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Abstract

We present a coupled simulation—optimization procedurégie improvement
of the laser welding process. This is achieved by intrody@rfunctional to
measure the quality of a weld and later performing a mathiealatptimization
of it. The welding process to be included in the functionaimulated using an
adaptive finite element method for the thermal and mechbsutgroblems. The
functional is optimized using a constrained mathematiggihtization method
and the optimized parameters giving some desired propesfithe welds are
found.

In this paper, the results obtained for twdfdrent optimization goals are pre-
sented, namely a general test problem in which all good ptiegeof the welds
are assumed to have the same importance, and another in avhigher impor-
tance is given to the residual stress and the full penetratiche weld.

Key words: welding, laser welding
PACS:44.05+e, 46.35+z, 81.20.V]

1. Introduction

The precise calibration of a process represents one of tisegommon prac-
tical problems in industrial applications, and thus thede#or adequate param-
eters is an important task before a process can be implethientiee production
lines. The complexity of such calibration depends stromgiythe process com-
plexity and is some times done by large and expensive expatahtests.
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For the welding community, the main interest is to analyzegloperties of
the welded pieces, mainly observing the seam constructidriree possible me-
chanical distortions that the pieces could contain, i.@luating the weld seam
geometry and the residual stresses and deformation.

The laser welding process contains a complex relation thdutes some ba-
sic process parameters like laser intensity and processityglinto the resulting
welded products. A calibration of a process using a sligtifferent material
or laser array requires in many cases an expensive (and soe®unavailable)
working cycle in which sample welds are produced, measwedesulting dis-
tortions angor stresses, and then cut for measuring the weld seam diomsnsi
and the quality of the weld.

Although this calibration cycle is usually guided by alrgagkistent know-
how for similar processes, the calibration remains experand is only able to
find, among the performed process trials, the one that sasttie better outputs.

The driving idea in this work is to embed the laser weldingcess inside a
functional that can measure the quality of a welded prodTicis will allow the
use of the existent mathematical optimization theoriesagarithms to find the
optimal parameters producing the best welds.

Some previous works in which an optimization in the mathérabhsense has
been applied to the welding problem already exist. For exejpe works in
[1, 2] are based in quasi-stationary analytical solutiangtie temperature field
and a simple model is used to predict hot-cracks. This is latduded in an
optimization procedure to eliminate the appearance othaxtks in the welded
pieces.

The computational welds we consider have a higher level ofptexity and
the intended optimization hasftérent goals, as will be shown in the model de-
scription in the forthcoming Section 2. The optimizatiottisg) and method are
explained in Section 3, and Sections 4 and 5 present tf#erdnt optimization
results, showing the flexibility of the implemented ideas tfte quality of the
welds. Finally, section 6 presents the final remarks anaoltbf this work.

2. Mathematical Model and Simulation

We consider here the laser welding process as in [3, 4], wihereomplete
mathematical model and their calibration with experimerggults were pre-
sented. All the simulated processes make are Adaptive FEbNEementations
that make use of the open source toglbox ALBERTA ([5]).



2.1. Thermal model

The material pieces are described by the doriajassuming that there is no
gap between them) and a modified heat equation is solvedddethperaturé,
itis

o9 0 o6 o~
a - 6_)( (K(e)a—x) =0 In Q X (O,T), (1)
K(Q)% = 5air(0 - 90) on o x (0, T), (2)
0=0, inQx{O0} (3)
6=06, InQ\Q, (4)

wherex(0) is the temperature dependent hedfudivity, 6, is the heat trans-
fer codticient from the material pieces to the surrounding air, aedtdom and
evaporation temperature are denotedpgndé,, respectively. Further, the sub-
domainQ\Q is determined by the vapor channel or keyhole shape obtaithd
the models in [6, 7].

In [3, 8], the use of this modified equation has been shown®gbod results
in accordance with experiments.

Figure 1 shows the specific geometry used for the simulatiarth a total
dimensions of 100mnx 65mmx 3mm. The beam is assumed to be moved
along the middle line of the plates, producing a keyhole mgwn the interval
X € [15mm 85mm].
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Figure 1: Material piece geometry with start and end poiotstie butt-weld.
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Figure 2 shows a simulated temperature field for the speggedetry, where
the temperatures above the melting temperature of®%@e colored in red and
it is possible to observe the characteristic shape of thedemture distribution
for a welding process.

