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A bstract

Transtormation-indoced plasticity (TRIF) in steel is an important phenomenon in the complex matenial behavionr of
steel. Tt may canse digortion of worl-pieces doring predoction processes, heat treatment, eg. Hence, TRIP is
imensively investigated by many researchers both experimentally and theoretically. Mevertheless, the modelling of
TRIF contalns open questions, in paticolar in case of varying loads and in case of inteaction with classical plagicity
(CPYL Tt is the aim of thi= paper o discoss macroscopic TRIF medelsin the molti-phase case and o derive fomaolas
for calenlating the TRIP stmin by stresses and other entities in the three-dimensional case of small deformations.
Ba=d on this, we obtain some estimates for the TRIP strain. We deal with TRIP models imvolving backstiess
generared by TRIP itself and by classical plasticity (CP). We pove that for an important class of phase
transtormations (FT) the final amouont of TRIF can be estimated by entities which do not depend on phase evolotion.
Besdes this, we show that the stress dependence on PT may have an essentia infloence on TRIP-g@min evolution.
We al=o discoss how to obtain TRIP parameters from experimental data
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1 Introduction

The complex material behaviour of steel is intensively investigated by many authors in different
directions, more experimentally in order to study the phenomena (cf. [1-4, B-10, 19,24, 35], eg.)

and more theoretically in order to model these phenomena and their interactions (cf. [5-7, 11, 12,
14, 16, 18, 25-27, 29, 30, 33, 37, 38], eg. and the literature cited therein). This paper is more

related to the la item. We want to

¢ present models for transformation-induced plasticity (TRIP) in steel in the mulki-phase
case. These models are sultable to be incorporated into the bulk model of material
behaviour,

¢ obtain formulas expressing the 3-d TRIP sain through the stress tensor, and the
thermoelastic and classical plastic {CP) strain tensors. These formulas are applicable in
mathematical investigations and mumerical simulations of the bulk model of material
belaviour,

*  derive egtimates of the TRIP strain by stresses, thermoelastic and CP strains,
¢ consider the inflrence of stress-dependent phase transformations (PT) on TRIP strain,
¢  present formulas for identification of TRIP parameters using experimental data,

Phase transformations {PT) oceurring under non-vanishing deviatoric stress {smaller than the
yield stress) lead to a permanent anisotropic deformation which cannot be described by classical
plasticity (CP) at macroscopic level This phenomenon is called transformation-induced

1



plasticity ({TRIP). Besides this, stresses influence PT (“stress-dependent transformation
behaviour™ = SDTB). Thus, the phenomena of TRIP and SDTB mutually influence, and
therefore, we have to study them in close connection. In order to bound the scope of this paper
we focus on TRIP. For PT and SDPT we refer to [1-3, 5-8, 9, 11, 19, 24, 25, 29, 33, 43, 44, 47,
50, 52), e.g. For the same reazon we do not take possible viscous effects into account. In general,
one can substiute the CP behaviour by a more genera] inelastic one (besides TRIP). As we do
not deal with concrete CP laws like flow nules, the subsequent discussion remains also valid for
this extension. For thermoviscoplasticity in metals { without PT) we refer to [13, 21, 23, 28].

Finally, in this paper, we only deal with macroscopic modelling, 1.e. the entities may be regarded
as averages over small volames {“reference-volume elements™). For questions concerning the
micro- of mesostructure {grains, local carbon diffusion, interfaces, etc.) we refer to [14, 15, 25,

27,30, 37].

2 Macroscopic TRIP models in multi-phase case

As already mentioned above, PT occurring under non-vanishing deviaoric stress lead to TRIP
which cannot be described by classical plasticity (CP) a macroscopic level. Contrary to CP,
TRIP does not own a yield stress. Thus, TRIP occurs when the {macroscopic) von Mises stress is
below the yield stress of the weaker phasc. Ar firs, TRIP was medelled for one forming phase
{pearlite from austenite). For uniaxial tension under constant stress S and constant temperatare
there was found by experiments (cf. [1-4, B-10, 14, 19, 26, 27, 29, 30, 37] and the literarure cited
therein):

(2.1) euplt) = K S ¢{p(t)).

Here: eyiit) — additional longitudinal strain caused by TRIP of the specimen at time t, k > 0 —
factor of proportionality called Greenwood-Johnson parameter, pit) - {volume) fraction of the
forming phase, and ¢ - so-called saturation function fulfilling

(2.2)  $=C{[0, 1)C10, 1[) {= contimuous on [0, 1], continuously differentiable on 10, 1),
(2.3) $10)=0, $1)=1,

(2.4) ¢ip)=0 for all p=]0, 1],

where ¢ is the derivative of ¢. There are different proposals for ¢ in the literarure in dependence
of the kind of PT, ferritic or martensitic, eg. (cf. [3, 4, 10, 14, 29 for further information and
discussion). Some often used proposals for ¢ are:

{2.5] $(p) =p ({1l -Inip)) {Leblond),
(2.6) $ip) =p (Tanaka),
{2.7) 4:{ J=p(2-p) {Desalos, Denis),

The functions given in {2.5) and {2.7) are concave. That is why the stronger influence of PT at its
begin is taken into account, a least for diffusive transtormations {cf. remark 2.1 {i)). After end of
a complete PT ope obtains from (2.1) and (2.3)
(2.8) Suplte) =K S,
with te, - sufficiently large time. Equation (2.8) gives a good interpretation of k. We refer to [%]
for concrete values of k for the pearlitic and bainitic transformation of the steel 100Cr6 a
constant transformation temperatures and under constant tension stresses. In this case, k is a
lipear function of temperature for moderate stresses (cf. [B-10]). For the martensitic
transtormation of the steel 100C00 there arise different values of & for uniaxial tension and
compression {cf. remark 1(ii) and [10]). For convenience we often suppress a dependence of k
on stress. For this matter we refer to remark 2.3 {iv] at the end of this point. After determining ¥
via (2.8), proposalsfor the saturation function ¢ can be tested via (2.1) {cf. point 7 and [10]).
In order to generalize the TRIP model (2.1) to the needs of modelling and simulation of work-
pieces as well as to the case of more than one forming phase, we start with a differential form
following from {2.1)
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d d
(2.9) ar Suiplt) =K S 5 $ip(t))
where ¥ and S are still assumed to be constant. (For the non-differentiability ar zero of the
saturation function (2.5) proposed by Leblond we refer to remark 2.2 (iii).) In (2.9) we substinne
the longitudinal TRIP strain erp by an additional (linearized) strain tensor £yp due to TRIP.

Furthermore, the uniaxial tension S will be substinated by the deviator ¥ ofthe stresstensor & in
accordance with

1
(2.10) g¢*:=¢-qulg)l {tc{a) — trace of &, I — unity tensor).

