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Abstract

Numerous problems from natural sciences and engineering as well as from other disciplines
lead to optimal control problems governed by systems of time-dependent partial differential
equations (PDE). Control functions have to be determined such that a given performance
index is optimized subject to additional constraints. These optimal control problems are solved
numerically by time-consuming methods. Moreover, if the optimal controls are to be pursued
in a real process, the possibility of data disturbances force recomputing the optimal controls
in real-time to preserve constraints and optimality, at least approximately. For this purpose,
a numerical method based on the parametric sensitivity analysis of nonlinear optimization
problems is suggested to calculate higher order approximations for the optimal solution of the
perturbed optimal control problems in real-time without solving the PDE system explicitely.
By this method computing times can be reduced to a few nanoseconds on a typical one
processor personal computer. The method is illustrated by the real-time optimal control of
the nonlinear Burgers equation.

Keywords: perturbed optimal control problems; nonlinear programming methods; partial dif-
ferential equations; parametric sensitivity analysis; real-time control

1 Introduction

This paper is concerned with the real-time approximation of perturbed optimal control problems
governed by time-dependent partial differential equations and subject to control constraints. In
practice, control problems are often subject to disturbances or perturbations in the system data.
In mathematical terms, perturbations are expressed by means of parameter fluctuations that enter
the dynamics, boundary conditions or control constraints. Stability and sensitivity analysis are
concerned with the behavior of optimal solutions under parameter perturbations. The so-called
parametric sensitivity derivatives are a helpful tool in real-time optimal control applications, see
e.g. Pesch [19] and Biiskens and Maurer [6]-[9] for optimal control problems governed by ordinary
differential equations.

Although it is well-known that there exists a gap between the computational and theoreti-
cal aspects of optimal control problems with PDEs, the need on numerical methods capable to
solve these problems is given today. Naturally this difficulty goes over to the computational and
theoretical aspects of parametric sensitivity analysis of optimal control problems with PDEs, if
numerical solution techniques are used. Numerical aspects of solving optimal control problems
subject to partial differential equations by e.g. SQP methods are commonly discussed, e.g. by
Heinkenschloss and Sachs [14], Casas, Troltzsch and Unger [10, 11], Kunisch and Volkwein [15],
Maurer and Mittelmann [17, 18] to name only some references.

In this paper the method of lines is used to discretize the partial differential equations, trans-
forming the original system into a system of ordinary differential equations. To compute sensitivity
differentials via nonlinear optimization methods a subsequent discretization of the ODE control
problem is accomplished. This leads to so-called direct optimization methods which have proved



to be powerful tools for solving ODE optimal control problems; cf., e.g., Biiskens [3], Biiskens and
Maurer [6]-[9] and the references cited therein. These methods use only control and state variables
as optimization variables and completely dispense with adjoint variables. Alt [1], Dontchev and
Hager [12] and Malanowski, Bliskens and Maurer [16] prove the convergence of the discretized
problem to the continuous solution for ODE optimal control problems. For general optimal control
problems involving partial differential equations, these results do not yet exist. Hence, we tacitly
assume the convergence to the presumed unique continuous solution as the mesh size tends to zero.

In Biiskens and Griesse [5] the numerical computation of sensitivity differentials for optimal
control problems for PDEs is discussed. The proposed NLP-based method is capable of computing
approximations to sensitivity differentials for the state, control and adjoint variables in parametric
PDE optimal control problems. These sensitivity differentials allow an easy access to real-time
optimal control approximations of perturbed problems. In case of deviations in the perturbation
parameters the method presented in this paper is able to calculate higher order real-time approx-
imations of the perturbed PDE optimal control problem without solving the PDE system again.
To the authors knowledge this is this first time that approximations of perturbed PDE optimal
control problems can be calculated in real-time.

The general mathematical structure of perturbed PDE optimal control problems is outlined
in Section 2. Discretization details for the PDE can be found in Section 3. A short overview of
basic results on sensitivity analysis and solution differentiability for perturbed finite-dimensional
nonlinear optimization problems is offered in Section 4. By re-transforming the numerical solution
and sensitivity quantities, information about the optimal solution and the sensitivity of the original
PDE optimal control problem can be obtained. This will be covered in Section 5. Finally, Section 6
presents three numerical examples for PDE optimal control problems with control constraints.

