (p + 1) trail-
ing principal submatrix Hj , has upper Hessenberg form. Proposition 2.1 gives that
H,,,, is unitarily similar to a unitary upper Hessenberg matrix H,,; with positive sub-
diagonal elements. The latter matrix is the desired Hessenberg matrix. Note that in
Ggfpﬂ...GgprGm,p...Gm,pﬂ,l the (p+ 1) x (p + 1) trailing principal submatrix is a
unitary upper Hessenberg matrix with positive subdiagonal elements. Hence we can carry
out the similarity transformation by manipulating the Schur parameters. Ammar, Gragg
and Reichel present in [2] such an algorithm, the inverse unitary QR algorithm.

From this we get the following algorithm to compute a m x m unitary Hessenberg
matrix H = H (v, ...,¥m) from given eigenvalues and given first components of the eigen-

vectors.

IUHQR algorithm to solve the inverse unitary Hessenberg eigenvalue problem

input : A1, ..., Am, V1, ---, U (€igenvalues and first components of the normalized eigenvectors)
output : Y1, .ee; Ym, 01, ---, 0 (Schur parameters and complementary Schur parameters)

0o ="
m=-\
g1 = 00
fori=2,..,m
Oold = 00
o0 = /0y + V]
B= Gold/UO
a=—v;/og
Yi = —Aivio1
fork=1, ..i1
Oold = Ok
Yold = Yk

op = ﬂ\/afld + o+ y@AE 2|2
. — k-2
e = B2 = A 0422
a=pN(a+ 'yold/\f_ @) /o
ﬁ = ﬁa'old/a'k
end for k

end for i

An efficient implementation of this algorithm requires ~ 12m? — 5m arithmetic opera-
tions. A mathematically equivalent algorithm which manipulates matrix elements (instead
of Schur parameters) requires O(m?) arithmetic operations.

The TUHQR algorithm is an updating procedure because it incorporates node-weight
pairs one at a time. After the jth step of the algorithm, the j x j unitary Hessenberg
matrix corresponding to the first 7 nodes and weights has been obtained. The order in
which the node-weight pairs are incorporated is optional.

As explained in the introduction, the TUHQR algorithm can be used to construct
the trigonometric approximation polynomial ¢ via the Vandermonde approach (4). The
IUHQR algorithm can easily be modified to compute the unitary matrix ) which trans-
forms A to the upper Hessenberg matrix H = G1(71) - .. Gm(Ym). In order to solve the
trigonometric approximation problem we only need the matrix ()i, the first n columns
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of Q. That is, the IUHQR, algorithm can be curtailed so that only O(mn) arithmetic
operations are required for the computation of the parameters {v;}7_;, {o;}7—, and the
vector ¢ = Q Dg. There is no need to form @ explicitly, the algorithm can be modified
such that ¢’ is updated successively. See [15] for details.

In order to compute the least-squares solution € from (4), the vector ¢ = R; *¢ has to
be build, where R; = 0oK(G1(71) - - Gn(n),€1,n). As RTR; = T is a Toeplitz matrix,
R7! can be computed via the Levinson algorithm. Since the Schur parameters 7; and the
complementary Schur parameters o; are already known, the Levinson algorithm can be
simplified. Let S = Ry' = (815---,5n). Then the s; are given by the following recursion

S1 = 0'0_161

8]'+1 = O'J_I(JS]-F’Y]Eg) j:1,2,...,n

where J = (es,e3,...,€n,0) and I, = (eg,...,€1,€p41,...,€,). Reichel, Ammar and
Gragg present in [15] an O(n?) algorithm for computing R;'b for any vector b € C"
using the above recursion. This is also an updating process, as the Schur parameters are
incorporated successively.

Altogether, the algorithm to construct the least-squares solution ¢ of (4) requires
O(mn + n?) arithmetic operations. The coefficients of the optimal trigonometric polyno-
mial ¢ of (2) can be recovered from €.

