UNIVERSITAT

BREMEN Zentrum fiir Technomathematik
Fachbereich 3 — Mathematik und Informatik

Interface Control Document

Dennis Wassel Tim Nikolayzik
Christof Biiskens

Report 08-01

Berichte aus der Technomathematik

Report 08-01 Mirz 2008

‘@,mmn&tm Interface Control Document OZGptilhnﬂnnl

Qptinal Control
|

Interface Control Document

D. Wassel, T. Nikolayzik, C. Buskens

Abstract. Future space missions arising from the demand for branched trajectories for
rockets and entry vehicles, weak stability boundary trajectories as well as trajectories for
space vehicles with extremely low thrust propulsion are very complex. Discretization of such
missions results in the necessity to solve extremely large nonlinear optimization problems
with up to more than 300,000 variables and constraints.

The following paper shows how the interfaces between the different modules of the solver
and the interface to the user are defined.

I
Date: 28.03.2008 © 2008 Bremen University Page: 1of1 9|

‘@jmmwm Interface Control Document OZGpﬁIhnﬂnnl

Optimal Control
I
CONTENT
ABBREVIATIONS AND TERMINOLOGY ...cooiiiiiiiieeeee e 3
UNIFIED SOLVER INTERFACE ... 3
O VBT VIEW ...eiiieuieetteiteiteeteeete et et e beeatesaaesaeesat s eat et e et b e ke eabe sueeaseeas e easesaeeshe e s eese e e aeeeae et s embeeabeesaesmstaae s eaeenneanbeeneansenan 3
RATIONALE ...ttt ettt ettt et sttt eae e s bt et e st b sae et et e eabeeatesabesaeesaesan e e b e s b e be et e sueeaneeares 4
Important Fortran modules ..o e et e e e e eae e b e be e e 5
DALA SEIUCTUTES -.eeueeieeieitieie e ntee et e et et eet et e ebe e st saeesue e eueesbees b eesetebessat e mteas s eabeeate s et smeesatsantearaesbeebeebes sueennesanes 6
Data type terMINOIOZYceueiiieeiie ettt ettt sttt e s st e e et e s st e ettt s st e e ene e s st e e bt e s st e ene et e e enee s 6
OPEVAT dALA SITUCTUIE ...e.ueeuieeutieieeie sttt et et et e tee st et et e eaeesaeesbee e eese s et eeat et seabeeasessaesmsteaetsaeeneeenbeesenasensn 7
WOTKSPACE dALA SLIUCLUTEuviiiieeeceieiieeeetiesieeeeetesreessteesseessteesseessteessaeessseessuaessseessueesnseessuseenseessseesseesssessseennn 7
Params data SEIUCLULEooiiiiiiieii ettt ettt et e ettt st e e et e et e easessbesmeesee e et e beesbeebeebes sueeaneeares 9
CONIOl dAtA STIUCTUTE ..c..ueiieetieteeie ittt ettt ee e st e s et e e eate s et sueesaeseeeeneees b eebeebes saeeansenseensesneesneesneenee 10
EXTERNAL INTERFAGES ... e 11
EXAMIPIE: .ttt ettt ettt e e ettt eaee bt e b et ae s et e e ek e ke et e e aaesaaeeae e eaeeehe et eenetebes st e neeas 11
SOIVEr INTEIATISATION ..eoueiiiiiiiieieiieieete ettt st e e et e s et saeesae s eet e et es e beebe saeea s eateentesmsesneesneenee 11
Y01 A7 USRS 12
SOIVET INEEITACES.....cueeeiei ittt sttt e e et e s et smeesae s eat e et es et e bee st eamseareensesmeesneesseenne 12
Using Reverse COMMUNICALIONe.uiiitiesteetreeteesterieaieatteueesteeieeteeiesetestetsebeesessaesmsesaessseesseesbesseaesessaeenneens 14
TEIMINAION STALUS ..c..ueiurieiereierieerteett et ettt et eese e e ear e eaeeeseesbee s ee et et e e st et s e teeateesaeeasesaseemeesreenseeneeeneteneseneenn 15
W OTKSPACE ACCESS .. neieeutt ittt ettt ettt et ettt e eat ettt e eat e ettt e eat e ettt e eate ettt e eateebee e eateesateeeateeabeeeenneenes 16
INTERNAL INTERFAGES ..o 18
Reverse Communication CONTIOLociiii ettt e et e et e e e eeeeee st ee e e e teeeaenneaessneeeaeansseneaanees 18
WoOrkspace Man@ZEIMIEIIL «...c.coueeuieiieietietieeiet ettt et e sttt ettt e et et sttt st et e e et saesecebesateteeneee b ense et eneneeenene 19