Cuts in thex-direction

[ e—— T T I [ CSSS—
25 181 338 493 650 °C

Figure 2: Temperature field &t 0.88 s. Temperatures above the melting point are omitted.

This simulation result corresponds to a value of laser pase3000W, a
welding velocity of 75mis, and was performed using the set of temperature-
dependent material properties for the aluminum alloy AABO® as in the ap-
pendix A of [3].

More extended simulation thermal results can be found i4,[8], where also
several comparisons with experimental measurements inglts are presented.

2.2. Mechanical model

Based in the temperature fields, the corresponding elaststigproblem is
solved using the radial return mapping as in [3]. The alganitised performs an
update of the deformation fiele(x), the strain tensorg(x) and the stress tensors
o(X), making use of a predictor—corrector procedure to givessttensors that
are inside the set of allowable stresses.

The use of a model which includes plastic deformations alltive calcula-
tion of the residual state of the piece, making possible teasurement of the
distortion in the pieces after the material has cooled doWms residual state
is a very important ingredient for the optimization aimstlasfinal stresses and
distortions are an important part on the quality of a weldexstipct.

Within this work, the mechanical calculations assume a flode with
isotropic linear hardening (see e.g.[9, 10]) and von Mise&ycriterion (as in

[3, 4]).
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The core of the plastic solver is the predictor-correctep gterformed in each
guadrature point of the FEM simulation at each time-step @nists on the
evaluation of the stress using the linear elasticity modedradictor and, if nec-
essary, a correction to avoid the current stress to be eutsallevel which can
be loaded into the material. For more details, see the geslg@ithms in [9] or
the specific algorithm used in [4].

Figure 3: Final deformation of the butt welded piece. Exagtgel 30 times and measured after
300 seconds of cooling have passed since the welding prozéds finished.

Figure 3 shows the result for the final distortion or defoiiorabf the welded
plates. The deformation shown here corresponds to the caldrral piece and
makes possible to observe the typical deformation obtamedactice for such
a welded piece ([11, 12]).

This shape of the welded piece is created due to tfierdnt thermal distribu-
tions obtained for dierent vertical layers on the pieces, causing that the tHerma
effects difer and finally the internal stresses cause this beriidiaing efect in
the plates.

3. Optimization method and settings

3.1. Functional for the weld quality

For a real (or simulated) process to be optimized, a cruadaitps the selec-
tion of the objective function, as it must be the ‘measureany element or the
possible process results. In particular, for the laser wgldpplication, the func-
tion F(X) should be understood as a measurgu&lity or goodnessf the welds,
while the argumenk must be a vector holding the possible inputs to create one
of them, either by real welding or, as in our case, by simugpii numerically.

First of all, we set our problem as the mathematical optitrongproblem

minF(x), | <x<u, (5)
XeRN 5



where the inequalities are assumed to work componentwiséudill |; < u; Vi.
In this work we assume that the functional has the form

m

FCEDIETCT ©)
=1

wherex = (X1, X, ..., X,)' is the vector including the input parameters for
the objective function.

Considering functions of this type, we can write an equiviailerm for F as

FOO = 51T (X, )

with
Vai f1(X)

Vaz f2(X)

f(x) = e R™ (8)

Vam fn(®)

Using the representation (7), the functional’s gradient is
VF(X) = J"(x)f(x) e R", 9)

whereJs(X) € R™" denotes the Jacobian matrix of the vect¢x). This simple
form of VF makes the quadratic function (7) a very convenient settingpfac-
tical optimization tasks. Furthermore, in problems of pagter identification
type with well established desired values, this kind of fiores arise in a natural
way.

What is not trivial to show in an applied problem, is théf®ient regularity of
the functionalF, as it normally involves many interrelations among the [dails
parameters.