2.2 The sin-cos-approach

As explained in the introduction, the discrete trigonometric approximation problem (2)
can be reformulated in terms of (3). This lead to the problem of solving a (generalized)
inverse eigenproblem: Given m distinct unimodular complex numbers {\;}7, and asso-
ciated positive weights {vZ}7 ,, we wish to construct a Schur parameter pencil G, — A\G.
with the A\t and v, equal to the eigenvalues and first components of the corresponding
eigenvectors of G,G¥, respectively. The following proposition is a consequence of the
Proposition 2.1 and the fact that H is similar to G,G. Tt gives existence and uniqueness
of the transformation to Schur parameter pencil form.

Proposition 2.2 Given m distinct complex numbers {\} 7, on the unit circle and asso-
ciated positive weights {VZ}T ., there is a unique unreduced m x m Schur parameter pencil

G, — AG, (with positive complementary Schur parameters) and unique unitary matrices
Q@ and P such that

QHel = 0'0_1(1/1, ceey I/m)T
QA — AP =G, — G,
A= diag()\la Ty )‘M)a
where o = (XL, V).

In the following a matrix pair (@, P) of unitary matrices @) and P is constructed such
that Qe; =u =05 (v1, ..., V)" and Q(A — M\I)P = G, — \G,, that is

(o) /G20 )
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(e ate) (" ar )

(QAP,QP) is a pair of unitary matrices with the eigenvalues { Az}, and the first com-
ponents of the eigenvectors of (QAP)(QP)? = QAQH are the v;/0y. Q and P can be
chosen such that G, = QAP and G, = QP have the desired form G,, G, respectively.

Analogous to the idea of the IUHQR-~algorithm we build up a Schur parameter pencil
by adding a node-weight-pair (), 2?) one at a time. Suppose we have constructed a unitary
Schur parameter pencil GE — AG? with the desired properties from the node-weight-pairs
{(Me, ) e _pr1- Now a Schur parameter pencil GE*' — AGE*" has to be computed by
adding the pair (A v2 ). Thus we want to reduce the unitary matrix pencil

_ (Am,, G{,’>_/\<1(;g> 5

to a Schur parameter pencil such that the eigenvectors of GET1(GET!)H have as the first
components (vg/0op41) with o, = (374, V2)3.

Bunse-Gerstner and Elsner present in [4] an algorithm to reduce a unitary matrix
pencil to a Schur parameter pencil. It is shown that the algorithm is backward stable.
In the following this algorithm is briefly sketched for the special structure of the unitary
matrix pencil (5) given here. Let

@j(a) = diag(l;_1, < _ﬁa g > s In—j)

with |a*+ |0]? = 1.

Given
V * \ 0 8 B 8 £ 00 0

m=p TmTP 0 110 0

op 0 ~ ~
0 0 — )\ 0 == Gg — )\Glg,
) . Do GP

: : G? €

0 0 0 0

we perform a sequence of unitary equivalence transformations in order to add the next
node-weight pair (A vZ_ ) and to construct the corresponding (p+ 1) X (p+ 1) Schur

m—p, m—p

parameter pencil. Let 0,11 = (0] + l/fn_p)% and ag = —Vm—p/0p+1. Then

Go(ao) (G2 — AGP)GE () =: G — AGE! =

*

Y2 02
02 72
=~ —V4 04
04 74
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Here z denotes any changed matrix element. Now o is determined such that in G3(ae)GP

the (4,2)-element is eliminated. This gives

Gs(ow)(GPH — \GPTY) =
* k
Op+1 —~71 r T r
01 r X
T )\ T T
s O3 02 72 B
03 73 DR
04 V4

By multiplication from the right with a properly chosen G3((s) the (2,4) or (3,4)-element

can be eliminated. In either case we obtain

Gs(0n)(GE — AGHTG5(G) =
*
Opr1 T @ T T X
or b T T T
T —A r T x
—7s O3 —F. o4
03 73 Os Y