Mote that onfy non-isotropic stress leads to TRIP. Hence, one obtains a tensorial extension of the
TRIP model {2.9)

d 3 d
(2.11) g Sripl % 1) = 5 KB, 1)) 6* 0, 1) o lpi, t)).
The model {2.11) permits variable stresses and temperatures {labelled by 8) {cf [11, 12, 25, 23,

36,41, 46, 48], f:.g;:l. In the sequel % is a spatial painf of the considered body {cf. remack 2.2 {ii}).
The factor 3/2 is chosen in order to obtain (2.9) from (2. 10) as a special case with same k.

Remarks 2.1 (i) Using an idea of 5jéstcém {cf [10] for further reference), a more general
proposal for a saturation function ¢ depending oo a parameter m consists in

(2.12) $p) == (m— p™) for0<p<1 andm> 1.

m—1
The proposal {2.12) covers those ones by Sjdstrtdm {m = 2), by Denis et al {m =2}, by Abrassart
{m=3/2). As a limit case one get the proposal by Leblond {2.5) for m tending to 1, and this one
by Tanaka (2.6) for m tending to infinity. Current investigations show [10], that diffusive
transformations can be well described by the above proposals. Contrary to this, for martensitic
transformation the graph of the saruration function may be an s-curve [10]. Hence, a general
proposal containing one parameter could be:

(2.13) $(p) =75 {1+ gy Sinkm(2p — 1))} for0<p<l and0<m<p

Clearly, the limit case for m —» 0 is the proposal by Tanaka {2.6). Of course, different phase

transformations may have their own ¢ with specific m.
(i) It is possible to let the parameter m in (2.12) and (2.13) depend on temperature, phase
fractions or other entities. In this case we write instead of {2.11)

d k! g d
(2.14) g Erip % 1) =5 ®(B(x, 1)) G*(x, 1) a—P'i:{p{x, )] 5 plx. ),
because TRIP should only be driven by a forming phase, and not by changing of other entities.
(iii) As mentioped above, the martensitic transformation of 100Cc6 has different values k for
uniaxial tension and compression, namely k. and k., resp. [10]. Therefore, we can propose

1 1.
(2.15) K(Gn) =7 (K + K +5 sign(Gn) (K - K],

where ¢, = 1/3 tr{¢) is the {mean) principal stress, and sign is defined by

{2.16) sign{s) =-1 fors=<0, sign{s) =1 fors=0, sign{0) =0.

Note, that in {£.15) tension and compression have the same weight. A more general proposal
is possible. For evaluation one needs two-axial experiments {tension and torsion), keeping &y
equal to zero (cf. [43]). Using (2.16), a possible three-dimensional ansatz for the martensitic
transformation could be {cf (2.11))

d 3 d
(2.17) 4 Buipl%s 1) =5 K(Gn) ¢* 5 ¢plt)).
(iv) &s we focus on TRIP in this work, we do not discuss PT laws like Jobnson-Mehl- Avcami-
Kolmogorov as in {6.4). We refer to [5-7, 11, 24, 29, 33, 35, 36, 52] for discussion, open

guestions etc.
(v} In accordance with {2.8), the finaf longitudinal TRIP strain depends neither on the phase

evolution nor on the saturation function, while the current value of £p depends on p and ¢ (cf.
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(2.1)). Under suitable conditions this situation will be also encountered for complex
genaralizations of the ansatz (2.1 in three-dimensional case.

MNow let us suppose, that in a process with m 2 2 phases, k are formed (k < m). In this case the
model in {2.11) has to be extended. One possibility to do this starts with the assumption, that
every forming phase has its own contribution to TRIP strain. The addition of these deformations
leads to {cf. [25])

3 c d
(2.18) Buip (X, 1) =5 G¥(x, 1) 2K Fhipilx, 1)),
i=l
where, for convenience, we denote the time derivative by prime “° ™. Generalizing this idea for
any process with growing and decreasing phase fractions, we propose {cf [46, 48])

(2.19) Euip (X, ) —gc*m, Zx. ¢ (pi{x, 1)) max{ pi’(x, t), O],

where both the usaal derivative and the partial one with respect to time are labelled by a prime °.
In {2.12), (2.13) the p; ®; > 0 and ¢y are respectively understood as phase fraction, Greenwood-
Johnson parameter and saturation function (fulfilling {2.2) — (2.4]) ofthe i’ phase. Deto (2.13),
only forming phases curcently contribute to TRIP. This seems to make sense because the
decrease of ope phase is compensated by the growth of {a least) another one. This approach
shows itz advantage when investigating the bulk model (cf. remark 2.3 (1)). Let the Greenwood-
John=on paramﬁcrs Ki{i=1,.., m) depend on$ and p, i.e

(2.20) = kB, p)

For a possible stress dependence we refer to the remarks above. {In the sequel p stands for the
vector of phase fractions py, ..., pn.) The ansatz (2.20) takes a possible influence of phases into
account, which are present, but are not currently transformed. When modelling TRIP during
austenitization, it makes sense to take the phase composition of the initial marerial into account.
By other words, there may be a difference in TRIP when forming austenite, coming from pure
martensite or from pure pearlite. Thus, labelling austenite by 1 without loss of generality, a
possible ansatz for the G-J parameter k| corresponding to TRIP during austenitization may be

(2.21) (0, p) = ZKU{BJ Pin

where the Kl, > 0 are the G -] parameters corresponding to TRIP during austenitization coming
from the ™ ferritic phase (1> 2).

Furthermore, 1t is possible to obtain a different model for TRIP in the muliphase case. For this,
one regards all k (k 2 2) forming phases as one forming phase (cf. [26, 38]). This leads to the

ANSAE

3
{2.22) Etﬁp’{x,tjzgﬂ*{xt dtq: Zp {x, 1) —.,G*{:-L 1)K ¢ Zp.x t) Z ifx, 1),
i=1 i=1
and generalizing to the case of gnwmg and decreasing fractions, I follows

3
(2.23) Euip' (1) = 5 6¥(1) dtd: Zp Hip’tr)) ) =

P

=3 > 1) K Z pit) Hipi'ft) ) 2. max{ pi(t), 0}

i=1
{suppressing the spatial dependence), where 4} iz in {2.2) — {(24) or in {2.12), {2.13). H is the
Heaviside function defncd by

{2.24) His) := fors <0, His):=1 fors=0.
In [26, 38] the authors used the 4} defined in (2.5]). The G-J parameter k may be proposed as
(2.25) k(B(t), p(t)) Zx. 8(t), p(t)) pit) Hipi*(t))

i=1
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Note, that for only one forming phase both the above proposals (2.1%) and (2.23) coincide.
Experiments must decide which proposal iz better in which situation. Moreover, experiments
with varying load {before end of transformarion) show a decrease of TRIP strain after unloading
{cf. [1-3, 16, 47, 49, 50]). This phenomenon is not predicted by the models {2.1%) and {223}, in
accordance to them, &up remains constant (s picture 1). This observed decrease can be explained
by a backstress Xy associated with TRIP {cf. [3%] as well as [46, 48, 51] for further
discussions). In an easy way we can generalize the TRIP models (2.19) and (2.23), subtcacting
from the stress deviator the deviator of the backstress. Hence, instead of {2.19) we obtain