In the case of laser welding, the regularity of the functlar@a not be easily
established, as it depends on a complete chain of intamestgoing from the
energy impigned into the material through the keyhole faromaand its use as
moving heat source, to the retrieval of the temperaturediel@his, together
with the fact that all physical parameters present regylaroblems around the
melting temperature, makes venyfdiult to obtain theoretical results about the
regularity of F. A further discussion on this topic can be found in [3].

The idea now is to construct a function as the one in (7) toasgrt the welds
in a way that the good and bad states of certain propertiebeguantitatively

represented, making use of the most important featureseqiribcess.
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Due to the complexity of the laser welding process, it is isgiole in practice
to include a large amount of parameters for an optimizatimegdure. For this
reason, we only consider the main inputs of the process asramgs of the
objective function, namely the laser power impinged to ttagamal ) and the
process velocity\). Furthermore, we also assume that the thefmathanical
initial and boundary conditions are known and equal for alds.

Apart from the selection of the inputs, the objective fumctmust measure
the goodness of fferent welds, considering the simulated versions of a real
weld evaluation.

The features that we consider to evaluate a real or simulatdd are the
economy and féiciency of the process, the residual deformations in theegiec
and the shape of the weld seam. By economy of the process, veestizuad the
use of laser power in a low range. Inside the procéssiency, we include the
process velocity and the use of only the necessary amouaserf beam power.

The weld features to be observed contain complex intemelstand the im-
provement on some of them could lead either to improvementegradations
in the others. For example, the use of lower laser power andingevelocity
produce lower deformations, but this also produces vergwield seams, which
is traduced in lack of strength of the final piece over a lavpdime. Some other
examples of this kind of interrelations can be found in [3].

Our selection of input parameters for the welds can be erida straight-
forward manner. The only big disadvantage is the directeiase in the com-
putational &ort to evaluate every iteration of the search, due to the d#moa
growth of the Jacobian, as this is approximated using a filifferences scheme.

We shall consider a functional of the form (7), with the veaiblaser power
and velocity as inputs

X = ( C ) (20)
and the components d¢{x) as
fi(Pv) = +ai (P-Pp), (11)
(R v) = +az (v-vp), (12)
faPv) = +as (W-wp), (13)
faPv) = +vas (h—hp), (14)
fs(Pv) = +as (9, (15)

wherew, h, sdenote the width of the weld seam, its height, and the meadure
residual stress in the material, respectively, and thecsigh$ denoteglesired

valuesof the same variables.
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Figure 4: Stable domain for the weld evaluation. The evauategion is defined as the points
with x € [a, b].

The values ofw, h and s are determined only in a subdomain of the welded
piece in order to avoid the unstable initial and ending mooftthe process (see
[3] for more details). The subdomain depicted in Figure 4 usedd in our algo-
rithms witha = 30mm ando = 70mm.

Averaging all the melting pools dimensions inside the stablbdomain gives
the values ofw andh. The values describes the residual deformation in the
welded piece and in our algorithms can be selected as theadepii stress or as
the out-of-plane angle.

From this setting, it is clear that the practical problemastded by the prac-
tical values of the inputs, as

0 < Vmin

Pmax < o0,

<
< Vinax < 0.

P
! (16)

VAN VAN

and the practical process indicates directly our desirkdegdor this parameters,
it is Pp = Pmin @andVp = Vimax

The desired values for the weld seam geometry are positivears and the
desired height can be naturally considered as the matkit&iess.

The stress measurement is presented without desired vakguation (15)
because the best possible solution would be a weld pregemtdiresidual stresses
or deformations.

IAlthough this not possible in practice, the use of zero agreiévalue does not represent
any trouble for the mathematical optimization.
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The measurement of stress in (15) can be considered as a hone siress
over the whole piece. Normally, equivalent stresses arsidered for this mea-
sure. However, there can be other ways to include this featuthe functional,
as the ones presented in [3].

3.2. Constrained optimization method

Within this work, we solve the constrained optimizationidemm in (5) by the
interior trust region method in [13, 14] which is based in fhrevious works
[15, 16, 17, 18] and corresponds the base of the constraptedipation used in
[19].