The additional zeros which are not enforced by the elimination with Gs(¢2) must oc-
cur because Gs(0p)GE G3(C,) is still unitary. Normalization with a matrix of the form

diag(1, L |,1,...,1) gives

GP' = AGP = Gs(a )(G”“—)\Gp“)Gg(Cg)diag(l,l,ﬁ,l,...,1)=
*
S 1
D1 TN T T X
o1 M r T
o —A T T T
e i
7 T 04 V4

The 3 x 3 block in G5

—Y2

e

! can be transformed to

0P
Y2
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by an equivalence transformation with properly chosen matrices diag(1,1,1,z,1,...,1),
G4(O!3) and G4(43)

Moreover, in @3(044)G’0’;1@4(§3)diag(1, 1,1,z,1,...,1) a new 3 x 3 block appears, start-
ing at the element (4,4). In an obvious way one proceeds with the reduction to Schur
parameter pencil form; at each step an additional 3 x 3 block is generated alternating
in Gy2;-1 and G.o;. After O(m) steps the unitary matrix pencil is reduced to a Schur
parameter pencil.

In summary, a backward stable algorithm to solve the inverse eigenvalue problem for
Schur parameter pencils results; due to its length we omit it here, the algorithm is given
in [9]. An efficient implementation of the algorithm requires ~ 32m? — 35m arithmetic
operations. A mathematically equivalent algorithm which manipulates matrix elements
(instead of Schur parameters) requires O(m3) arithmetic operations.

The algorithm is an updating procedure because it incorporates node-weight pairs
one at a time. After the jth step of the algorithm, the j x j Schur parameter pencil
corresponding to the first j nodes and weights has been obtained. The order in which the
node-weight pairs are incorporated is optional.

As explained in the introduction, the algorithm can be used to construct the trigono-
metric approximation polynomial ¢ via the sin-cos-approach (3). The algorithm can easily
be modified to compute the unitary matrix Q which transforms A — A\ to the Schur pa-
rameter pencil G, — AG,. In order to solve the trigonometric approximation problem
we only need the matrix Ql, the first n columns of Q That is, the algorithm can be
curtailed so that only O(mn) arithmetic operations are required for the computation of
the parameters {7;}7_;,{0;}}_, and the vector # = QHYDJ. There is no need to form Q,
explicitly, the algorithm can be modified such that ¢ is updated successively.

In order to compute the least-squares solution ¢ from (3), the vector ¢ = F 'Ry #
has to be build, where R; = 00k(Go,GE e, 0),G,, G, € C"*". An algorithm for inverting
k(G,GH €1, /) can be obtained by the following observation [8, 10]. Let S = (s1,...,8,)
be the inverse of k(G,G¥ e,£). Then sy, is a permutation of the 2kth column of the
inverse of the Krylov matrix K(H,e;,2¢) and so,y1 is a permutation of the (2k + 1)st
column of the inverse of the Krylov matrix K (H, e, 2¢) = K(H, ey, 2/) :

(61,H€1,H2€1,...,H%el)fngQk = €2,
N — J— Z -~
(61,H€1,H2€1,---,H2 e1)lokt152k+1 = €2k41-
Since (K(H,e1,2¢))?K(H,e1,2() is a Toeplitz matrix, the inverse T = (ty,...,t,) of

K (H,eq,2/0) can be computed by the simple modification of the Levinson algorithm given
in the previous section. Thus, an algorithm to invert x(G,G¥, ey, k) is given by



FafBbender 14

S1=¢€

forj=1,2,...,n—-1
tJ_H—O' (Jt +’lef)
if 74+ 1 even
then s, = J+1tj+1
else 5,11 = T; +1t]+1
end if

end for

where J, I; as before and

~

1 _
12j+1 - (era €2j-2,€2j-4,--,€4,€2,€1,€3,...,€25 1, €211, €242, .-+, eN)a

—1
Izj = (62]'—1,623'—3,623'—5,---,63,61,62,64,---,€2j—2,€2j,€2j+1,---,€N)-

An O(n?) algorithm for computing R;'b for any vector b € C" using the above recur-
sion can be given [8, 10]. Using this, the solution vector = F~ 'Ry '’ can be computed.
This is also an updating process, as the Schur parameters are incorporated successively.