{225] E‘tripT“—s t:l :% {G*{“—! t:l _th'ip*{ls t:l:l ZKi ¢I5{PI{L t:l:l mﬂl{ Piw“—! t:ls ﬂ]-,
i=1

and instead of (2.23) we obtain
3 I fuif
(2.27) Bwp (5, 1) =3 (0%(n, 1) — K ®x, 1)) k@70 2 pita, ) Hipi(x, 1) ) 2 max{ pi*(x,t), 0}

i=1 i=l
The difference ¢* - Xyp* may be called “effective TRIP stress”™ in analogy with CP. A simple
linear ansatz for Xgjp and Xp {backstress associated with CP) taking a possible interaction of
TRIP and CP into account {cf. [39, 46, 48]) reads as
{2281 Xtrip =C] E-trip"' C~ 'E'CP!
{229] Xc:p = C2 Byip + C3 Egps

where c), c», c3 are further material parameters, and g, is the classical-plastic part of the
deformation tensor £ {cf. point 2). Generally, ¢, ¢z and c; may depend on temperature and on
phase fractions, or, more precisely, on the kind of transformarion. Therefore, this general case
requires an ansatz for ¢, c» and ci like (2.20) via minture rules {(cf. [46]). Bazed on
thermodynamic arguments, ¢; and ¢; mus be non-negative, whereas c» may be negative. We will
return to this matter in point 5, in particular in remark 5.1. A more complicated ansatz as in
(2.28), (£.29) is possible {cf [20, 21, 22, 28] for CP without PT and [51] for our case). Of course,
the simpler models ,,TRIP without backstress™ (2.19) and (23] are special cases of (2.26) and
{2.27) with vanishing cj, c= and ci. Experiments must decide, which of the models (2.1%), {223),
{2.25) or (2.27) will better describe the reality under which conditions.

- 5 = const up to and

Model without backstress
5 = Dafer l1

Model with backstrass

TRHIP strain

1 1 1 1 Ilmg [N
Picture 1: An unlcading duting PT may lead to a backstress effect.
Closing this point, we give some remarks.
Remarks 2.2 (Mathematical assumptions)
(i) For mathematical reasons we assume for the phase fractions
{2.30) pi absolutel y continuous {with respect tot) foralli=1,..n
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Hence, the derivatives with respect to t {often denoted by p”) exist everywhere except for a point
set with Lebesgue measure zero.

(ii) In order to model and simulate the marerial behaviour of a body (ie of a work-piece] in
complex situations one normally has to deal with a coupled system of ordinary and partial
differential equations {cf. [7,25, 31, 32, 34, 36, 39, 46, 48, 51], e.g.). The reference configuration
of the considered body is often identified with a so-called Lipschitz domain {<R", where n is
the spatial dimension {mostly 2 or 3 in practical applications). The ofien used finite-element
methods require that the functions looked for belong to certain function spaces { Soboley spaces,
e.g.). This is not the place to go into details, we refer to [13, 20, 31, 34]. For our purpose, it is
sufficient to assume that all functions which depend on the spatial variable x are {at least)
Lebesgue measurable for all t= 0.

(iii) The saturation function by Leblond in (2.5) is not differentiable at 0. Ifthe relations {2.19) o
{2.23) will be integrated in this case, one obtains improperly existing integrals for relevant PT
laws [45]. In the sequel we suppose that for considered saturation functions ¢; and phase
fractions p; their superposition fulfils

{2.31) ¢i(pi) absohately continuous (with respect tot) foralli=1, ..., o
Remarks 2.3 (i) The models (2.268) and (2.27) have the same basis structure
(2.32) Ewip (%, 1) = Bix, 1) {o%(x, 1) — Kigp*in, 1))

with a mon-negearive factor b, Thus, both models can be integrated in a thermodynamic consistent
continuum-mechanic bulk mode] {cf [46, 48, 51] for details and discussion).

(if) Instead of a scalar Greenwood-Johnson parameter k, it is also possible to consider a
positively definite four-tank tensor in order to model possible effects of anisotropy like for CP
(cf. [28]).

(iii} In the sequel the basis structure (£.32) allows paralle] investigations of both TRIP models in
a high degree. Noting the grear analogy to the flow rule of CP, we emphasize again that TRIP
does not have any yield stress.

(iv) Sometimes the basis model of TRIP (2.9) is corrected by a positive correction factor on the
right-hand side, taking the significant influence of stresses of the weaker phase (i.e., mosly
austenite] near by the yield stress into account (cf. [26, 36, 37]). Of course, such factor may be
tormally incorporated into the Greenwood-Johnson parameter. As mentioned above, for
convenience we forego do without. Moreover, here we do not investigate the possible relations
of kK with microscopic {or mesoscopic) entities (cf [10, 14-16, 26, 27, 30, 37]).

3 Incorporation of the TRIP models into the mechanic bulk model

In this paper we suppose small deformations. (For modelling of steel behaviour in the context of
finite deformations we refer to [7, 41].) Therefore, the strain tensor £ may be additively
decomposed in accordance with

(3.1) £ = Biept Ecpt Basps

where &y, is Its thermoelastic part mefuding isotropic strain caused by density changes due to PT.
As already mentioned, it is possible to consider viscous effects without additional difficulies.
The {generalized) thermoelastic part £y reads as (cf. [43, 46])
(3.2) amp=%¢—%tr{¢ﬂ+uI[B—BUJI+%—FUF£E?G}
The first two terms in (3.2) represent the pure elastic part, the third one stands for thermal strain
and the fourth one for strain caused by dchsit_t,r changés due to PT. The new notations are: E, v -
Young’s modulus and Poisson’s ratio, 1— unity tensor, & - linear heat-dilatation coefficient, 8o —
initial temperaure at the time t =0, po — density at t = 0, p{y) - current density of the phase
mixrure related to Bp. Clearly, in the absence of PT po and p{p) are the same. Hence, {3.2]-55 an

1

6



extension of the Duhamel-Neumann relations in linear thermoelasticity. Moreowver, we note tha
the density term in {3.2) comes from a linearization in case of small density changes (cf [42, 43,
507). The last two terms in (3.2) may be written asa sum

1 po - plé) 1 fo - pléo)
(3.3) g%z (0 - Bo) 5%,

where p{8) is the current density related to current temperatare 8. The vse of (3.3) is useful when
processing dilatometer dara (cf. [42-44, 50]). From (2.28) and (2.32) we obtain the subsequent
ordinary differentiaf Eguﬂﬂ'm for Eqip:

(3. 4:' E-tnp’h-s :l = :l {G*{ Xy t:l —ciix, t:l Etnphls :l — Caix, t:l Bcph—s :l]'

The dependence of ci, c2on x and t is realized through the dependence on temperature or other
entities. For convenience we only write ci{x, t) and ca{x, t) instead of more complicated
expressions. Moreover, we use the abbreviation

(3.5 =§_Z ®(0(x, 1)) §(pifa, 1)) max{ pi’(x, t), 0}

for the TRIP todel] {2.24) a= wel] as

{3.6) bix, 1) :—% k(O{x, 1), pin, 1)) ¢4 ZPu'{Lt Hip'{x, 1)) i max{ pi’{x, t), 0}
for the model given in (2.25). For obtaining {3.4] we used the subseq:;:lnt relations

(3.7) Etrip = Baip*, Eop = Ecp¥,

expressing the observarion that CP as well as TRIP are volume preserving, We note that in (3.4)
the spatm] point x has only the role of a parameter (cf. remarck 2.2 (i)). Therefore, we often
suppress it. The natural initial condition at t =0 reads as

(3.8) Eipl0) =0.