2 Parametric PDE optimal control problems

We consider the following perturbed generally coupled time-dependent PDE optimal control prob-
lem POCP(p) with control constraints:

Minimize
F(y,u,p) = /f1 z,t),u(x,t),z,t,p) dr dt

/f2 (z,t),u(z,t),z,t,p) drdt

subject to (1)
ye(z,t) = fy(@,1),92(2,1), Y0 (2, 1), u(z, 1), 2,¢,p),
y(z,t0) = wyo(z,p), for z€Q,
y(z,t) = yp(u(z,t),z,t,p), for ze€T,, te
,,y(:c,t) = yN(y CL’,t),U(IL',t),.’IT,t,p), for ze€ Fw; te Qt
0 > Clu(z,t),z,t,p), for (z,t) € Q.

Herein t € [to,tf] = Q¢ C R denotes the time variable, while z € Q, C R" of dimension n,
denotes the spatial variables. Further, 2, is a bounded domain with piecewise smooth boundary
I, = 09Q,. Herewith Q = Q, x Q; and ' =T, x ; are defined. Moreover, let y : @ — R™ be a
vector function of dimension n, of which y;(z,t) denotes the first derivative w.r.t. the time variable
t. Likewise the first and second partial derivatives w.r.t. the spatial variables = are denoted by
Yz (z,t) and yu.(z,t). The control function u : & — R™ has components defined either on Q
(distributed control) or on the boundary T (boundary control). Perturbations, which may appear in
all functions of (1), are characterized by a parameter vector p € Q, C R". A solution of the PDE
system in (1) depends on the spatial variable z, the time variable ¢, the control function u and
the fixed parameter vector p. While we mainly have a parabolic PDE system in mind, hyperbolic
systems can be considered, too. Always providing that the PDE system in (1) is well-defined and
uniquely solvable for given v and p, combinations of Dirichlet or Neumann conditions are defined
by the functions yp : R™ xI'y x Q4 x Q, = R™ or yy : R™ x R™ x 'y x O x Q, = R%.
Herein derivatives in the direction of the outward unit normal v of ', are denoted by 9, in (1).
The vector function C' : xR™ x Q; x Q; x Q, = R™, n. > 0, allows for additional inequality
control constraints. We point out that in principle state constraints can be taken into account, too.



Nevertheless they might be to time consuming in view of the real-time approximations discussed
later.

The problem is to determine a control vector — containing boundary or distributed control
elements or both — that minimizes the functional F' in (1) subject to the given restrictions. Note
that (1) can be extended to contain more general terms, for example higher order derivatives or
time—spatial derivatives.

3 Discretization of the PDE control problem

The main idea of discretization is to transform the PDE optimal control problem (1) into a finite
dimensional nonlinear optimization problem (NLP). On the other hand for an efficient evaluation
of the higher order real-time approximations discussed later on it is stringently necessary to find
a discretization where the constraints are independent on the state y(z,t) itself. To fulfill these
requirements we proceed as follows:

First the method of lines is used to transform the partial differential equation into a system of
ordinary differential equations by discretizing all functions with respect to the spatial variable z.
Possible choices for the spatial discretization are finite differences, finite elements or others. The
method of lines transforms the partial differential equation into a system of ordinary differential
equations. Since the method is well known we will not discuss it in detail and tacitly assume that
there exist a transcription to the perturbed optimal ODE control problem (OCP(p)):

t
Minimize F(w, v, p) = / Folw(®), v(t), 1, p) dt
subject to Wt = (), ), @
_w(to) = wo(p),
Cv(t),t,p) < 0, tE¢€Jto,ts]

We assumed, that the Dirichlet or Neumann conditions can be substituted directly into the ODE
system in (2). Here, w(t) € R" and v(t) € R™ denote the state of the system and the control
in a given time interval [to,t] = €}, respectively. Data perturbations are again modeled by a
parameter p € Q,. The functions fo : R+ x Q, 5 R, f: R+ x Q) — R, wy : Q, — R?,
and C : RvHm+! x Q, — R* are assumed to be sufficiently smooth on appropriate open sets. The
admissible class of control functions is the class of piecewise continuous controls. The final time ¢
can be either fixed or free. Note that the formulation in (2) contains only pure control constraints
and that the former state variable y(x,t) can be identified by the components of w(t) depending
on the discretization accomplished with the method of lines. Likewise the former control variable
u(z,t) can be identified by the components of v(t).