Altogether, the algorithm to construct the least-squares solution # of (3) requires
O(mn + n?) arithmetic operations.

Using the algorithms discussed in this section, the least-squares problem (3) is solved
via factoring DA = % QRF where R = k(G,G¥ ey, 0) and Q(A — M\)QPG, = G, — \G.
As DA is a real m X n matrix there exists a unique, skinny real-valued QR decomposition
of DA

Dg = Q1R1 with Ql € ]Rmxn’ Rl e R™"

where the diagonal elements of Ry are positive. This can easily be obtained from the
factorization QRF by taking a closer look at the structure of RF [10, 8]. This reveals
that there exists a unitary blockdiagonal matrix C such that R= CRF~is a real-valued,
upper triangular matrix with positive diagonal elements. Let Q = @C. Then a QR
decomposition of DA is given by

D/T = %QE = %QIRI

where Q1 corresponds to the first n columns of Q and R, is the upper n X n block of R
Since . R has positive diagonal elements, this QR decomposition has to be unique, and Q1
and R; are real-valued matrices with Q; € R™™ and R; € R™™. The minimum norm
solution ¢ of the least-squares problem (3) is obtained by

t =20, R 'QYDY.

Fast and efficient algorithms to compute Ql and R; using only real arithmetic (all
algorithms discussed so far use complex arithmetic!) can be developed. In order to keep
this paper at a reasonable length, we omit details of this approach here. Observing the
effect of the transformation Q on the real and imaginary part of A = diag(z1,...,2n) =
diag(cosfy,...,cos60,) + 1 diag(sinby, ... ,sinf,,), it can be shown that essentially only
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the real part of A is needed for computing @ and R. The algorithms are updating
schemes as they incorporate two node-weight pairs at a time.The algorithm to construct
the least-squares solution ¢ of (3) using only real arithmetic requires O(mn-+n?) arithmetic
operations. For a detailed discussion see [10, 8].

3 Downdating

Let the trigonometric polynomial ¢(6) = ag + Y5 (a; cos j6 + b; sin j#) be the optimal
solution of the approximation problem (2) corresponding to the data Y, = {0, w?}7,.
Suppose Y, is obtained from Y, by augmenting a new node-weight pair (6,41, w2, 1)
Solving the approximation problem for Y, assuming the knowledge of its solution for
Y11 is called downdating the least-squares fit.

Assume the solution ¢ corresponding to Y;,.; is obtained by the updating method
discussed in the Section 2.1. The problem of downdating the optimal trigonometric ap-
proximation ¢ of (2) can then be expressed as follows:

Given
o9 >0
H,, ;1 unitary upper Hessenberg matrix of size (m + 1) x (m + 1)
dms1 a vector of length m + 1
(A, v?)  a node-weight pair from Y,
(00, Hyy1, dmy1 Tepresenting the solution of (2) for some data set Y, 1 = {0, w?}7 )

find oy > 0, a vector d,,, and a unitary upper Hessenberg matrix H,, such that

1. the eigenvalues of H,, are {e*}7"4!\ A

2. the vector d,, contains the first components of the eigenvectors of H,,, that is if the
1 .
entries of d,, 11 are 8,/0g, . ..,0m41/00 and og = (7' 67)7, then the new oy will
be 0o = (02 — 12)? and the entries of d,, are {0;}™' \ v normalized by o,.

A similar definition of the downdating process in terms of Schur parameter pencil can be
given.