Thus, the unigue so]ution ofthe Cauchy problem (3.4, (3. 8) {cf. remark 3.1 (1)) is given by

(3.9 Erip(t) fbl[s ] — {5 )) expl _fcu{t

Alernatively, in (3.4) ﬂ* can be eliminated by £p* via {3.2], or by £* and gqp via (3.1) and (3.2).
After this, the obtained ordinary differential equations can be resolved (for the initial condition
{3.8), too). Hence, there lm]ds

(3.10) Erpln, 1) _fb{x, 5) (214 Brp* (X, 5) — C2 Eepl, 5)) exp _1”.:1 btx, ) dt ) ds
Y 5
and
1

(3.11) Ewip(x, ) _fb{s ) {2p 8%, 5) — (2 + 2] ek, 5)} expl — J (2p+ 1) b, ©) dt ) ds,

a =
respectively, where the {(generally temperature and phase-dependent) shear modulus p is defined
by

E
{3.12) H=201+wn
Cenerally, Eand ¥ can be expressed via linear mixture rules in accordance with
(3.13) E®, p) = 2. E{®) pi, V{8, p) = 3 wi(8) pi
i=1 i=1

Of course, the E; and v, are related ta the i™ phase. If the Poisson’sratios v; depend on the phases
only weakly, we obtain approximately

i Ei
(3.14) Wb, p) = 3 uid) p wih (@) :=
i=1

201+ vy



The eguations (3.9) - {3.11) are starting points for further investigations, analytical and
nummerical ones {cf [31, 34]).

Remarks 31 (1) The ordinary differential equation {3.4) is linear. The spatial variable x only
plays the role of a parameter. If b, ¢*, c|, ¢ fulfil moderate conditions, then the initial-value
problem {or Cauchy problem) (3.4), (3.8) has a global unique solution which is absolutely
continuous with respect to t and Lebesgue measurable with respect to % fct. [40]).

(ify When considering the bulk model of material behaviour in order to perform numerical
simulations, the full problem is offen decomposed into some partial ones In this context the
equation {3.9) may be used to calculate the TRIP strain at some calculation step, knowing
already the stresses, CP strains and phase fractions. Analogously, the equations {3.10) and {3.11),
respectively, can be dealt with. We refer to [31, 34] for details.

(iiiy The modelling of CP strain itself is often performed by a flow rule and by a yield condition
{cf. [13, 20022, 28] for CP without PT). As we focus on TRIP, we suppress this here and refer to
[46, 48, 51] for modelling CP witl PT.

4  Estimates of the TRIP strain

MNow it is the aim, to derive estimates ofthe TRIP strain through stresses and other entities, using
the relations (3.9) - (3.11). We formulate first results concerning upper estimates of £y, for both
TRIP models (2.24), {2.25).

Theorem 4.1 (i} Let the material parameter c) in (2.26) fulfi]
'[4- 1:| C] =0
Then there holds the subsequent estimate for both TRIP models (2.24), {2.25) for all indices i, j

e {1,..,n}and for {almost) all x =L} {this repeating formulation will be suppressed in funire)
1

(42 Yt=0 : l€4ipiji 3, T £ max {lg*(x, )l + lea{x, sl lEqpj{x, s)I} fbl[s] ds
2= [0, 1]
Q
(ii) Besides {4.1) we assume
(4.3) ¥ie{l, ., k} w20 : pi'it) 20
(44 ¥Yielk+1, .., m} Yi=0 : pi'it) <0,
fwith | < k< mj. Then there holds the subsequent estimates for the TRIP mode] {2.24)
i
(45 ¥t=0 : l€.ipijtx, £) €5 5 max {I3;*(x, 5)| +leafx, s)l g%, s)l}e
2e[0, ﬂ
. Z m{gﬁl{mgm s) il pof, 1)) - ddpd . 00)),
r=13=[0.1

k
(4.6) Yr=0: g )l £;3 max {1;*(x, 5| +leafx, 5l Lg%, s)I} Z max {lk{x, s)l},
~ 2=[0,1] r=12€[0.1]

whereas we analo gously obtain for the TRIP model {2.25)

i
(47 ¥i=0 : l€1ipijt %, )1 £5 max {Ia*(x, s)l +leafx, 5]l g x, 5)l]
2=[0. 4]

+ max {lk{x, s) |]Z (pipdx. 1)) - pipdx 0)),

QE[CIt r=1
(48] Yi=0: €t %, £ ii% max {1*(x, s)| +leafx, sl legpifx, s)} max {Ik(x, s)l}.
T ae[d.4] EL] (|
(iiiy Assume that there exist two positive numbers cg, ¢)) such that
(4% O<cp<oins)<e<w for all possible arguments.

Then there holds the following estimate for both TRIP models (2.24), {2.25)



1
(4.10) ¥t 20 lewpijin, )l < o max {lai*(x, s)l + leax, sl eqijix, s)I} {1 —exp{ —cpy fb 1 ds}].

0 ze[0,1] a
(iv) Under (4.3), {(4.4) and (4.9 there hold for the TRIP models (2.24)
(4.11) ¥t=0 : €t %, £ *;-ilcL max. {IG;*(x, s)l + lcaix, s)l leqpilx, s)l) =
10 ze [0, £]
3 &
s{l-exp{—cu3 2 m[égl]{ ot S) e petx, £) - ddpd x, O],
=3 LT
(4.12) ¥t=0 : |4 pijt 3, )1 {CL max {lg*(%, s)l + loa{x, gl g%, s)l}+
0 ze [0, 1]
3 &
s{l-exp{-cny 2, m[gxl{ et s)1)].
= 3= LT
Finally, for the TRIP models (2.25) the analogous estimates read as
(4.13) ¥t=0 : l€1ipijt %, )1 { 1 max. {la;*{x, s)l + lcaix, s)l lecpi{x, s)l) =
0 ze[0.1]
7 &
*{1-exp{—cu mfglj{lwh 9115 2 (pdn, 1) - plpex, 00)) 1,
2=(U, 1 r=1
(4.14) ¥t=0 : |1l %, £l < Ci max {1ai*(%, s)l + lcafx, sl eepiin, )1}
0 ze[n, 1]
3
*{1—exapl —5cy max{hkix s)l})].

