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Abstract

Chemical processes like carbonation of concrete structures are driven by slow dif-

fusion processes and fast reactions. This leads to the formation of relatively sharp

reaction fronts, which move slowly through the material. Self-adaptive finite element

methods provide a tool to automatically generate meshes locally fine enough to cap-

ture the reaction, while coarser meshes are sufficient in the bulk. We demonstrate

here the applicability of self-adaptive methods for 2D concrete carbonation problems.
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1 Introduction: Need for automatic adaptivity

During carbonation of concrete structures and similar physicochemical processes, relatively
sharp reaction fronts move slowly through the material, driven by diffusion processes. In
other parts, concentration fields vary only slightly (or not at all).

In order to capture such reaction fronts in a numerical method, a high resolution (equiv-
alent to a fine grid) is needed in those places. But using such a fine grid everywhere, the
computation will get very slow, especially in two and three space dimensions. The reason
is the stiffness of equations due to high reaction rates, which require stable (and expensive)
numerical solution methods and relatively small time steps. On the other hand, such a
fine grid is not needed everywhere, because slowly varying concentration fields can easily
be approximated on a relatively coarse mesh. Thus, a method which uses a fine mesh near
reaction fronts and coarser meshes where possible would make a good balance between
accuracy and numerical cost.

Adaptive finite element methods present a tool to automatically give criteria for a local
mesh refinement, based on the computed solution (and not only on a priori knowledge of an
expected behavior). For model problems, even mathematical bounds for the error between
approximate and true solution can be shown, as well as quasi-optimality of the meshes
generated by the adaptive method. In self-adaptive methods, regions for local refinement
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are selected based on local error indicators, which estimate the error contribution of single
mesh elements. They are computed from the discrete solution on the current mesh and
known data of the problem (like material parameters and boundary values). All mesh
elements where these indicators are large must be refined, while elements with very small
indicators may even be coarsened. This is important especially for simulations of non-
stationary problems, when local internal structures may move or even vanish after some
time.

We want to demonstrate here that is is appropriate to apply such self-adaptive finite
element methods to a model for the carbonation of concrete in two space dimensions. In
the moment, this is only a test for this application, as mathematical proofs for error bounds
are not yet derived, and thus error indicators are still purely heuristical. Due to the strong
reaction and slow diffusion, it is not even clear what is an appropriate error norm to work
with – using the standard L2-norm based derivation of adaptive methods would need a
Gronwall-like estimate, introducing exponentials of the reaction rate and time scale, which
are both large, and thus produce practically irrelevant estimates.

For a survey of durability problems in concrete-based materials, see [5], e.g., and refer-
ences therein. Specifics on concrete carbonation are subject of [2, 11]. First attempts to
deal with 2D carbonation issues (under natural exposure conditions of concrete structures)
are published in [1, 7, 10].

2 Concrete carbonation model

For demonstration purposes, we restrict ourselves here to a simple reaction-diffusion model
in 2D for the carbonation of concrete, involving the concentrations c1, c2 of CO2 in air and
liquid phases, c3 of Ca(OH)2 in water, and the total moisture concentration c4. In a domain
Ω ⊂ R

2, the carbonation can be modeled by the system of reaction-diffusion equations

∂tc1 − D1∆c1 = −fHenry, (1)

∂tc2 − D2∆c2 = fHenry − f reac
2 , (2)

∂tc3 − D3∆c3 = −f reac
3 , (3)

∂tc4 − D4∆c4 = f reac
4 . (4)

Absorption of CO2 from gaseous to water phase is described by fHenry, while f reac
i denote

the productions of species i by the carbonation reaction. This system of equations is com-
pleted by appropriate initial values and flux boundary conditions. See [6] for a derivation
of this and similar models.