3.1 The Vandermonde Approach

Assume the optimal least-squares solution ¢ of (2) corresponding to the data Y1 =
{0k, w2} ! has been computed via the algorithms discussed in Section 2.1. Then a
unitary matrix U and a unitary upper Hessenberg matrix H,,; is known such that

URAU = Hppq, Uey =05 (wi,. oy wmgt)T

m—+1
g = 4 ZW}%, A:diag()\l,...,)\m+1), /\k: :ewk'
k=1

Let (6;,w7) be the node-weight pair to be deleted from the solution. Using the knowledge
of the above solution, we wish to construct a unitary upper Hessenberg matrix H,, such
that

where

WHAW = H,,,
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where

A = diag()\l, “e 7)‘]'—17 )‘j-l-l? ceey )‘m—|—1)7

~—1 T

W61 = 0 (wl,...,wj,l,wjﬂ,...,wm+1) s
~ 2 2\ 1
Gy = (0g — wj)2

or some suitable permutation of A and Wey. In other words, we wish to determine a
unitary matrix V' such that

~ ~T )
(1 0)(5 ooe{><1 0)_ I
0 VH Op€1 Hm+1 0 V 5)]_1 Om /\]

Then, as < A ). ) = P].HAPj where Pj = (€1,...,€j_1,€j41, - - -, Em+1, €)
j

w
(")

Applying one step of the standard QR algorithm with the exact shift A; to the matrix
H,, 1 determines a unitary matrix V' such that

v = (1)
Aj

because \; is an eigenvalue of H,, . H is a unitary upper Hessenberg matrix. As Hp,11
is an upper Hessenberg matrix, V has to be of upper Hessenberg form as well. Hence, the
vector oge; will not be transformed as required as VH ey is a full vector.

Applying one step of an RQ algorithm with the exact shift \; to H,,;, determines an
upper triangular matrix R and a unitary upper Hessenberg matrix ) such that H,,.; —
Al = R(Q and

QHp1Q" = QR+ NI = ( H N )
J

His a unitary upper Hessenberg matrix. The vector oye; is transformed such that only
the first two entries are nonzero

0oQe; = (z,,0,...,0)7.
Observe that with the reversal matrix J = (epy1, €m,---,€1)

Hpo=RQ & JHyoJ = (JRI)(JQJ)
& JHL . J=(JQ"J)(JR"J)
N——

S——
N N N
and that if Hm+1 = Gl (71)02(’)’2) fre Gm+1 (’}/m_H) then
HP = ‘]HZ;H—IJ = Gl(il)GQ(fy?) e Gm-H(iM-H)'
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Hence applying the RQ algorithm to H,,,; is equivalent to applying the QR algorithm to
HP. One iteration of the QR algorithm with the exact shift \; applied to H” generates
a unitary upper Hessenberg matrix

V =G1(51)G2(Bs) - - - G(Bims1)
such that H
H Py, _ "0
VHV_<O A]->' (6)

Moreover, (3,,+1 can be taken to be an arbitrary unimodular number, because deflation
has taken place [12].
Only the last two components of ooV #e,,,; are nonzero; they are given by

(1 0_> < B (L= 1Bal)? ) ( 0 )z ( (1—|ﬁm|2>%ao>
0 —Bmtt (1—|Bnl?)z B 00 —Bm+1Bmoo )
We can choose Bn11 = —Bm/|Bm| to obtain
( (1= |Bn)¥0 ) .
|/6m‘0'0

Transforming (6) by similarity using J = (€ms€m—1,---,€1,€ms1) and transposing the
result, we obtain

H" 0

H —

) . where W =JVJ.

Moreover,

poiite, — (L 1Bty
|5m|0'0 ’

and by the uniqueness of the reduction, H" = H,,, oo(1 — |ﬁm|2)% = 0y, and |00 = wj.

Note that the downdating process requires knowledge of the node 6; to be deleted, but
not of the corresponding weight wJQ-. In an implementation of the process the computed
value |(,|0o can therefore be used to assess the accuracy of the computation.

If the optimal least-squares solution ¢ of (2) corresponding to the data Y,,.; has
been computed via the algorithms discussed in Section 2.1, the least-squares solution
¢=R;'Q¥Dg € C™" of (4) is known. The optimal least-squares solution ¢ of (2) corre-
sponding to the data Y;, is then obtained by applying W# to ¢ = Q¥ Dg incrementally

Whe = ¢’ ) .
( w;g(2;)

In a second step a new ¢ € C™ has to be computed from ¢” using the Schur parameters
of H,, via the simplified Levinson algorithm discussed in Section 2.1.