The method presented in [15, 16, 17, 18] is mainly based orfareacaling
of the problem that forces the iterations to belong to theriat of the bounds.
This scaling is performed by defining the vector functionR" — R" defined
componentwise as

Xi — Uj if g <0 anduy; < oo,
W9=1 71 a0 andu o an
1 if g>0 andl; = co.
and the scaling matri® for an iteration poin&® as
D) = diag{v(x¥| 2). (18)

With this definitions, the first order optimality conditionan be written as the
nonlinear system of equations

D(X)"%g(x) = O. (19)

The further development of this method produced the STIRhotkin [13,
14], which maintains all the good convergence propertiesfaatures shown in
[17, 18], but is also able to deal with large scale problentse hase to handle
with the large scale problems is a subspace idea using aqa#icmed conjugate
gradient procedure. For a short overview of the methodsldpreent and their
main ideas, the reader is referred to [3]. The main featuldseoSTIR method
are:

¢ use of the fline scaling to only allow iterations inside the bounds;

e adaptive trust region size, considering the distance tbthads, the de-
crease on the function, and the good approximation of a @tiaciubmodel

to the original functional; and
9



e each iteration is taken as the best solution between th¢paobdased solu-
tion from [14], the reflected-path solution from [16] and gwdution along
the negative gradient direction.

10.8

10.6

Figure 5: Iterative solution search usingfdrent starting points for a box constrained example
with a reflective Newton method.

As an example, Figure 5 shows the performance of the methratiéamini-
mization of the function

F( " ) - %(IIZsin(MXz)IIz +1l0a ~ 0.8)I +1I(2 ~ 04)F)  (20)
with the bounds ® < x; < 2 and-1 < x < 1 and with the starting point
x0 = (1.8,-0.9)".

For this test example, it is worth to notice from the isolitesv the function
forces the first iterations!V), to point outside the restricted domain, but the lower
bound forx, is never crossed. Later, the step to obtéfhis much larger than the
previous one, indicating that the trust region size waseased in this iteration.
Finally, the convergence towards a minimum can be obsena&thg smaller
steps until the minimum step-tolerance is reached.

The STIR method was implemented as a C-library, using therighhgas and
tolerances as described in [3]. Further, the simulatiosgmeed in Section 2 was

used three times for each iteration, due to the necessityaioae the current
10



point x®) = (P(‘),v(i)) and two more neighboring points for the evaluation of the
gradient, i.e(P(‘) + AP, v<‘)) and(P(‘),v(‘) + Av).

In the next sections, we assume that the simulated weldimgeps from Sec-
tion 2 has been already calibrated (as in [4]) and do notrdjsish between a
weld and its correspondent simulation. For simplicity, tieet sections omit the
use of units, unless they are needed for the analysis.

4. Optimization without special weighting

This section presents a first optimization procedure in tviare assume that
all the factors in the subfunctiorfg, . .., f4 have the same importance, while the
mechanical result irfs is totally neglected.

The driving idea of every factor in the objective functiorvimg the same im-
portance may not be of high practical interest and shouldeainderstood as
a proposal for real applications. It only tries to give anighs of the general
optimization runs over a rather simple setting that mightbeeasy to under-
stand on a more realistic optimization. The mechanicaltresneglected in this
first optimization to avoid the computations of this subnpdad to allow the
optimization to be done using pure thermal simulations.

Recalling the minimization setting for the functionalas in equation (7),
with the sufunctionals given as in equations (11)—(15) ogpeemization problem
is fully determined by the desired values, the weights fahesomponent of
and the bounds to which the inputs of the objective functiasinbe restricted.

P \Y; w h
Desired value 2000| 140 | 25 | -=3.0
Weighte; 1000 1000| 100| 100

Table 1: Desired values and corresponding weights.

The desired values and weights for the simulations in thitice are shown
in Table 1, and the bounded domain is defined trough the pedditmits in the
laser power and the usual process velocities as

1000< P < 600Q (21)

40< v < 150 (22)

The weightsy; were selected considering the typical values obtained tham

simulations, in a way that the multiplication of the termgted forma]|f;|12/2
11



OPT-la| OPT-Ib| OPT-Ic | OPT-Id | OPT-le
PO ] 1050 | 2000 | 5400 | 5500 | 5900
v [ 50 60 42 80 135

Table 2: Diterent starting points for the optimization procedure.

would lead to values of the same order. This weighting ideaios a process in
which all the four sub-functionals have the same importamzkthe correspond-
ing optimization search will try to improve every factor lmletsame manner.