As a second step a suitable discretization of the the control problem (2) is used by which it
is transformed into a nonlinear optimization problem (NLP). These techniques are well developed
and there exist a number of excellent methods. In principal these methods can be divided into
two classes. The first type of methods is characterized by the fact that both the discretized state
and control variables are taken as optimization variables. Unfortunately this approach leads to
a high number of state depending constraints and hence are not suitable for the higher order
real-time approximations presented in this paper. For the second class of NLP methods, only the
discretized control variables are considered as optimization variables whereas the state variables are
calculated as functions of the control variables using appropriate numerical integration methods.
One obtains a NLP problem where the constraints are independent on the state of the system.
We use one variation of the code NUDOCCCS of Biiskens [2, 3] and reflect the main idea for the
simple Euler method subsequently. Without loss of generality let ¢, = 0. For notational simplicity

we choose equidistant mesh points ¢; := (¢ — )h, i = 1,..., N, h :== Fff_T Let u’ € R™ denote
approximations for v(;). Then for given z := (v', ..., v™) € R™ state approximations w’ € R™

of the values w(t;) can be archived recursively as functions of the control variables:

wl(z,p) = wq@)a o , (3)
’U]H_l(zap) = wz(z,p)+hf(w’(2,p),v’,ti,p), i:l,...,Nt—].-



Hereby, the control problem (2) is replaced by:

N-1
lein h- Z fo(wi(z,p),vi,ti,p)
=0

(4)
subject to  C(vi,t;,p) < 0, i=1,...,N,.

Note that a free final time t; can be handled as an additional variable in z and that due to the
chosen discretization the state w(z,p) appears in the objective of (4) but not in the constraints.
Hence the numerical calculation of the objective is expensive due to the implicitly considered PDE
problem while the calculation of the constraints is not. Problem (4) defines a perturbed NLP
problem NLP4 (p) of form

min H(z,p),
subject to Gi(z,p) <0, i=1,...,N..

()
which can be solved by standard techniques, e.g. SQP methods, if we use suitable definitions for
N, and the functions H and G;.

All calculations described hereafter were performed by the code NUDOCCCS of Biiskens [2, 3] in
which also various higher order approximations of the state and control variables are implemented.
The treatment of stiff ODEs, grid refinement techniques and a numerical check of second order
sufficient optimality conditions can also be found in this code, see [3]. Recently, the convergence
of solutions discretized via Euler’s method to solutions of the continuous control problem has been
proved in Malanowski, Biiskens and Maurer [16].

By solving the NLP problem (5) we obtain an estimate of the continuous control and state variables
(u,y) of (1) at appropriate z; € Q,, t; € {; depending on the applied discretization. Likewise, all
other variables and functions of the continuous problem (1) can be determined approximately.

4 Parametric sensitivity analysis of perturbed NLP prob-
lems

In Section 3 a method to transform a perturbed control problem into a parametric NLP problem
has been discussed. It should be mentioned that the results hereafter do not depend on the
discretization technique used. After solving (5) we know the set and the number N, of active
constraints, i.e. those constraints in (5) with Gi(t;;2) = 0. Let G* = (GY,...,G%. )T denote
the collection of these active constraints. Then the solution of (5) is the same as the solution of
NLP2(p)

min H(z,p)
z
subject to G%(z,p) =0,

(6)

since inactive constraints have no impact on the optimal solution. For this, we restrict the subse-
quent discussion to the formulation (6). The Lagrangian for (6) is defined as

L(z,n,p) = H(z,p) +n' G*(2,p)

with Lagrange multiplier n = (11,...,7~,) . The following theorem states sufficient conditions
for the differentiability of an optimal solution z(p) w.r.t. p.

Theorem 1: Let H and G* be twice continuously differentiable w.r.t. z and p. Let zy be a strong
regular local solution of (6) for a fized parameter py with Lagrange multiplier no, i.e. G*(20,p0) =0
and

o 2y is regular in the sense rg (V.G%(20,p0)) = Na, i.e., the gradients V,G¢(z0,po) are linearly
independent,

o the first order necessary optimality conditions hold at zg, i.e., V. L(20,m0,P0) = 0,n4 G*(20,P0) =
0,

e the strict complementary condition holds at zo, i.e., (no); >0 fori=1,...,N,,



e the second order sufficient conditions hold at zo, i.e., v V2, L(20,m0,po)v > 0, Vv € ker(V.G*(z0,po)(20,P0)),
v #0.