This downdating procedure was first described by Ammar, Gragg and Reichel in [3].
They present an O(m) algorithm which is based on the unitary QR algorithm introduced
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by Gragg in [12]. The transition from a unitary n x n upper Hessenberg matrix H =
Gi(1) -+ Gulym) to Hy = RQ + pl = QY HQ is computed implicitly without explicitly
forming H — pul. 1t is well known that as H is upper Hessenberg () is a unitary upper
Hessenberg matrix. Hence () has a factorization of the form

Q=Q1Q2- - Qn
with
Qr, = Gi(ou), |lak|® + B; =1, 6, = 0.
In a preparatory step, a unitary matrix 1 = G1(aq) is determined such that
(H — ul)e; = p1Qre;.

Let
Hy=QfHy 1Qr1, Ho=H, Q=1

The matrix H; is a unitary upper Hessenberg matrix. The matrix H;(@); is a matrix of
the form

r T T x T
r T T x T
® =z z x x
r x T

r x

Hence, H;(Q); is upper Hessenberg, apart from an additional entry in the position (3,1).
The remaining matrices (s, ..., Q, are chosen in order to chase this additional element
down the subdiagonal. That is, suppose Hj is a unitary upper Hessenberg matrix. Then
HQy is upper Hessenberg, apart from an additional entry in the position (k + 2,k).
Premultiplication of HyQy by Qf, to form Hj; must create a zero in position (k+2, k).
Making use of the factorization of H and ), and the fact that the resulting matrix H,
has to have a factorization as well, an efficient unitary QR-step is developed by Gragg in
[12].

3.2 The sin-cos-approach

Assume the optimal least-squares solution ¢t of (2) corresponding to the data Y1 =
{0k, w2} has been computed via the algorithms discussed in Section 2.2. Then a
unitary matrix @ and a Schur parameter pencil G™*! — A\G™*! is known such that

QA= ANQRTGYT =GP = AGTT, Q%er = 05 (Wi, oy W) ”

m+1
oy = Zw,%, A =diag(A, ...y Ans1), A\, = e,
\l k=1

Instead of the above equation, we can just as well consider the equivalent equation

QAQH — Ger—l (ng—l—l)H_

where
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Let (6;,w5) be the node-weight pair to be deleted from the solution. Using the knowl-

edge of the above solution, we wish to construct a Schur parameter pencil G7' — A\G7* or
equivalently a matrix G™(G™)¥ such that

7 ANTH _ ~ymym\H
WAW™ = GHGT)™7,
where
A = diag()\l,...,)\j,l,AjH,...,)\m+1),
H ~—1 T
Wo%1 = 65 (W1, Wj 1, Wjt1s -, Wint1)
_ 2 2\1
0o = (Uo_wj)2

or some suitable permutation of A and W¥e;. In other words, we wish to determine a
unitary matrix V' such that

1 0 ) ogel 1 0
0V 0p€q GT_H(GZH_I)H 0 VH

0 6'0@{ Wi
= | s& GrGm* 0
CL)j 0 )‘j

~

Then, as ( A ). ) = P].HAPj where Pj = (€1,...,€j-1,€j41, - -, Em+1, €)
j

W HAHyH
( 1)=ijv.

Analogous to the ideas of Ammar, Gragg and Reichel in [3] we want to compute W via
a QR-type step. In [4] a QR-like algorithm for Schur parameter pencils is introduced. The
method is based on the standard QR algorithm applied to a matrix of the form G,G.
No initial reduction to Hessenberg form is performed. It is shown that each iterate is then
of the same form as G,G¥ again. Hence, applying one QR-step with the exact shift \; to
the matrix G™+'(G™+1)# determines a unitary matrix V such that

VGG = ( 0 )
J

because ); is an eigenvalue of G (G7*')". X is a unitary matrix of the same form as
GG, V is a matrix of the form G1(G35G2G3)(G5G4Gs) - --. Hence, the vector gge;
will not be transformed as required as Ve, is a full vector.