Although the weights for the laser power and velocity congria seem to
be very high when compared to the other weights, it must be thait these
variables correspond to the inputs of the objective fumgtamd their values are
scaled to belong to the unit square (see [3] for details).sHmee scaling is done
for the corresponding desired values.

The optimization runs are performed using the implemeoradi Algorithm
9in [3]. For all the optimization runs, the main constantd atoping criteria for
the implementations were taken as:

Iterations
Maximum number of iterations: 20
Maximum function evaluations: 60
Stoping criteria
Minimum step size: 16
Minimum function decrease: 16
Allowed distance to bounds: 10

In order to analyze the performance of the optimizationdgawre started the
optimization from the five initial points in Table 2, each bem with the label
“OPT-1" and an extra lower case letter. These points belondjfferent regions
of the admissible domain and will give an idea of the funaioshape and the
existence of a minimum. Figure 6 shows théfelient search paths obtained
with these points, leading to final results in the same regidre values of the
objective function at the starting and final points are pnésein Table 3, where
also the values of the resulting weld seam are presented.

The search stops in all cases due to nofiigent decrease of the objective
function along the search directions and, at the same timeeyhjective function
values at the diierent final valuesHg,g) are rather similar.

As all the search directions point at some time to the int@fithe non reached

zone, the only explanation for this mismatching could bé tiwa objective func-
12



—v— OPT-la
140+ : : { | ——OPT-Ib
—6— OPT-lc
—— OPT-Id
—8— OPT-le

1

120}

1007,

Welding velocity

60|

40 ‘ : : :
1000 2000 3000 4000 5000 6000
Laser Power

Figure 6: Optimization search paths foffdrent starting points.

tion has a flat valley in the region inside the final iteratidfigure 7 presents an
interpolation of all computed values of the objective fumes through the five
optimization procedures. It is important to mention thatoag the considered
points for the interpolation, there are many of them belongdo the interior of

the apparent flat valley. These points are the result of thelations done dur-

ing the finite diference approximation to the Jacobian of the function at each
iteration point.

From the results in Table 3, the iteration number does natssarily fit with
the iterations which can be observed in the search path of€&i§. There can
be missing iteration points in the paths because some ofténations could
have been rejected during the search process, due to baoxapation of te
functional through the trust region submodel (see e.g.J30),

The rejection of an iteration as part of the function-desirgg path is then
followed by a reduction of the trust region size at the lastrrdasing point, and
a restart of the search from this last decreasing point. Tla@ge in the trust
region size corresponds to the reduction or enlargemendatet! in Algorithm
10in [3].

As an example for the accepted and rejected points, Tablatdios the com-

plete iteration points for the OPT-Id, together with thedjextive function values
13



OPT-la| OPT-Ib| OPT-Ic| OPT-Id| OPT-le
Fo 103569 | 69540 | 167312 | 78765 | 73324
Fend 49213 | 45397 | 41780| 43893 | 38439
Pend 199999 | 262902 | 347184 | 393181 | 387110
Vend 10936 8317 9041 | 10418 | 12429
Wend 1.706 2.113 2.113 1.977 1.909
Neng -1.125| -1.750| -1.938| -1.750| -1.625
Iterations 14 8 14 9 10
Simulations 42 24 42 27 30

Table 3: Initial an final values of the objective functionsdavalues of the final parameters and
their corresponding results of weld seam geometries.

Iteration P % F(P,v) | Accepted| Trust region size

Xo 5500000 | 80.000 | 787.646 v initial

X1 4909516 | 87.344 | 582977 v maintained

Xo 3931222 | 104162 | 440725 v maintained

X3 4318391 | 121617 | 466872 X reduced

X4 4062835 | 108056 | 445677 X reduced

X5 3967422 | 105077 | 446761 X reduced

X6 3940494 | 104386 | 440836 X reduced

X7 3933554 | 104218 | 440755 X reduced

Xg 3931806 | 104176 | 438934 v maintained

Table 4: lterations for the optimization OPT-Id, with valoithe objective function.

and the change they produce in the trust region size. Addiliy the points in
Figure 8 show the accepted points (circled) and the rejgmeds (crossed) for
the same optimization run.