I
Date: 28.03.2008 © 2008 Bremen University Page: 2of1 9|

‘@,lhivmitﬁtﬁmm Interface Control Document OZ(Optimization &

Qptinal Control
|

Abbreviations and Terminology

USlI Unified Solver Interface

WMT Workspace Management Table

CC Compressed column (matrix storage format)

F Objective function

G Constraints

DF Gradient (vector of first derivatives) of the objective function
DG Jacobian (matrix of first derivatives) of the constraints

HM Hessian (matrix of second derivatives) of the Lagrange function
API Application Programming Interface

Unified Solver Interface

Gradient

Hessian

Jacobian

| Objective l i = g
Fuhcti Constraints

Different solver modules using a Unified Interface

Overview

We propose a Unified Solver Interface (USI) for those solver routines that interface
with the user or other modules, to simplify the solver architecture, thereby facilitating
long-term maintainability, while increasing internal and external data flow.

The central element of the US| is the definition of four Fortran 95 data structures that
encapsulate the user and solver data. These data structures are

I
Date: 28.03.2008 © 2008 Bremen University Page: 3 of 19|

Qptinal Control

‘wmmwm Interface Control Document OZ(Optimization &
[

e OptVar — for optimisation variables, multipliers, constraint values, ...

e Workspace — for internally needed workspace, counters, ...

e Params — for all solver parameters (essentially read-only for the solver),
e Control — for steering the reverse-communication control flow.

We will use the following naming scheme for instances of the solver data structures:

OptVar opt
Workspace work
Params par
Control cnt

Using these data structures enables the developers to harmonise the plethora of
different interfaces usually present in big software projects to the single interface

Subroutine (opt, work, par, cnt)

Rationale

The Unified Solver Interface has a multitude of advantages:

e Uniformity:
Programmers can rid themselves of the usual hassle of having to keep track
of, and checking against, various interfaces.

e Cleanness:
Preventing bloated and confounding interfaces with lots of arguments to them
(this is commonly found in NLP solvers) reduces errors resulting from
omissions or mix-ups of arguments. Also, replacing usual conventions such as
using parameter arrays by a parameter data structure greatly clarifies usage of
the solver (compare TPARAM (3) to Param$MaxIter, for example).

e Encapsulation:
Data structures offer a degree of encapsulation that is often useful, e.g. in
initialisation before the actual start of the optimisation run, or in internal
functionality that is of no concern to the average user (but may readily be
inspected and used by advanced users).

e Usability:
The abovementioned benefits add up to a significant increase in usability by
reducing frequent causes of user errors, minimising the amount of detail the
user initially has to take care of (which, we believe, is important for
encouraging inexperienced users) and keeping the user’s own interfacing
code concise.

¢ Maintainability:
By sharing an interface between all routines, it is exceptionally easy to expand
or exchange solver routines, without breaking the API — with routine-specific
interfaces, this usually implies the changing every single call in all program
modules.

e Modularity:
Adding new modules, which need additional data and parameters, is simple,
since the necessary changes are confined to a single source code file, which
defines the data structures and their initialisation and clean-up routines.

e Visibility:
With the data structures being visible in all routines, every piece of solver or

I
Date: 28.03.2008 © 2008 Bremen University Page: 4of1 9|

‘wmmwm Interface Control Document

O (mmms

user data can be accessed everywhere, no matter how “deep” the routine is
situated in the calling hierarchy. This prevents the bloating of interfaces
towards the top of the calling hierarchy, that is usually found in many pieces of
software.

Comparison between traditional and Unified interfaces

Important Fortran modules

The solver WORHP is split into several Fortran MODULES. Here is a list of them, and
(some of) the routines and constants they define

MODULE/Type Defines ... Purpose
std Global datatype constants and routines
Integer const | lgc Kind constant for logical
Integer const | int Kind constant for integer
Integer const |single Kind constant for single precision real
Integer const |double Kind constant for double precision real
Logical const |true .true. value for chosen logical kind
Logical const | false false. value for chosen logical kind
worhp_data Defines the US| data structures
Derived Type OptVar Optimisation variables
Derived Type Workspace Workspace
Derived Type Params Parameters
Derived Type Control Program flow control
Subroutine StatusMsg Print meaningful termination message
Integer const |No_Stage (+ 9 more) SQP stage constants
worhp_core Computational routines
worhp_aux Non-computational routines
Subroutine Init Data structure initialisation subroutine
Subroutine Free Data structure deallocation subroutine
Subroutine InitIWSlice | Allocate a workspace slice
Subroutine FreeIWSlice | Deallocate a workspace slice