2= [0, 1]

Proof : (i) The estimate {4.2) easily follows from (3.9), taking (4.1} into account.
(iD) If additionally (4.3], {44) are given, then the integral in (4.2) can be integrared. Using the
properties {2.3), {2.4), {2.28) ofthe saturation functions, (4.5) — (4.8) follow immediaely.
(i) In case of {(4.9) we obtain from (3.%) (sappressing x)
1
(4.15) V120 : lgypt) < ma { e *(s)] + leals)l leepifs)l} | bis) exp( — fcl t)dt)ds<
2=[0, 1]
a -4
. 1
“:a fﬂ[igl]{'% ()l + lcaf s)l |Ecpij{5:||]fﬂ {s) b(s) EEP{—fﬂlit 1) dt)ds=
E-3 i ':l .
t

1
_ain[g}:]{ldu () + leaf 51 [ Eepiff )1 ] {l—c}apl[—c“{b{ﬂ dt ).

(iv) Under {(4.3), (4.4) one easily deduces (4.11) - (4.14), respectively, from (4.15).

The von Mises stress is defined by
1

{4.16) Gylx, t) Z'ﬁu (%, t) Fij ¥x, t) :l

|J 1
Hence, for all indices i, j = {1, ..., n} and for {almeo =) all xeL) one cbtains from {4.16)
{4.17) a3 * (%, 1) I{‘\[ G, t).

Thus, using (4.17), we can derive further estimates from those in theorem 4.1. For example we
formulate:

Theorem 4.2 Under (4. 1) the subsequert estimate is valid for both TRIP models (2.24), {2.25)
t
(4.18) ¥1=0 : |€.cipij{ %, £l £ max {'\/%(L{L t) + lea{x, s)l Eqpijx, s)1} fb{s) ds
s=[0,1] =
9]
Analogously, similar estimates can be derived from (3.10) or (3.11). Inthe case

9



(4.1% c. =0,
i.e., if there is no influence of CP on TRIP, then the TRIP strain can be evaluated by the
thermoelastic one in the following manner.

Theorem 4.3 (1) Under {4.1), (4,19 there holds for both TRIP models {2.24), (2.25)

1

(4200 ¥t=0 : l€4ipijx, T)l £ 2 max { pix, s]}max{lamm {x, sl]fb
2e[0,1] 0
(i) Under (4.1), {4.3), (4.4, (4.1P there hold for the TRIP model (2.24)
(4.21) ¥t=0 : l€sipijix, )l 3 max { px, 5)} max {|ewep*ix, s)l
2=[0,1] 20, ]
k
+ T max {hd, 1 e peta, 1) - ddpdn, O},
r=13=[0.1]
k
(4272) ¥t=0: |€sipijix, T)l € 3 max { pix, s} rnax{lamm fx, sl } Z max {Ikdfx, 5)l}
2=[0,1] 20, 1] r=12=[0.1]

Of course, the as=ertions of theorem 4.3 also hold, if there is no CP. This situation is given when
quenching thin rings obeying a varying martensite-start temperature. The occurring distortion is
only explainable by TRIP, because the thermal stresses are not sufficiently large (cf. [17]).

The theorems 4.2 and 4.3 allow to withdraw some useful assetions abowr TRIP =tcain behaviowr.
In particular, under certain ciccumstances the TRIP strain can be regarded as small. We illustrate
this with an example.

Example 4.4 We consider the pearlitic transformation of the steel 100Cr6 a 700°C. The yield
stress (0.02%) of austenite is abour 70 MPa a this temperanre The Gresnwood-Johnson
parameter is about 14-107 l[]'n.’IF'a:l'1 for the TRIP mode] wihout backstress (2% and about
2.00107 (MPa)" for the TRIP model with backstress (2.24) (cf. [#, 10, 49]).

(i} Assuming that classical plasticity does not occur, we obtain from (4.18)

(423 Yi=0: l€ipiji . £)] < 0017,

(iD) If there is no influence of classical plasticity on TRIP, i.e., if {4.19) is given, then the bound
in {4.23) may be somerhing higher due to possible hardening,

Therefore, in these two cases the TRIP strain can be regarded as small.

Remarks 4.5 () The estimates (4.6), (4.8), (4.12), (4.14) and (4.22) do not explicitly depend on
the evolution of the phase fractions. This may be useful for mahematical and numerical
investigations. '

(i) Assuming (4.1), (4.3), (4.4) and (4.19), the TRIP =rain can be estimared from above by upper
bounds onthe deviatoric stress and of Greenwood-Johnson parameters. ;
{iily Due to {4.1) the TRIP backstress has no direct influence on the estimares in thecrem 4.1.
Experiments show that the parameter « is larger when taking a backstress into account {cf. [47]).
We note that the assumptiu-n {4.1) is thermodynamically requested, whereas c» may be negative
{cf. [39, 46, 48] and remark 5.1 below).

(iv) The assumptions (4.3), {4.4] include the dissolution of austenite into ferritic phases as well as
the austenitization (in each case without subsequent further transformation). If there is a
transformation process consiging of finitely many parts for which the assumptions {4.3), {(4.4)
are valid {with an individual number kj, then the parts {ii) and {Iv) of theorem 4.1 have to be
modified. We will return to this matter in point 5.

(v) If (4.3), (4.4) are not given and if the situarion in remark 4.2 {iv] is not attainable, then the
functions ¢*{pit)) max{p*{t), 0} in {3.5) and {3.6) are rot time decivarives on [0, «0]. In this rather
academic case one has o estimare integrals of kind

10



(4.20) f¢r )) max{p:’(s), 0} ds.

Therefore, in th]s case the estimates of TRIP strain may depend on phase evolution and
saturation funcrions

5 Estimates of the TRIP strain for uniaxially applied stress

In the case of an applied uniaxial {tension or compression) stress we can derive more specific
estimates for the TRIP strain including estimates ffom below. The general setting of such
uniaxial experiments is that small cylindrical steel samples are exposed to tension or
compression along their axis under controlled temperature (cf. [42-44, 47, 49, 50] for details).
Let the tension or compression be 5 = §(t). Denoting the longitudinal TRIP strain by euip (= &xipi1
in a suited coordinate system) and the classical plastic strain by eqp (= £cp 1 in the same coordinate
system) and taking

2
{5.1] Gll*ZES

into account, we obtain ffom (3.5) and (3.9) for the TRIP models (2.26) and (2.27) with orfy one
forming phase p (i.e., p" 2 0)
1

3
ewpl(t) = J K(S) @°(p(S)) p™(s) (S(s) — 5 ca(s) eepls)) +
Q

3
*enp( -3

ci{t) k() $*(pia)) p’()dt ) ds.

w —

As spatial homogeneity is assumed, in (5.2) the spatial variable x does not occur. In some special
cases (consant K, ), sep-wise load F, c2 = 0 the integrals in (5.2) can be integrated analytically.
After this, one obtains formulas for model evaluation (cf point 7 for details). Moreover, the
formula (5.2) shows an interesting consequence of the models developed above.

Remark 5.1 Based on thermodynamic considecations, ¢; in (2.28) and c3 in (229) mus be
positive, whereas c: may be negative (cf [48]). Let us consider a stress-free phase transformation
after a CP pre- -deformation of the mother phase. As (5.2) shows, for PDS]t]\-‘& cz the direction of
the TRIP strain is contrary to the direction of the CP srain. Bur for negative c- the directions of
CP and TRIP strains coincide. There are experiments showing both cases of behaviour [3, 3R].