Moving to non-dimensional concentrations ui = ci/c
m
i and characteristic time/length

scales (compare [6], e.g.), integrating over Ω with a test function v, and integrating the
Laplacian by parts, this leads to the weak formulation of (1)-(4) in the Sobolev space
H1(Ω): For all v ∈ H1(Ω) and times t ∈ (0, T ) holds

(∂tu1, v)Ω + δ1(∇u1,∇v)Ω = (−fHenry, v)Ω + WRob
1 (uext

1 − u1, v)∂Ω, (5)
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β2(∂tu2, v)Ω + β2δ2(∇u2,∇v)Ω = (fHenry − f reac, v)Ω, (6)

β3(∂tu3, v)Ω + β3δ3(∇u3,∇v)Ω = (−f reac, v)Ω, (7)

β4(∂tu4, v)Ω + β4δ4(∇u4,∇v)Ω = (f reac, v)Ω + WRob
4 (uext

4 − u4, v)∂Ω. (8)

Here, (v, w)G :=
∫

G
vw denotes the L2-scalar product, and uext

i is the exterior value giving
the flux boundary condition with mass transfer coefficient WRob

i , which is used here only
for gaseous CO2 and moisture. The system is completed by initial values for u1, . . . , u4

at time t = 0. They account for the cement chemistry. The absorption and reaction
production terms are given by

fHenry = WHen
(CHenu1

φφa

−
β2u2

φφw

)

, f reac = Φ2FHum up
2u

q
3

(φφw)p+q−1
,

where we denote by φ the concrete porosity, φa, φw air and water fractions in pores, CHen

the Henry constant, WHen is an absorption constant, and FHum is a (constant) humidity
factor. The exponents p, q ≥ 1 are partial reaction orders of the carbonation reaction. Due
to the scaling, the previously different reaction production terms now are all the same. The
βi are called impact capacity factors and represent the ratio of the maximum concentration
of the i-th species to the maximum CO2(g) concentration. We denote by δi the ratio of
the characteristic diffusion time of the CO2(g) to the characteristic diffusion time of the
i-th species. The ratio of the characteristic time for diffusion to the characteristic time for
reaction gives the dimensionless coefficient Φ2, the Thiele modulus.

3 Finite element approximation

Based on the weak formulation (5)-(8), we derive a finite element method by time dis-
cretization and looking for solutions in each time step in a finite dimensional subspace of
H1(Ω).

Let 0 = t0 < t1 < . . . < tN = T define a subdivision of (0, T ) into time steps In =
(tn−1, tn) with (not necessarily constant) time step sizes τn = tn− tn−1. For each time step,
let Sn be a conforming triangulation of Ω into triangles. Here we assume that the domain
has polygonal boundary ∂Ω. Corresponding to these triangulations, we define the spaces
Xn of piecewise linear finite element functions Xn = {v ∈ C(Ω̄) : v|S ∈ P1(S) for all S ∈
Sn}.

Using an implicit Euler time discretization, we define in every time step the discrete
solution Un

1 , Un
2 , Un

3 , Un
4 ∈ Xn, fulfilling for each V ∈ Xn

(
Un

1 − Un−1
1

τn

, V )n + δ1(∇Un
1 ,∇V )Ω = (−fHenry, V )n + WRob

1 (uext
1 − Un

1 , V )∂Ω, (9)

β2(
Un

2 − Un−1
2

τn

, V )n + β2δ2(∇Un
2 ,∇V )Ω = (fHenry − f reac, V )n, (10)

β3(
Un

3 − Un−1
3

τn

, V )n + β3δ3(∇Un
3 ,∇V )Ω = (−f reac, V )n, (11)
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β4(
Un

4 − Un−1
4

τn

, V )n + β4δ4(∇Un
4 ,∇V )Ω = (f reac, V )n + WRob

4 (uext
4 − Un

4 , V )∂Ω. (12)

Here, (V, W )n :=
∫

Ω
In(V W ) denotes the lumped L2-scalar product, where In is the La-

grange interpolation operator. Using this scalar product (which is equivalent to a quadra-
ture formula using only values in vertices), the mass matrix [(Vi, Vj)n] reduces to a diagonal
matrix, where {Vi, i = 1, . . . , dim(Xn)} denotes the Lagrange basis of Xn. Especially, this
decouples the nonlinear reaction functions in each vertex of the triangulation, making the
solution easier to compute. Additionally, mass lumping leads to a discrete maximum prin-
ciple (when the triangulation is weakly acute), and thus prevents a possible overshooting of
the solution. This system of nonlinear equations is solved in each time step by a modified
Newton method.