I
Date: 28.03.2008 © 2008 Bremen University Page: 5 of 19|

‘@,mmn&tm Interface Control Document OZGpﬁIhnﬂnnl
[

Optinal Control
worhp WORHP SQP solver

Subroutine worhp_full | Full-Feature Interface

Subroutine worhp_basic | Basic-Feature Interface
worhp.macros.h Workspace access macros

CPP macro IWMT_SIZE Get size of an allocated slice

CPP macro IWS_SLICE Access whole workspace slice

CPP macro IWS_ELEM_1 | Get single element of a slice, 1-indexing
CPP macro IWS_RANGE_1 | Get a subslice of a slice, 1-indexing

CPP macro IWS_INDEX_1 | Get physical index of a slice, 1-indexing

Since the central module worhp includes all other modules, users will only need to
USE worhp
and

#include "worhp.macros.h"

in their Fortran 95 code to get access to all relevant routines. Note thata C
preprocessor is needed for translating the workspace access macros into Fortran
code; many modern Fortran compilers invoke the preprocessor automatically, if
appropriate source file suffixes are used (usually source.F90).

Data structures

We provide a global definition of the solver data structures in tabular form here, since
they are valid for all USI routines. The table lists those structure members relevant for
interfaces, their types and their main purpose.

Future development of the solver will introduce (possibly many) additional data
structure members, but no additional data structures. Two examples: The IPFilter
parameters will be added to Params to enable central access to all solver
parameters, and the OptVvar and Workspace type will be updated to enable the
user to optionally specify additional information about linear and quadratic parts of
the objective function, and about linear constraints, to improve the solver
performance.

Data type terminology
The following terminology will be used in data type description:

Term Description

real Fortran real (double) type, i.e. double precision
integer Fortran integer type

index_1i Fortran integer type, used as index for the IWMT
index_r Fortran integer type, used as index for the RWMT

I
Date: 28.03.2008 © 2008 Bremen University Page: 6 of 19|

‘@,uﬂmn&tﬁm Interface Control Document

O (mmms

counter Fortran integer type, used as counter

logical Fortran 1ogical (1gc) type

character Fortran character type

T (dim) 1D-array of dimension dim of type T

T (diml,dim2) | 2D-array of dimensions (diml X dim?2) of type T

alloc Allocatable component, to be allocated by an initialisation routine

OptVar data structure

The OptVar data structure is most relevant to the user, since it contains the main
problem data: dimensions, objective function value, constraints and multipliers.

Type OptVar

N integer Number of variables

M integer Number of constraints

F real Current value of objective function
X real (N), alloc Optimisation variables

lambda real (N), alloc Box constraint Lagrange multipliers
G real (M), alloc Current value of constraints

mu real (M), alloc Constraint Lagrange multipliers

L real (N+M), alloc Lower bound on X and G

U real (N+M), alloc Upper bound on X and G
initialised | logical Data structure initialisation flag

Workspace data structure

The Workspace data structures contains data relevant to the internal workings of the
solver; almost all of them are of no relevance to the average user.

Type Workspace

DF CCMIndex (Vector) Gradient of the objective function
DG CCMIndex (ComCol) Jacobian of the constraints
HM CCMIndex (LowTri) Hessian of the Lagrange function
1D CCMIndex (Diagonal) | Identity matrix
0 CCMIndex Current QP matrix (HM or ID)
A CCMIndex (ComCol) Equality constraints matrix for QP
C CCMIndex (ComCol) Inequality constraint matrix for QP
ArmijoAlpha real Last Armijo stepsize
dTHd real Value of d"Hd
NormDX real 2-norm of last search direction
NormCon real max-norm of constraint violation
NormKKT real KKT norm
MeritOldValue | real Merit function value at o =0
MeritNewValue | real Merit function value at «
MeritGradient | real Derivative of Merit function at =0
rwWs real (:), alloc Real workspace