An interesting question is whether this phenomenon can be explained by investigations at the
microscopic or mesoscopic level (cf. [37]).

MNow we want to derive some formulas from (5.2).

Theorem 5.2 (i) Under
(53] O<cp<eods) <c <m, pi0) =0
one obtains from {5.1)

o k! 3
(54) Yirz0:legpt Jl{k_ max {I15(s) — 3 cafs) ecp(s)l} {1 —expf —7 ciy Pipit)) max {k(s)})) =
13 ze0, 1] = - 2= [0, 1]

2 1 3
iik— max {18(s] — 5 c2{s) eqpls)|} (1 —exp{ —5 ;) max {k(s) ] L
10 zef0, 9 - - =[]
(ii) Under {5.3), (2.12) and

(5.5) c2=0,
(5.6) S(5)20

there holds

11



2 3
(5.3) ¥Wiz0:legpit) = E min {S{s)} {1 —exp{—7 cin $ip(t)) min {k(s]})) =
1l zemm, 4] 2e[0,1]
o

? . 3 .
::_3:: min {S{s]} {1 —exp{ — 5 cippit) min {k{s]})].
Ll ze0,q B 2e[0.1]

Obviously, (5.4 is a special case of (4.12), {4.14).

Remark 5.3 (i) When performing TRIP experiments with small samples, T could be useful to
start with a stress-free initial state {see point 7 for details). In other words, one has ${0) = 0 and
{5.4) becomes trivial. In practice the load F starts with zero and will be quickly brought up to a
positive level before the transformation starts. This small time interval can be neglected.

(i) Analogously, we neglect the time interval of a quick Jump of §. For emmp]e we mode] a
quick initial loading from zero to 5, followed by a quick jump to Sz at the time t; with the belp of
a step-wise function

{5.8) Sis) =5, for0<t<t;, and S5is) =5, fort>t).

Clearly, S given by (3.7) only approximates the reality. A choice of 1, before the end
transformation allows to study backstress effects. We will return to this in point 7. In the case of
{5.6), {5.8) and only one forming phase we easily obtain from {5.2)

t 11
(5. Vr2t eylt) =expl —3 [ cufe) k(@) §(p(0) pa)de) [ Kis) §(p(s)) pls) S
0

11

*exp( — fcl pit)) p{t)dt ) ds+

+_]”K|[s ¢’ (p(s)) p*(s) S-expl - _]”cl T) K{T) §'(pit)) piit)dt ) ds

Analogously asin thenrem 5.2 we can derive from (5.%) upper and lower estimates.

The approach developed above can also be applied to changing phase transformations and tlus
to cycles. For convenience we assume the subsequent situation
{5.10) phase | — phase?2 forD<t<t), and phase? — phasel fortzt).
In the case of {5.6) we obtain fmm (3.9 (cf (5.2)) ' '
1

(5.11) W21 ewplt) =expt —,,J”c“ Y t) gu(pie) pria)de) S kals) ' pals)) pa’(s) S(s) »
1] 0

3
s expl —5 [ c1aft) Kka(t) go’(palt)) p2(x)dt ) ds+

]

t
3
+fm(s] $17(pu1(s)) p17(s) S(s) expl{—g_f 1f{T) ®i(T) §u(pult)) pr{T)dt ) ds
1] g
The parameter ¢, ¥; and the sauration function ¢, are referred to the PT 2 — 1, whereas c)», k-
and ¢ are referred to the PT 1 —= 2 As above, from formmla (5.11) one can derive farther
estimares under different conditions (8§ = const., e.g.). Finally, we give some remarks.

Remarks 5.4 (1) As an example for the situation described in (5.10) one can regard the PT
austenite into fercite and backwards in an h_t,rp-::eutecmid steel. The PT pearlite to austenite in a
(slightly) hypereutectoid steel (1006, e.g.) is actually a superposition of two PT, namely of the
decomposition of Ferrite and of carbide. One has to decide whether the forming of austenite can
be approximated as a single PT {cf. [35], eg.).

12



(iD) The question arises whether there is an influence ofthe first PT 1 = 2 on the subseguent one
2 = 1. This influence may be realised via the so-called accurmilared TRIP strain
t . L

(5.12) sup( 1) = | (5 Buip 0, ) 2 ip (3, 7) V2,

o
which the entities k and c; may depend on (cf. [48]). Firstly performing separate experiments of
the sort | = 2 and 2 — 1, respectively, in order to obtain parameters for separare PT, and after
this PT like (5.10), this influence can be studied with the belp of (5.11).
(iii) If oo backstress is assumed, (5.11) shows a formal additivity, i.e. the TRIP strains of the
single PTs are summed up. Unfortunately, also in this case, there may be an influence of the first
PT on the second one via {5.12) {cf [38]).

6 Influence of stress-dependent transformation behaviour on TRIP

It is well-known, that the evolotion of phase fractions is influenced by the occurring stresses {(cf.
[1-3, 8, 9, 11, 12, 25, 29, 33], e.g.). This phenomenon is called stress-dependent transformation
behaviour (SDTB). In accordance with (2.24) and {225, respectively, the evolution ofthe TRIP
strain is influenced by the evolution of the phase fractions. Besides this, stress and TRIP strain
are coupled via the bulk model {cf. [46, 48, 511, e.g.). Therefore, TRIP and PT are coupled, too.
Fortunarely, these two phenomena can by stuidied separately. In point 7 we will explain this,
giving a general scheme for parameter identification and evalating of models.

MNow we want to investigate how the TRIP strain depends on SDTB. We consider a small
cylindrical steel specimen and assame spatial ho mogrﬁeitjr of temperature, stresses and phase
fractions a all times. For convenience let us deal with the simple case without backstress. For
constant temperarure and (tension) stress & the longitudinal TRIP strain ey, reads in the case of
one forming phase {cf. {1) and point 7)

(6.1) ewiplt) =k S ${p(t)).

Plet=g goalLlioe soeur ding o JR1A

2 o =2 o
& el M =
T T
-~

s
ey b

=H
-
\
n

| R A |

nha=efrcti-np
o
m

C a 10 18 20 25 30
livwl e’

Picture 2: Phase evohlition p':' under zero stress (- and p under 25 WPa (-1 at 650°%C for the stee] UOOCES.