Different meshes Sn will be used in each time step, with local mesh size controlled
automatically by the adaptive method described next.

4 Error indicators and adaptive method

The usual derivation of error estimates for finite element discretization of (linear and weakly
nonlinear) parabolic problems

u̇ − ∆u + f(u) = 0 in Ω, ν · ∇u = g on ∂Ω, u(·, 0) = u0

leads to error estimates (compare [3, 4, 8]) like

max
1≤n≤N

‖u(tn) − Un‖Ω ≤
(

∑

S∈S0

(η0,S)2
)

1

2

+ max
1≤n≤N

(

ηn,τ +
(

∑

S∈Sn

(ηηn,S)2
)

1

2

)

,

where η0,S, ηn,τ , ηn,S are computable error indicators depending only on the discrete solution
and known data of the problem,

(η0,S)2 = ‖u0 − U0‖2
S, S ∈ S0,

ηn,τ = Cτ‖U
n − Un−1‖Ω,

(ηn,S)2 = Ch

(

h4
S

∥

∥

∥

Un − InU
n−1

τn

− ∆Un + f(Un)
∥

∥

∥

2

S

+
∑

Γ⊂∂S∩Ω

h3
S ‖[∇Un]Γ‖

2
Γ +

∑

Γ⊂∂S∩∂Ω

h3
S ‖g − ν · ∇Un‖2

Γ

)

.

Here, [∇Un]Γ denotes the jump of the gradient of Un over an interior edge Γ of the trian-
gulation, hS is the diameter of mesh element S, and Cτ , Ch are constants. The use of mass
lumping generates a few additional terms in the spatial indicator ηn

S.
Now, a quasi-optimal mesh for a given error tolerance is one, where the error is below

the given tolerance, while the error indicators are equally distributed over all mesh ele-
ments. The adaptive method tries to automatically arrange time step sizes and local mesh
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refinement (and coarsening) in order to achieve this goal. In each time step, it starts with
the mesh Sn−1 from the old time step and computes a discrete solution Ũn ∈ Vn−1. After
computing the error indicators, the time step size is adjusted, when needed, and the mesh
is modified by local refinements and derefinements of Sn−1, where needed. This generates
the mesh Sn, where the corresponding discrete system is solved again for Un ∈ Vn. For
slowly (in time) varying solutions, the second solution step can be omitted, speeding up
the calculation. To capture fast changing solutions, it may be necessary to iterate the
estimate-refine-solve steps in order to reach the prescribed error tolerance.

Application to concrete carbonation

We want to adopt this method for our application of concrete carbonation. In a heuristical
way, we can directly setup error indicators η0

S, ηn
τ , ηn

S like above, taking into account all
equations from the system (9)-(12). Unfortunately, due to the dominant reaction and
slow diffusion (i.e., big Thiele modulus), the mathematical derivation will lead to very

large constants Cτ , Ch, making the error estimate practically unusable, when aiming at
the goal to get the overall error below a given tolerance. For this reason, we will use
constants Cτ = Ch = 1 for our numerical experiments. A derivation of better estimates
and indicators, based on different error norms and/or estimation techniques, requires future
work.

5 Numerical Experiments

In order to test the numerical method, results of a carbonation experiment on samples
under laboratory conditions have been used. See [10, 11] for a fairly complete description
of the test setup. In [11], Thomas and Matthews consider among others the case of a
poor OPC concrete with 1 day of curing and w/c=0.7. For the cement in question, a
CaO content of about 65% and a density of 300kg/m3 are assumed. To illustrate the
calculations, we assume that the concrete structure is exposed to the increased atmospheric
concentration of CO2(g) of an industrial site, which attacks a corner of the structure. In
such a setting, CO2(g) concentration at the exposed boundaries is about 0.0001 kg/m3

and the relative humidity (in the structure and outside) is about 65%. The rest of the
model parameters (for reaction, transport, mass-transfer at water/air interfaces, etc.) are
identical with those given in [6]. See the basic geometry in Figure 1. It shows an L-shaped
domain with one symmetry boundary edge (on the right). Besides the symmetry edge, the
boundary conditions on all other parts of the boundary are the same. Due to the L-shape,
we see the reaction behaviour near three convex (outer) and one concave (inner) corners.