Applying one step of an RQ algorithm with the exact shift \; to G (G™H1)H deter-
mines an upper triangular matrix R and a unitary U of the form

G1(G35GG3)(G5G4Gs) - - = G1G3Gs - - - GoG3GuGs - - -

that is, U = G,H for some upper Hessenberg matrix H and a matrix of the form G,. R
and U are determined such that GT(G™+)H — \;,] = RU and

UGG IUT = UR + \T = ( O ) .
J
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The vector oge; is transformed such that only the first two entries are nonzero
ooUe; = (z,7,0,...,0)".
Observe that with the reversal matrix J = (emy1, €m,---,€1)
GMH e Y = RU & JGT™TH(G™NYH ] = (JRJI)(JUJ)
& JGE™HE™YDT ] = (JUTJ)(JRTT).
Let GP := J(G™T(G™)")TJ and let us assume for simplicity that m + 1 is odd (a

similar argumentation can be given in the case that m + 1 is even). Then

GG = Gi(1)G3(73) « + Gt (Yma1)GS (72) G (74) -+ - G (Yim)

and

G" = G1(Vm)G3(Tm=2) - Gim—1(2) Go(Ym+1) Y (Ym-1) G4 (Ym—3) - - - G (1)

where
Go(y) = diag(—,1).

That is, G (GT)H# and G* are of the same form. Further, as U is a matrix of the
form G,H for some upper Hessenberg matrix H and a matrix of the form G,, JUTJ
is a matrix of the same form. Hence, as JRTJ is upper triangular again, applying the
RQ algorithm to GT*1(G™ 1) is equivalent to applying the QR algorithm to GT. One
iteration of the QR algorithm with the exact shift \; applied to G” generates a unitary
matrix V

Gl (/BI)G3(53) Tt Gmfl(/@mfl)G2(52)G3(53) U Gm+1 (5m+1)
VEGPY = < )é Aoj ) : (7)

Moreover, d,,+1 can be taken to be an arbitrary unimodular number, because deflation
has taken place.
Only the last two components of ooV ¥e,,,; are nonzero; they are given by

(o i) Lo ) (o)

_ (1 —1oul)* o
_5m—|—1 5m 0o .

such that

D=

We can choose 6,41 = —0,,/|0m| to obtain
( (1= [6a*) 200 )
|0mloo '
Transforming (7) by similarity using J = (em,€m_1,---,€1,€ms1) and transposing the

result, we obtain

XII 0 .

wem (G AW = ( 0 ) . where W =JV.J.
J
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Moreover,

O'OWHel = ( (1 - |6m|2)50061 ) )
|Om|00

and by the uniqueness of the reduction, X” = G™(G™H, oo(1 — |6,.|2)2 = 5o, and
|0m |00 = wj.

Note that the downdating process requires knowledge of the node 60; to be deleted, but
not of the corresponding weight wJZ-. In an implementation of the process the computed
weight can therefore be used to assess the accuracy of the computation.

If the optimal least-squares solution ¢ of (2) corresponding to the data Y;,,; has
been computed via the algorithm based on the generalized inverse unitary eigenproblem
discussed in Section 2, the least-squares solution ¢ = ﬁfléf D f € ¢t of (3) is known.
The optimal least-squares solution ¢ of (2) corresponding to the data Y, is then obtained
by applying W¥ to t' = Q¥ Df incrementally

Ha "
W —(wjf(z»)'

In a second step a new ¢ € C™ has to be computed from " using the Schur parameters
of G™(G™)" via a simplified Levinson algorithm. This is analogous to the second step
of the updating procedure. There first @f Df is computed via solving the generalized
inverse unitary eigenproblem. Then R;! is computed using the Schur parameters of G,
and G, via a simplified Levinson algorithm. Details are given in [10].