I
Date: 28.03.2008 © 2008 Bremen University Page: 7 of 19|

‘@,uﬂmn&tﬁm Interface Control Document

O (mmms

iws integer(:), alloc | Integer workspace

nrws integer Dimension of real workspace

niws integer Dimension of integer workspace
RWMT integer (100,6) Real workspace management table
IWMT integer (100,6) Integer workspace management table
RWMTnames character*20(100) Real workspace slice names
IWMTnames character*20(100) Integer workspace slice names
newlambda index_r New box constraint multipliers

newmu index_r New constraint multipliers

oldx index_r Copy of X, used by Armijo
oldlambda index_r Copy of 1ambda, used by Armijo
oldmu index_r Copy of mu, used by Armijo
penalty index_r Penalty parameters

gpegrhs index_r RHS of the QP equality constraints
gpeqglm index_r Multipliers of QP equality constraints
gpierhs index_r RHS of the QP inequality constraints
gpielm index_r Multipliers of QP inequality constraints
gpdx index_r Search direction from QP

gpiparam index_r IPARAM array for QP

gprparam index_r PARAM array for QP

MajorIter counter Main iteration counter

MinorIter counter QP iteration counter

calls counter Reverse Communication call counter
nEQ integer Total numer of equality constraints
nEQbox integer Number of equality constraints on X
nEQgen integer Number of equality constraints on G
nik integer Total number of inequality constraints
nIEbox integer Number of inequality constraints on x
nIEgen integer Number of inequality constraints on G
nQP integer Number of variables for QP
RelaxCon logical “Elastic constraints” in QP

UselD logical Use identity matrix for QP

KKTok logical KKT conditions satisfied
initialised logical Data structure initialisation flag

A central element for workspace partitioning is the concept of the workspace
management table: it contains and manages indices of initialised workspace
partitions, called “slices”. Allocation and deallocation of workspace slices is done by
specialised functions, and access to the slices is provided efficiently by preprocessor
macros, so that no direct manipulation of, or access to the management tables is
ever necessary (see Workspace management and Internal interfaces for details).
For storing the various matrices in compressed-column format, the CCMIndex
structure is used. It indexes the necessary workspace slices for storing a CC matrix.

Type CCMIndex

kind

integer

Kind constant

nnz

integer

Number of nonzero entries

Date: 28.03.2008

© 2008 Bremen University

|
Page: 8 of 19|

‘@,uﬂmn&tﬁm Interface Control Document

nrow integer Number of rows
ncol integer Number of columns
val index_r CC val array

row index_1i CC row array

col index_i CC col array

these values are used to reserve s

ace for dynamic resizing:

O (mmms

nnzMax integer Max number of nonzero entries

nrowMax integer Max number of rows

ncolMax integer Max number of columns

nnzMin integer Min number of nonzero entries

nrowMin integer Min number of rows

ncolMin integer Min number of columns

nExt integer Resize elements counter against initial dimension

The kind identifier is relevant to routines that take a CC matrix as argument, since
some actions operate differently (or not at all) on certain kinds of CC matrices, or can
be implemented more efficiently for certain kinds, e.g. matrix-vector multiplication
with a diagonal matrix.

CCMIndex kind constants

ComCol General CC matrix without special structure

LowTri Symmetric lower triangle CC matrix, including all diagonal entries
Diagonal Diagonal CC matrix

Identity Identity matrix

Vector Single-column or single-row CC vector

Struct Structure only CC matrix (no value array)

Params data structure

The Params data structure encapsulates all solver parameters that are not hard-
coded. This data structure will be treated as read-only by the solver routines, since
parameters should not usually be changed by the solver; any quantity that needs to
be manipulated belongs into the Workspace structure instead.

Type Params

TolOpti real Optimality tolerance
TolFeas real Feasibility tolerance
Infty real Value to be treated as infinity
eps real Machine
ArmijoBeta real beta for Armijo rule
ArmijoSigma real sigma for Armijo rule
ArmijoMinAlpha | real Minimum Armijo stepsize
RelaxRho real Constraint relaxation penalty increase
RelaxMaxDelta |real Max constraint relaxation variable
RelaxMaxPen real Max constraint relaxation penalty
MaxMajorIter real Maximum major iterations
MaxMinorIter real Maximum QP iterations

I
Date: 28.03.2008 © 2008 Bremen University Page: 9 of 19|

‘@,uﬂmn&tﬁm Interface Control Document

O (mmms

MaxCalls real Maximum number of calls
QP1lsTol real QP linear solver tolerance
QPipComTol real QP IP complementarity tolerance
QPipResTol real QP IP residuals tolerance
QPipBarrier real QP IP barrier parameter
QPnsnKKT real QP NSN KKT tolerance
QPnsnBeta real Beta for NSN Armijo stepsize
QPnsnSigma real Sigma for NSN Armijo stepsize
QOPminAlpha real Min alpaha for NSN Armijo stepsize
QPfracBound real QP fraction-to-the-boundary
MeritFunction | integer Selects the merit function
QPmethod integer QP solution method (10,20,21,30,31)
QPprint integer QP print level