Although the observable circled points are only three, iingortant to notice
that they correspond to the iteratiorg Xx;, X, andxg, but the last two of them
lie in very close locations and are undistinguishable implloé In this plot, it can
be observed how the iterative search overestimates thengesaf the approxi-
mation after findingx,, and starts a search over a large trust region, deriving in
X3.

At X3 the method finds the minimum on the approximated quadratidemo
but it results in an increase of the value of the original otiye function and the
point has to be rejected. After this, TAG:\ POIRES X5, Xg andx; present the same
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Figure 7: Interpolated objective function.

problematic and are rejected as well, deriving in a redadbip a factor of @5,
which is predefined in the implementation of Algorithm 9 fr¢8h

Finally, when the last reduction is done, the poigslightly reduces the ob-
jective function, but the size of the step is 684 W and (014 mnjs. After
being scaled to the unit square, the size of this step falis\b&0-3, which is the
minimum step size tolerance given to the program. In a pralcense, it can
also be said that this step does not represent any signifizanand the iterations
X, andXg can be seen as equivalent.

Considering again the five optimizations OPT-la through @&Tit can be
mentioned that each of them produces an approximation taheegion from
a different side, and they are all optimal in &'drent sense. It is observable, for
example, how OPT-la improves very well the laser power vR)ebut does not
care about the bad values for the weld seam geometry. Inliee loand, OPT-Ic
results in the best obtained weld seam geometry, but thepasesr and velocity
of the process are far from their desired values.

In the following section, we present an optimization withregimilarity to
the real welding processes, and where thEedent parts in the functional have
specific importance and the large flat valleys in the objedtinction does not

appear.
15
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Figure 8: Acceptedd) and rejectedX) points for the OPT-Id.

5. Optimization of residual stress and welding penetration

In this section we also consider the mechanid¢idats occurring in the mate-
rial and we focus our optimization goals in the small residiigess and the full
penetration of the weld.

For the measurement of the stress we use only the stablermabdwith x €
[30, 70], as in Figure 4. This selection is based on the known atadhavior of
the stress in the middle of the weld, being not influenced theethe extremes of
the weld seam, or the longitudinal boundaries. Inside tbmmain, the equivalent
stress is smooth and maintain its shape along the weldiegtadin. The other
dimensions are completely included in the evaluation, it is [-65, 65] and
z € [-3, 0] and we use the? norm of the equivalent stress divided by the volume
of the resulting subdomain.

In order to maintain the search focused, we search for oumaptveld with a
very realistic idea in practice. For this, we require that Welded piece is fully
penetrated, and the residual mechani@@ats on it must be as small as possible.
Furthermore, from these two main goals, the full penetratitthe weld should
be put in the first place.

We also consider the energy consumption and the processityaio the op-
timization, but with a much smaller importance level. Théuea of the weld
seam width are not considered at all in this optimizationthvihiis, the desired
values and corresponding weights alrg selected as in Table 5



P h ||O'eq||
Desired value 1000| 150| -3.0 0
Weighta; 100 | 100| 5000 3000

Table 5: Desired values and corresponding weights.

Using this weighting for the weld evaluations, the optinti@a search corre-
sponds to an optimization process very close to what is rmeidthe practical
welding community, as the search tries to find the paraméteesfully welded
product with small distorted areas, and without totallygting the low energy

consumption and the time used to create the welds.

With the weights selected as in Table 5 and the similar vluabe optimiza-
tion in the previous section, it can be observed that theevafithe penetration
subfunctional is now considered to be 500 times more impottaan the laser
power and the velocity, and the residual stress norm is aigsidered 300 times
as important as these values. Additionally, neglecting iamyortance of the
weld seam width does not represent a big problem, as we adstivaeerfect

attachment of the two plates, leaving no gap between the isoep.

The points of the search are presented in Table 6, wherelssatues of the

objective function and the obtained measure of stress asepted.