Additionally, performing a srrfss ree parallel experiment for the same constans temperature, we
obtain the phase evolution p = p (t). In picture 2 we see the essential influence of stress on PT.
The question is rmw how egip will change, if the phase evolution under stress p is substrtuted by
the stress-free one p Thus, the new longitudinal TRIP strain eyipp corresponding to p reads as
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(6.2) empalt) =K S ¢{Pn{t:|:|~

Clearly, due to (23] the values of ey and ewp.o coincide a the begin and the end of the
{complete) transformation. Comparing ewipn with ep, we obtain the subsequent relative error ar t

leriplt) - emmeoft)l  I(p(t]) - $tp°(e))l

{6.3) arl(t) =

eTrIpit) $ipit))
[ it T [ st=ir wit-o.t aqd with CCTO
3 1 1 1 1
e e e
R el oo A 4
_,f __.-"-'
o .__f
E 4
."'ll .-'J
= ' .-'/
E ¢ A
k- A J,f _
= 3 i
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Picture 3: TRIF strain without {-) and with (--) SDTB using Tanaka's pmpcnsa] (2.6).
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Picture 4: TRIP strain without (-} and with (—) SDTB using Leblond’s proposal (25).
This is not the place to model SDPT in detail. And so we only shortly deal with it. One
possibility to describe the phase-fraction evolution under {uniaxial) constant stress F in case of

constant transformation temperature § s given by the Johnson-Mehl-Avrami equation with
temperature- and stress-dependent parameters like

{64:] PI[t:] =1- E“'P{ —f T[ﬁt 5 :]rl:"El.S]:I,
14



where the PT with the only forming phase p is assumed to be complere. We refer to [#] for

concrete valies of © and o for the pear]itic and bainttic transformation of the stea] 100CH. We
present an example with real data From [%#] we have for the steel 100Cc6 for the pearlitic

tcansformation ar 650°C

(6.5) k= 105+ 10” (MPa)",
{6.6) T(650,0)=154+% n{6a0, 0] =2.9, {stress in MPa),
{6.7) (650,25 =37 = n{650, 25)=2.1, {stress in MPa).

From {6.4) — {6.6) we obtain two curves for the phase evolution (see picture 2). Clearly, the TRIP
strain essentially depends on the saturation function ¢, in particular at the beginning of
transformation. As extreme cases we take the proposals due to Leblond {2.5) and the one due to
Tanaka (2.6). So we obtain for these two cases the corresponding curves for ey, and epp,
respectively (s. pictures 3 and 4). Finally, we calculate the relative error after 5 and 10 seconds
after beginning of PT by formuala (6.3):

{6.8) errw(s) =0,83, e 10) = 0,62 for Tanaka's proposal (2.6),
(6.9  erw(®) =071, e 10) = 0,36 for Leblond®s proposal {2.5).

It seems that there are significant errors when neglecting stress-dependent transformation
behaviour. Therefore, the evaliation of TRIP models by experiments with small probes requires
more measured data as in sress-free dilatometry. Besides the longitudinal strain one needs the
transversal strain (s. the next point 7). Only in exceptional cases with a small stress dependence
on phase evolution, TRIP can be investigated using an additional stress-free dilatometer
experiment without measuring the transversal strain ofthe probe.

7 Pammeter identification

In order to study TRIP and stress- dcpcndent phase transformations (SDPT) in steel one usually
performs tests with small cylindrical specimen in special devices like dilatometers, which can
measure temperarure 8, length 1, diameter d, and applied {uniaxial) stress § as functions of time.
Assuming spatial homogeneity, we write down the relations for the (bulk) longitudinal strain g
and the {bulk) transversal strain o

3
Lty - 1 1
(7.1) Bt =" 1 =Ty SO + () ;[%— 1) + exiplt) + ecplt),
dity -d (BN i 1 1
{?2:] ED{tJ — d T Ef@in S{t P‘:B[ﬂ'} a2 ‘-’—'—trij:nl::t:I T e«:p{t:'s

where | and d are the initial length and diameter, respectively, corresponding to t =0, po, p{{t)) -
densities at the beginning {(of austenite, e.g.) and of the phase mixture, respectively. E and v are
Young modulus and Poisson’s ratio at §(t), respectively. The first terms in {7.1) and (7.2) are
elastic strains, the second opes include the thermal strains and the strains due to density changes
coming from PT. Farthermore, (7.1) and (7.2) take the volume preservation of TRIP and CP into
account. In the absence of CP, i.e. for stresses S smaller than the yield stress of the weaker phase,
we obtain formulas allowing to calculate the TRIP strain and the evolution of the forming phase
{pearlite from austenite, e.g.) via the measured data (cf. [50]), namely

3
_& i = A
(73] pylt) =g (t)+2epit) = 3 K.(B(t]l]l S +3¢ ) 1) “vo lume strain™,
1 3 T -
{7.4)  eLft) —epit) =m5(ﬂ + 5 €iplt) “srrain difference™,



where gy is the volume strain, and K is the compression modulus defined by

E
(7.5) K=37 57

fcf (3.12)). In contrast to [42-44, 47, 4¥], here we do not linearize the density term in (7.3).
Clearly, from {7.4) we obtain the evolution of the TRIP strain ey, without assuming any special
law for TRIP like discussed above (cf. (2.26), (2.27)). Sometimes, elazic effects are neglected.
This gives the appmxjmated formula {cf. [1-3, 8-107)

(7.6 euiplt) =3 2 (eutt ) —epft)).

Furthermore, from {7.3) we obtain the evolution of the phase fraction of the forming phase. At
first let us assume, that there are only two phases, the parent phase labelled by 17, such as
austenite, e.g., and the forming one labelled by “27, pearlite, e.g. The entities K and p generally
depend on the phase fractions. We assame the following mixture rules

I I I 1 1
Ko — K60 PLY T iGem P, w0y — mdan P ey P20

(7.7)

where p1 and p2 are the {volume) fractions of austenite and pearlite, respectively. We note the
minture nale for the bulk density (cf. [42] for details, e.g):

{7.8) pP=pLpL+ppy

where p, p1 and p- are the densities of the phase mixture, of austenite und pearlite, respectively.
Clearly, for the phase fractions we have

(7.9 pift) +paft) =1 focr=0.

Combining (7.3}, (7.7), (7.8}, and (7.9, there arises a relation for determining the evolution of
the forming phase:

_sm, 1 1 1
(7.10) &) =737 Comy T emy ~Kueay ) PR T

3
o
_ =
3 \/ 21O0) + (a0} - O patt) ) fort20.

Unfortunately, {7.10] is a non-linear equation for the determination of p» which has to be solved
numerically. We remark that one can approximately use elastic parameters K and p independent
of the phase composition {cf. [47, 49]). In order to employ {7.10) one needs (besides the
measured data 8, £, £p, S5) the densities ofthe phases 1 and 2 as functions of the temperarure 8 =
8(t). The initial density pp is usually the density of phase | at the beginning, t =0, corresponding
to the start temperarure fo. These densities can be obtained by sx:parare { stress-frea) dilatometer
tests with steel probes of the same charge. Due to small varations in the densities {caused by
(slightly) inhomogeneous chemical composition) the formula {7.10) may give values for p not
having the limit 1 for t = 2 in the case of complete transformations. In this case one has to
divide the values of p by the limit value p{t.), where t. is a sufficiently large time after which the
transformation can be considered finished. Sometimes the formula (7.10) will be simplified.
Linearising the root in {7.1) and the forthcoming formulas via

3
fo po - prE()
(L0 30 ey D= gy

we obtain instead of (7.10) a simpler formula
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S(1) 0

1+ Evith - -
3K I:El(t}:l
(7.12) polt) = 1 LB & 1 fort =0,

13
" m(mtﬂtt}} mtﬂit}a

3K Kltﬁiﬂ}
We note that the above formulas are valid for tests with varying temperature and load as well as
for incomplete transformations.