QPitMaxIter integer QP iterative solver maxiter
QPitRefMaxIter | integer QP iterative refinement maxiter
QPits integer QP iterative solver selection (3-7)
UserDF logical User-supplied obj. function gradient
UserDG logical User-supplied constraint Jacobian
UserHM logical User-supplied Lagrange Hessian
QPparamCheck logical QP parameter checking

QPstrict logical QP strict criteria

QPscale logical QP automatic scaling

QPgradStep logical QP gradient steps

initialised logical Data structure initialisation flag

Control data structure

The Control data structure holds all necessary facilities to influence the reverse
communication program control flow, and to exchange information between the user

and the solver.

Type Control

status integer WORHP status flag

LastStage integer The last RC stage that was completed
NextStage integer The next RC stage to execute
UserAction logical (12) User action flags

When using the Full-Feature Interface, the status flag and the user action flags are of
interest to the user. The status flag controls the continuation or termination of the
reverse communication while-loop in the Full-Feature Interface, and informs the user
of the reason for termination. The user action flags are to be polled by the user after
every reverse communication step, whether some action needs to be taken, e.g.
evaluating the objective function at the current point.

I
Date: 28.03.2008 © 2008 Bremen University Page: 10of 1 9|

‘@mmn&t&m Interface Control Document OZGI*"-"'“"“‘
[

Qptinal Control

External interfaces

The external interfaces will be described here in a straightforward manner.
Arguments are categorised as type [in], [inout] or [out]. Optional arguments
(if any) are enclosed in square brackets in the interface description. If a routine has
mutually exclusive optional arguments, or requires at least one of the optional
arguments, this is defined in the text body of the documentation.

Some routines are generic in that sense that they may operate on real and integer
data in the same way (sorting would be an example of this); those routines will be
documented together.

Example:

IHello(message, n, [count])
RHello(message, x, [count])

with arguments

message character [in] Message to display

n integer [in] Number to append to the message
x real [in] Number to append to the message
count integer [in] Repeat count

describes two routines named IHello and RHello, with a string argument
message, a humeric argument n (or x), and an optional argument count.

Solver initialisation

To take the burden of initialising the solver data from the user, the subroutine Tnit is
supplied for this purpose. Before calling Tnit, the user has to set the following
variables to appropriate values:

opt %N Number of variables, > 0

opt M Number of constraints, = 0
work%DF%nnz Number of nonzero entries of DF, > 0
work%$DG%nnz Number of nonzero entries of DG, = 0
workHMnnz Number of nonzero entries of HM, = N

(HM structure has to include at least the diagonal entries)

The subroutine Init adheres to the USI, hence its interface is
Init (opt, work, par, cnt)

After Init returns, all data structures are initialised, and the solver parameters are
set to standard values. In particular, workspace slices for the matrices DF, DG and
HM are allocated with the given sizes. Note that the CC matrix structures and values
are not initialised by the Init subroutine, since there are no sensible “standard
values” for sparse matrix structures — this needs to be performed by the user. The
future solver development will partly address this issue.

After an optimisation run, and after all required data has been extracted, the user can
explicitly deallocate all data structures by calling the Free subroutine with the US|

I
Date: 28.03.2008 © 2008 Bremen University Page: 11 of 1 9|

‘@}mmwm Interface Control Document Ozepﬁnhnﬂnnl
[

Qptinal Control

Free(opt, work, par, cnt).

The result of any access to the data structures after calling Free should be
considered as undefined, and will fail completely for all allocatable members.

The deallocated instances may be re-used after another call to Init to initialise
them to standard values and start another solver run; this will overwrite all previous
data, however.

Solver

Solver Interfaces

(user) (user) (USER)

kf Solver Back-End)

The Full-Feature Interface will serve as the central solver interface, which satisfies all
requirements. It adheres to the USI and allows arbitrary user access to data and
control flow by making heavy use of reverse communication. Despite its power and
transparency, it is simpler and cleaner than any conventional NLP interface.

The solver is called as
worhp_full (opt, work, par, cnt)

with the data structures initialised by Tnit and the matrix structures set to
appropriate values by the user.