Iteration P Y, h lloeql F(x) | Accepted
0 5590.00| 80.00| -3.04| 0.677| 593.31 v
1 5614.60| 93.15| -3.00| 0.618| 493.50 v
2 4451.11| 107.15| -2.19| 0.576| 3707.36 X
3 5315.99| 96.47| -3.00| 0.617| 479.12 v
4 4967.59| 96.52| -2.67| 0.621| 1008.60 X
5 5228.92| 96.51| -3.00| 0.619| 477.80 v
6 5142.74| 96.56| -3.00| 0.616| 471.52 v
7 4972.08| 96.59| -2.67| 0.624| 1014.55 X
8 5100.13| 96.59| -2.67 | 0.624| 1018.20 X
9 5132.21| 96.58| -3.00| 0.612| 466.41 v
10 5111.02| 96.62| -2.67 | 0.626| 1015.01 X
11 5127.11] 96.61| -2.67| 0.623| 1015.64 X
12 5131.06| 96.60| -3.00| 0.609| 463.22 v

Table 6: Iterations for the full penetration and low residusress optimization.

17




It is necessary to mention that for cases in which the vérieghole dimen-
sion is higher than the material thickness, this numberas as value foh. With
this, the optimization would also find pointB, {) for which only the necessary
energy expense is done.

In Table 6 can be observed how a common feature of the rejpoiatk is that
the penetration of the weld is not complete. It is interesthmat the poink, has
the smallest equivalent stress but it is rejected due toritdlgpenetration value.

The accepted points of the search are shown in Figure 9, valwem of the
admissible domain was chosen in order to have a closer isipresf the search
performed.

Welding velocity
o) o] [0 o) © © o © (o]
N N [e2] [e0] o N S (o] oo

[o]
o
T

5000 5200 5400 5600 5800
Laser Power

Figure 9: Search for the optimal values giving full penétraiand the minimal stres<facted
zone. Only a subdomain of the admissible set is shown.

Making a short summary of this optimization run, it can be tiwred that the
laser power was improved by 459 W (8%), the velocity is impblay 166 mnys
(21%), the final weld is full penetrated, and the norm of theiegjent stress in
the selected subregion is decreased by 10%.

In words, the welds using the process parameters found bgptieization
search will contain less residual stress (and thus lessrtiest) while staying
fully welded, and at the same time the process will be more@wacal and will

be produced considerably faster.
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6. Discussion and futureresearch

Using our previous works described in [3, 4], we have presthere a suc-
cessful optimization procedure for the laser welding psscd he optimizations
presented here, together with other ones in [3, 8] show thébiléy of the
method used here and its simple use for diverse optimizgtais.

Particularly, the optimization procedure in Section 5 Has that the imple-
mented procedures are suitable to work in realistic opation tasks, not only
achieving the desired features in the welded products, Isotimproving the
efficiency and economy of their production.

It is clear that the simulation and optimization loops irtthg the mechanical
computations are not as fast as the thermal ones. Howeeevjrtinal process
can be done without the necessity of having a real workshopetate the welds,
by simply using a PC to compute the simulations and the optraiaes. With a
correctly calibrated simulation system, the simulatigrthmization loop is much
more convenient than any systematic search using real waddgs costs are
negligible when compared to the possible analysis costsreaéwelded pieces.

Although the STIR method from Section 3 gives good resultsaher authors
have proved its comparable performance to other methodsdl@s active set
type, the optimization of welding has only been done witls thiethod, and the
performance of other optimization procedures is unknowtit bow. This is an
open possibility that can be followed in our future research

Finally, it is important to remember that the optimizatioethnod here pre-
sented is general and the use of only two input variables eaial case. Ob-
jective functions including more input variables or othactbrs to evaluate the
welds are also supported by the implemented optimizationgutures.

The results of this work are very promising and indicate thatprocedure
could also work in a real industrial application, or in theiopzation of other
complex physical models. Additionally, the implementedimzation can be
slightly modified to work with similar problems, in which ansulation tool al-
ready exists.

The use of extended optimization functionals can also baidered for fu-
ture research. Some first extension and modification ideas been already
proposed in [3], but many others can be also considered.
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