Figure 1 shows concentration fields of CO2(g), CO2(aq), and Ca(OH)2 from four dif-
ferent times during the simulation. Due to the scaling and the assumption of constant
porosity and water fractions, the Ca(OH)2 values shown on the right hand sides corre-
spond to the local carbonation degree. Note that after a few days of carbonation, a clear
separation between a carbonated zone and an uncarbonated one appears. After such a
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Figure 1: Concentration fields from four different times, showing a clear separation of
reactants: CO2(g), CO2(aq), and Ca(OH)2, from left to right.
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Figure 2: Automatically adapted meshes at four different times, corresponding to concen-
tration fields in Figure 1. After a transient time, an internal reaction layer is formed and
progresses into the material. This moving reaction layer is automatically captured by the
self-adaptive mesh refinement method.

Figure 3: Meshes from three simulations with different refinement tolerances.
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transient time, a thin reaction layer (called carbonation front) is formed. Near the convex
outer corners, the carbonation front progresses faster than at straight edges, and it moves
even slower near the concave inner corner. Since we only look at the first days of carbon-
ation, relatively few moisture is produced by reaction, thus we don’t show the moisture
concentration. Figure 2 shows corresponding meshes from four different times, with au-
tomatic high refinement near the carbonation front. In Figure 3, we show the influence
of different refinement criteria on the resulting meshes. Taken at the same time, it shows
meshes with same tolerance as in Figure 2 (middle), as well as tolerances chosen 4 times
bigger (left) and 4 times smaller (right).

The implementation of the numerical code was done using the adaptive finite element
toolbox ALBERTA [9], which is based on simplicial meshes in 1D, 2D, 3D, where mesh
elements are intervals, triangles, and tetrahedra. The toolbox does local mesh refinement
by bisection of elements. Here, for a 2D simulation, a initially coarse subdivision of the
domain into triangles gets successively locally refined, until the local error indicators are
small enough. In each time step, the error indicators are computed and the mesh locally
adapted (refined or coarsened), when needed.

6 Conclusions

We have demonstrated that self-adaptive finite element methods can provide an appropri-
ate tool for efficient and reliable numerical solution of reaction-diffusion problems where
moving internal reaction layers occur, and forecast of chemical attack in concrete struc-
tures. Narrow reaction zones can automatically be resolved by the adaptive method.

Although the current method is mainly heuristical, future investigations and stud-
ies may lead to customized error estimates and error indicators, giving (mathematically
proven) reliable information about the numerical approximation error between exact and
computed solution.
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gemeinschaft (DFG) by a grant through the special priority program SPP1122 “Prediction
of the Course of Physicochemical Damage Processes Involving Mineral Materials”.
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99–14. Eberhard Bänsch, Karol Mikula:
Adaptivity in 3D Image Processing, Dezember 1999.

00–01. Peter Benner, Volker Mehrmann, Hongguo Xu:
Perturbation Analysis for the Eigenvalue Problem of a Formal Product of Matrices, Januar
2000.

00–02. Ziping Huang:
Finite Element Method for Mixed Problems with Penalty, Januar 2000.

00–03. Gianfrancesco Martinico:
Recursive mesh refinement in 3D, Februar 2000.
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A regularization of Zubov’s equation for robust domains of attraction, März 2000.

00–07. Michael Wolff, Eberhard Bänsch, Michael Böhm, Dominic Davis:
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03–09. Michael Böhm, Serguei Dachkovski, Martin Hunkel, Thomas Lübben, Michael Wolff:
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