The Basic-Feature Interface serves as an equally simple interface, without reverse
communication facilities. Like the Full-Feature Interface, It adheres to the USI and
thus shares the same solver interface. Since it does not use reverse communication,
but the traditional calling mode instead, it requires the user to implement two
subroutines F and G, both of which adhere to the US| as well:

F(opt, work, par, cnt)
G(opt, work, par, cnt)

I
Date: 28.03.2008 © 2008 Bremen University Page: 12of 1 9|

‘@,mmn&tﬁm Interface Control Document OZGI*"-"'““‘
I

Qptinal Control

After the data structures are initialised by Tnit and the matrix structures set to
appropriate values by the user, the solver is called once with the Basic-Feature
Interface

worhp_basic (opt, work, par, cnt)

to start an “unattended” optimisation run.

The solver is furthermore required to provide a Traditional interface according to the
following excerpt from the requirements document:

Solver (start, m, n, ne, nName, nnCon, nnObj, nnJac, 0, 0.0,
"Method",
Constraints'Access,
Objective'Access,
Double_Array (a),
Integer_Array (ha
Integer_Array (ka
Double_Array (bl)
Double_Array (bu)
Names,
Integer_Array (
Double_Array (x
Double_Array (p
Double_Array (r
Inform,
mincw, miniw, minrw,
nS, nInf, sInf, Obj, cw, iwu, rwu, cw, iw, iwlen, rw,
rwlen);

),
) s

with the following parameter definition:

e start: warm / cold start

e m, n, ne, NName, nnCon, nnObj, nndac: lengths of all arrays

¢ name of the problem / optimiser

e function pointer for funcon / funobj

e Acol, indA, locA
define the nonzero elements of the constraint matrix A (4.2), including the
Jacobian matrix associated with nonlinear constraints. The nonzeros are
stored column-wise. A pair of values Acol(k), indA(k) contains a matrix
element and its corresponding row index. The array locA(*) is a set of pointers
to the beginning of each column of A within Acol(*) and indA(*). Thus forj=1:
n, the entries of column j are held in Acol(k : I) and their corresponding row
indices are in indA(k : I), where k = locA(j) and | = locA(j + 1) — 1

e BIl, bu: LB&UB of parameters

e Bl bu: LB&UB of constraints (slacks)

e Names for the parameters or indices

e Hs: Integer Array => 0, unused

e X: start/end values for constraints (slacks)

e start/end values corresponding to cold/warm start

I
Date: 28.03.2008 © 2008 Bremen University Page: 13 of 1 9|

‘@,mmn&tﬁm Interface Control Document OZGI*"-"'““‘

Qptinal Control
|

e Pi, costates unused => 0
e Ns: warm start information
e Cu, iu, ru, Cw, iw, rw: workspace related

This interface will be implemented as wrapper of the Basic-Feature Interface.

Using Reverse Communication

In the Full-Feature Interface many flow-control-relevant internal loops are carried out
as external reverse communication loops to increase flexibility, transparency and
debugging capabilities; the usefulness of this architectural feature has already been
demonstrated by the Fortran 95 version of WORHP, which uses no internal flow
control loops for the SQP part at all. This means that the user has to construct a loop
around the solver to enable it to iterate. Inbetween iterations, the user polls the
Control data structure to find out which activities have to be performed.

The reverse communication loop is controlled by the status flag cnt%status in
connection with the two integer constants terminateSuccess and
terminateError. It can be constructed as

DO WHILE (cnt%status > terminateError .AND.
cnt%$status < terminateSuccess)
CALL worhp(opt, work, par, cnt)
END DO

or equivalently.
The necessary user actions are encoded in the cnt%UserAction logical array,
whose indices determine the requested action. These indices are

iterOutput | One major iteration is complete, show iteration output

evalF Evaluate F for the current value of opt $X and save result to optsF

evalG Evaluate G for the current value of opt $X and save result to opt %G

evalDF Evaluate DF for the current value of opt $xX and save result to
RWS_SLICE (work%DF%val)

evalDG Evaluate DG for the current value of opt $X and save result to
RWS_SLICE (work%DG%val)

evalHM Evaluate HM for the current value of opt $X and save result to
RWS_SLICE (work%HM%val)

If for any of the above indices —say evalF— the expression

cnt%UserAction (evalF) evaluates to true, the user is requested to carry out the
corresponding action, in this case to evaluate the objective function for the current
value of opt %X and save the resulting value to opt %F. To prevent superfluous
evaluations of functions or derivatives, it is imperative that the user reset any flag
after having carried out the requested action, in this case by setting
cnt%UserAction (evalF) = false (sic!).