A further essential simplification of the above formulas can be achieved, if the compression
modulus K does not depend on the phase composition, Le. if there holds

(7.13) K(8, p) = Ki).
Assuming {7.13) and combining {7.3), {%.8) and {7.9), we obtain a simpler formula for px

g1 060 0 Evlt) _ St

T = — :}

(7.14) P = - oy L ey LT 3~ 9kemy ) ) fort 20,
In the case of constant transformation temperarure, i.e for
{7.15) Bt =0y for t=0,
we [1ave
(7.16) o= pi(Bo).
Therefore, under (7.15) the formula {7.14) can be reduced to

(B} Evity S
717 Atl=——"— {1 -[l+—F———— fort =0,
(.17 Pt = e pooey T "ok ) ot

A further simplification of (7.17) is possible for complete transformations. In this case for a
sufficiently large time t. there will be only phase 2, in other words, (7.17) reads as

{11060} Evite)  Sftw) -3
F.18 l=pltg)=———— ——{1-[l+—F ——— .
(7.18 Pt = o o0 U3 T akmg! !
Hence, {7.17) and {7.18) lead to a formula vor conrtaining the densities
E‘.w.r[t} - Evlitm} Blten)

(7.19) paft) = {1 —[1+75~ fort > 0.

-1 -3

Clearly, after linearizarion we obtain from (7.19)

S
Evit) -
1 Kifh)
(7.20) palt) =" "~
Eyile) - 3 Kibg)

Sometimes the influence of the elasticity is neglected. This leads to the simple formula used for

instance in [1-3, B-10]
Evit)
T.21) paft) = .
{ ) palt) Ev{ter)
which can be regarded as a transformation degree expressed by the volume strain.

MNow, let us return to TRIP. Using the phase fraction p: calculated by (7.10) {or by its subsequent
simp lifications), we get the evolution of ey, from (7.4), (7.7), (7.9

7.22 _2 1 1 1 S
24 @uplt) =3 (Bult) —Eolt) = L), oy ™ ey ~ ey ) PAD 1 5

We emphasize that {7.10], {7.22) allow to calculate the evohition of the forming phase and of the
TRIP strain without assuming specific models for TRIP as well as for SDPT. Therefore, the
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formulas (7.10) and ({7.12) are the starting points for parameter identification and for evaluation
of these models.

The generaf scheme is as follows: Assuming special laws for TRIP, for instance (2.9, as well as
tor SDPT, for instance a Johnson-Mehl-Avrtami ansatz with stress-dependent parameters as in
{6.4) {cf [B, 9]), one can compare the valoes of &g and p» obtained via data from (7.10), {7.22)

with those ones calculated by the proposed special laws.

In the case of a TRIP model without backstress one usually performs tension (andfor
compression) tests a constant temperarure with constant loads up to the end of a complete PT.
Using (2.1), k¥ easily follows from the final extent of TRIP stain divided by 5. After this,
proposals for the saturation function ¢ can be tested, using the phase evolution obtained by (7.10)
or its simplifications and an optimising procedure {cf. [10]).

In the case of a TRIP model with backstress a separate determination of k is impossible.
Therefore, one performs not only tension {or compression) tests with constant load up to the end,
but also with step-wise loads (cf. [47, 49, 50]). We assume only temperature dependence of K
andcj, l.e.

{7.23) Kk =k{d), oy =c (@)

Then we obtain for constant temperature 8y and constant load § (> @) from (5.2) (with c2 =0)
28 3

(7.24) euiplt) = T,i60) {1 — exp(- 5 c1{Bo) k{Ba) P{p(t))] ) fort=0.

Hence, we have
25 3
{7.25) Suipllee) = 3 oy (1 —expl-75 c1tBo) k(Bo)) ).
Additionally, we perform a test with a step-wise load similar as in (5.8) at the same constant
temperature y, 1.e.
{7.26) Sis) =5, for0<t<t;, and S(s) =10, fort>rt),

where a the time t; the transformation is not yet finished. In this case the integration of (5.2)
yields (7.24) for 0 <t <1, and

25 k)
(7.27) euplt) = 3 g0y SPL 2 CL{'BUJ (Bo) D{pit))) {expl 5 c1lbo) k(Bo) Bfp(t)))) - 1} fort=t.

In particular we obtain from (7.27)

28 3
(7.28) Cupllt) = 3 gy {1 —€xpl-7 cutfo) k(Bo) Pip(r))) 1,
as well as
1 28 K] K]
(7.29) emplitm:l=mﬂﬁp 5 €1t 8o) k(Bn)) {exp( 5 citfo) wifo) Pip(t))) - 11,

where eLiP{tm:l is the final TRIP strain for the loading path given by {7.26). Hence, from {7.25),
(7.28) and {7.29) we get the following formulas for determining c{ Bo), k{8n) and d¥(pit)))

25 ewpltl) - e}r.pttm:u

(7.30) c1(fn) = 3 &nciplts) el - Emp(tm?'
2 k]
(7.31) K(B0) = - 3 (1 -5 (P eugttal)
2 k!
132 W)= ey N0 s o)
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Experiments suggest that at least ¢; does not only depend on temperature, but possibly on the
stress history too {cf. [30] for discussion). The value ©@(p(t,)) may give a hint which proposal for
¢ (cf. (2.5) — (2.7}, {2.12), (2.13)) could be suitable. Generally, using the phase evolution (7.10)
and the values for ¥ and ¢, obtained by (7.30]), (7.31), one has to determine ¢ by an optimisation
procedure.

We conclude with the subsequent remarks.

Remark 7.1 (i} The approach developed above allows to test models for TRIP and STPT
independently of each other. Although this is very convenient in application, in principle these
models must be evaluated simultaneously. That means, the values for p and ety coming fom
measured data via {7.10) and {7.22) must be simulkaneously compared with values for p and e,
predicted by proposed models for TRIP and SDPT. If one proposes TRIP with backstress and
{6.4), then the parameters and functions K, c;, ¢, T and n have to be simultanecusly determined
by an Dptimisatinn procedure. In furure the authors will present results in this direction.

(D) Here we focus on uniaxial tension-compression tests. But generally the dependence on stress
is realised through the invariants of the stress tensor, through the von Mises stress {4.16) and
through the mean stres G, = 1/3 tr{a) e.g. (cf remark 2.1 (ii)). Therefore, for a sufficient
modelling of 3d behaviour one needs two-axial tests, i.e. tension-compression-torsion (cf. [43]).

(i) In the absence of PT and TRIP one can study the CP behaviour {or viscous behaviour), using

the formula (7.4) with &, inxead of £rp The advantage is, that the isotropic strain due to
temperature changes does not occur in (7.4).
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