A QR step has to be applied to a matrix X of the form G,GZ. We get a unitary
matrix X’ = V# XV, where X’ can be written as G,(G.)" again. If X corresponds to an
unreduced Schur parameter pencil G, — AG,, then X’ will correspond to an unreduced
Schur parameter pencil G — AG.. The transformation to an unreduced Schur parameter
pencil is uniquely determined, up to unitary scaling, if the first column of the transfor-
mation matrix is given. Therefore one can derive G, — AG., up to scaling from G, — AG,
by any unitary transformation Q7 (G, — AG.)P to Schur parameter pencils, for which the
first column of ) coincides with a scalar multiple of the first column of V. This was used
by Bunse-Gerstner and Elsner in [4] to derive an implicit single shifted QR step.

In a preparatory step, a matrix V; = G1(qy) is determined such that

‘GH(GO — )\jGe)el = peq.

The pencil V/# (G, — A\G,) differs from a Schur parameter pencil only by three additional
entries

r X r + +
r X + z x
T z —A T T
T x T T

This ”bulge” is then chased down along the diagonal to restore the Schur parameter pencil
form again. This is an O(m) process.
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4 Numerical examples

We present some numerical examples that compare the accuracy of the following methods
for solving the trigonometric approximation problem (2):

- AGR : the algorithm proposed in [15] as sketched in the introduction. The least-
squares problem (4) ||DAc—Dg||s = min is solved via QR decomposition of DA, where the
desired Q-factor of the QR decomposition is computed by an inverse unitary Hessenberg
eigenvalue problem and the inverse of the upper square subblock of R is computed by an
algorithm closely related to the Levinson algorithm (as explained in Section 2.1)

- pencil : the algorithm proposed in [8] as sketched in the introduction. The least-
squares problem (3) || D f—DAt||, = min is solved via QR decomposition of DA, where the
desired Q-factor of the QR decomposition is computed by an inverse eigenvalue problem
for Schur parameter pencils and the inverse of the upper square subblock of R is computed
by an algorithm closely related to the Levinson algorithm (as explained in Section 2.2)

- linpack : The least-squares problem (3) ||D f — D A#||, = min is solved via the explicit
formation of the matrix DA and the use of the LINPACK [6] routines sqrdc and sqrsl
(with real arithmetic)

For comparison of accuracy we compute the solution £ of the system min||DAf—Df||,
in double precision using the NAG routine FO4AMF. The figures display the relative error
|[E—14]|2/||ta||2 where £ is the coefficient vector computed in single precision by the method
under consideration. Each graph displays the errors for m = 50 and increasing values of
n. The arguments of the nodes are either equispaced in the interval [0,7), [0,3/27) or
[0, 27) or the arguments are randomly generated uniformly distributed numbers in [0, 27).
The weights are all equal to one, the elements of the real vector f are randomly generated
uniformly distributed numbers in [—5, 5].

A comparison of the methods AGR, linpack and pencil is given in Figure 1. The
graphs at the top of Figure 1 display the relative errors in the coefficient vectors for
equispaced nodes in intervals smaller than 27. As n increases, and the problem becomes
more ill conditioned, the LINPACK routines are the first to produce inaccurate results.
The method pencil produces errors that are somewhat smaller than AGR. The graphs at
the bottom of Figure 1 display the relative error when the arguments are equispaced in
[0,27) and when the arguments are randomly generated uniformly distributed numbers
in [0,27). In the first case, the LINPACK routines and pencil produce smaller errors
than AGR. Note that in this case we are computing the Fourier transform and thus the
FFT is a better method for solving this problem. When the arguments are randomly
generated uniformly distributed points in [0,27) the least-squares problem is relatively
well conditioned and the algorithms AGR, and pencil yield roughly the same accuracy as
n gets close to m.

We obtained similar results to those in Figure 1 with other choices for the nodes and
the weights. The numerical experiments have shown that generally the method pencil
produces more accurate results than the method AGR. The method linpack produces
inaccurate results first. AGR, and pencil are algorithms to solve the trigonometric ap-
proximation problem in Q(mn) arithmetic operations, while the method linpack requires
O(mn?) operations. For more numerical examples and a more detailed discussion on the
updating procedures see [8].
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We will refrain from giving numerical examples for the downdating procedures. For
numerical examples and a detailed discussion on the downdating procedure as described
in Section 3.1 see [3].
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