This functionality can be constructed as blocks of the following form inside the
reverse communication loop:

I
Date: 28.03.2008 © 2008 Bremen University Page: 14 of 1 9|

‘@,uﬂmwﬁm Interface Control Document

O (mmms

IF

(cnt%UserAction(evalF))

THEN

! user code for evaluating F at opt%X

cnt%UserAction(evalF) =

END IF

false

Depending on the amount of information the user can provide, at least the two
evaluation blocks for evalF and evalG have to be provided. Where possible, the
user can (and should) provide derivative information and flag this by setting the
corresponding parameter; if the user provides DF information, for example, this is
flagged by setting par%UserDF = true; likewise for DG and HM.

Termination status

After termination of either the Full-Feature Interface or the Basic-Feature Interface,
the status flag cnt$status holds information about the reason. The status flag may

hold the following values

Successful termination

OptimalSolution

Optimal solution found.

SearchDirectionZero

Optimal solution found, maybe not to the requested
accuracy.

SearchDirectionSmall

Optimal solution found, maybe not to the requested
accuracy.

StationaryPointFound

Stationary point of the Merit Function found.

Unsuccesful termination

InitError

Data structures not initialised properly.

DataError Error in the supplied solver data.
MaxMajorIter Maximum number of major iterations reached.
MaxCalls [RC only] Maximum number of calls reached.

MinimumStepsize

Minimum stepsize reached in Armijo rule.

ProblemInfeasible

The QP is infeasible.

QPerror

The QP could not be solved.

To directly translate the status flag a success/error message, the subroutine

StatusMsqg (opt,

work, par,

cnt)

may be called. It checks the cnt%status flag and generates meaningful console

output.

Date: 28.03.2008

|
© 2008 Bremen University Page: 15 of 19

‘@mmn&t&m Interface Control Document OZGI*"-"'“"“‘

Qptinal Control
|

Workspace access

Automatic workspace partitioning is a major feature of the proposed solver
architecture. To hide an unnecessary level of implementation detail from users and
developers, functions and preprocessor macros are used to allocate, access and
deallocate workspace partitions, called “slices”.

We will describe only the slice access macros here, since they are necessary to
know for the user, while the allocation and deallocation routines are described in the
Internal interfaces section; these are mainly to be used by the developers. Since the
macros translate into Fortran 95 array syntax, they cause no performance penalty of
their own.

Note: While some of these macros will very probably fail “loudly” when used with an
unallocated index, some may do so unnoticed, or cause all kinds of errors in other
places. It is in the responsibility of the user to ensure that no unallocated index is
used to access the workspace. Also, there is currently no mechanism to distinguish
IWMT and RWMT indices; it is in the user’s responsibility not to mix the two sets of
indices, for instance by adhering to appropriate naming conventions.

The solver uses no such naming conventions; all slice indices have meaningful
names. Their datatype can either be deduced from their purpose, or looked up in the
documentation.

There are two identical sets of macros for integer and real workspace access. Some
of the slice access macros are split into two groups: 1-indexing and 0-indexing
macros. The 1-indexing macros operate on Fortran-style indices running from 1...n,
while 0-indexing macros operate on C-style indices running from 0...n-1. These two
groups are distinguished by a trailing _1 or _0. We will document the 1-indexing
macros only, since for every _1 macro, there exists a _0 version.

To inquire the allocated size of a slice use

IWMT_SIZE (index)
RWMT_SIZE (index)

To access a whole allocated slice for reading, writing or passing as a function
argument, (this type of access should be preferred over the following ones), use

IWS_SLICE (index)
RWS_SLICE (index)

To access the sub-slice (i:5) of an allocated slice, use

IWS_RANGE_1 (index, i, j)
RWS_RANGE_1 (index, i, j)

To access an allocated slice element-wise (this is the slowest type of access when
used inside a loop), use

IWS_ELEM 1 (index, 1)
RWS_ELEM 1 (index, i)

To get the direct access through the “physical” Tws or RWS index of a slice, use

I
Date: 28.03.2008 © 2008 Bremen University Page: 16 of 1 9|

Qptinal Control

‘@}mmwm Interface Control Document OZGpﬁIhnﬂnnl
[

IWS_IDX 1 (index)
RWS_IDX_ 1 (index)

[This is to be understood in the following way: If k = IWS_IDX_1 (index), then the
j-th element in 1-indexing of slice index is work%iws (k+7)]

For the sake of reducing causes of errors, this access mode should only be used if
none of the other access modes are feasible or efficient.

I
Date: 28.03.2008 © 2008 Bremen University Page: 17of 1 9|

Qptinal Control

‘@,mmn&tm Interface Control Document OZGpﬁIhnﬂnnl
[

Internal interfaces

Reverse Communication Control

Reverse Communication is an integral part of the architecture of WORHP and is
carried out internally regardless of the interface used. Each major iteration is
internally divided into “stages” which are executed in a very flexible order; each
stage, upon completion, decides which stage is to be executed next.

The SQP currently consists of nine stages (plus one no-stage as initial value). These
stages are encoded as the following integer constants:

No_Stage No stage, only used as default value in initialisation.
Init_SQP SQP Initialisation stage, only before first major iteration.
Pre_KKT First major iteration stage, sets the user actions for KKT check.
Check_KKT Checks KKT conditions and terminates, if satisfied.
Create_QP Creates the QP and resets some quantities to standard values.
Solve_QP Solves the QP and triggers recovery actions in case of failure.

Find_Stepsize | Tries decreasing stepsizes and evaluates the merit function.

Update_Point | Updates the current values of opt. variables and multipliers.

Finalise Finalises a major iteration after a stepsize has been found.

SLP_step Prepares to solve the QP with the identity matrix.

The previous and next stage are held in cnt%LastStage and cnt$NextStage. To
simplify stage handling, the subroutine SetNextStage sets the next stage to be
executed:

SetNextStage (cnt, NextStage)
with arguments

cnt Control [inout] Control type instance.
NextStage Integer [in] Next stage.

To influence the user actions, a similar routine is supplied. The subroutine
SetUserAction sets or removes a user action, checking for valid input values.

SetUserAction(cnt, [AddAction, RemAction])

with arguments

cnt Control [inout] Control type instance
AddAction Integer [in] Add this user action request.
RemAction Integer [in] Remove this user action request.

The subroutine accepts all combinations of its 1 to 3 arguments (in case of 1
argument only, it does nothing, of course). If both optional arguments are present,
first the Addaction is added, and afterwards the RemAction is removed.

I
Date: 28.03.2008 © 2008 Bremen University Page: 18 of 1 9|

‘@,mmn&tﬁm Interface Control Document OZGI*"-"'““‘

Qptinal Control
|

Workspace management

To prevent faulty workspace partitioning, which causes errors that can be extremely
hard to spot, WORHP supplies automatic workspace partitioning routines. The
access to already allocated slices is documented in External interfaces. Every routine
that needs a workspace partition has to do so by using the routines described here
(or use private allocatable workspace)

To allocate a workspace slice, the subroutines TnitIWSlice and InitRWSlice
have to be used. They have tailored non-USI interfaces

InitIwWSlice(status, work, size, WMTentry, [slice, name])
InitRWSlice(status, work, size, WMTentry, [slice, name])

with arguments

status integer [out] Status flag (# 0 means error)
work Workspace [inout] Workspace type instance

size integer [in] Size of the slice to allocate
WMTentry index_1i [out] index of the allocated IWS slice
WMTentry index_r [out] index of the allocated RWS slice
slice pointer [out] Pointer to the slice (integer or real)
name character [in] Name of the slice

To ensure that the slice has been allocated successfully and is ready to be used, the
status flag must always be checked. Errors may occur when

The maximum number of slices for the corresponding WMT is reached,
The requested size of the slice exceeds the overall workspace size,
There is not enough workspace left to accommodate the requested slice,
There is no contiguous slice of the requested size available.

The last issue will be fixed by improving the allocation and management routines to
prevent workspace fragmentation.

To deallocate a workspace slice, the subroutines FreeIWSlice and FreeRWSlice
have to be used. They have tailored non-USI interfaces

FreeIWSlice(status, work, [WMTentry, name])
FreeRWSlice (status, work, [WMTentry, name])

with arguments

status integer [out] Status flag (# 0 means error)
work Workspace [inout] Workspace type instance
WMTentry index_i [inout] index of the IWS slice to free
WMTentry index_r [inout] index of the RWS slice to free
name character [in] Name of the slice

Exactly one of the two optional arguments has to be specified. Using wMTentry to
index a slice is the faster of both possible methods.

I
Date: 28.03.2008 © 2008 Bremen University Page: 19of 1 9|