Then there exists a neighborhood P(po) such that (6) possesses a unique strong regular local solu-
tion z(p) and n(p) for all p € P(po). Furthermore, z(p) and n(p) are continuously differentiable
functions of p in P(po) and it holds

( V2. L(20,m0,p0)  V:G*(20,p0)" ) ) % (po) _ _( V2, L(20,10,Po) ) (7)
V.G*(20,Po) (20, Po) 0 Z—Z(Po) VG (20,p0) )~

Notice, that the left matrix in (7) is non-singular under the assumptions of Theorem 1. Hence,
(7) points out a way to compute the sensitivity differentials dz/dp and dn/dp at py explicitly by
solving the linear equation system. The proof of the theorem is based on the implicit function
theorem and can be found in Fiacco [13] or Biiskens [3]. The assumptions in Theorem 1 can be
checked numerically by use of the projected or reduced Hessian, compare Biiskens and Maurer [§]
or Biiskens [3]. In the following section these results are applied to real-time approximations.

5 Higher Order Admissible Real-Time Approximations

In the preceeding sections methods were devoted to calculate the nominal solution and the corre-
sponding sensitivity differentials. In case of a deviation Ap in the parameter p a first order Taylor
approximation for z(po + Ap) is given by

2(p) = 2(po + Ap) ~ H(p) = 2(po) + j—;@o)Ap. ®)

Since the quantities z(pg) and g—;(po) in (8) can be computed offline, the benefit of (8) is that
only a matrix-vector multiplication and a vector-vector addition has to be performed online to
approximate z(pp + Ap) extremely fast. Note that the calculation of Z(p) in (8) is independent on
the PDE system, hence (8) is particularly suitable for time critical processes. We use (8) as a first
real-time approzimation. It holds, cf. Biiskens [4]:

Theorem 2: Let the assumptions of Theorem 1 hold and let the functions H and G in (6) be
three times continuously differentiable w.r.t. to z and p. Then there exists a neighborhood U (po)
of po with

lz(p) = 2@)II = O(|Ap]*), 9)
1H (2(p),p) = HE(p), Pl = O(lApI), (10)
1G*(z(),p)l = OUlApI*). (11)

In the unconstraint case, i.e., N, =0, we have

1H (2(p), ) = H(Z(p), )| = O(I|Ap|*). (12)

According to Theorem 2, Formula (8) yields, in view of optimality and admissibility, real-time
approximations for small perturbations Ap for many problems. Nevertheless, the approximation
Z(p) is generally not admissible, i.e., ||G%(2(p),p)|| = O(||Ap||?).

In particular, for larger perturbations Ap approximation Z(p) may be not acceptable in view of
admissibility. To overcome this problem, we introduce an artifical perturbation ¢. Instead of (6)
we treat the problem NLP3(p, q)

min H(z,p)
z

. (13)
subject to G%(z,p) —q = 0.

Obviously problem NLP2(p) is equivalent to NLP3(p, qo) if the nominal perturbation is chosen

to ¢ = go = 0. Moreover problem (13) fulfills the assumptions of Theorem 1, if (6) does, and hence

we are able to calculate the sensitivities ‘;—Z(O) and ‘;—Z(O) similar to (7). Herewith we are able

to formulate the following corrector iteration method to achieve admissibility for the constraints

without loss of its optimality:



(i) Choose €* > 0 and initialize 2!!(p) := (p). Set k := 1.
(ii) If ||Ge (3% (p), p)|| < €, then STOP.
(iii) Calculate

~ & 06 (), p), (14)

~[k+1] — 3
Z (p) : i

and set k:=k + 1.
(iv) Go to (ii).

Tteration (14) achieves admissibility in the active constraints and additionally improves the opti-
mality as shown by the following theorem, cf. Biiskens [4].

Theorem 3: Let the assumptions of Theorem 1 hold and let the functions H and G in (6) be
three times continuously differentiable w.r.t. to z and p. Then there exists a neighborhood U (po)
of po and a vector v € RN= with v € ker(V,G%(20,p0)) and |[v]] = O(||Ap||?) such that for all
p € U(pg) the sequence z¥(p) in (14) converges to a fized point 31)(p) with

lz(p) = 2@ = lloll+ O ApI®), (15)
IH ((p), p) = HE™(p), )l = Ol Apl*), (16)
G E>=p),p)l = o (17)

Iteration (14) can be interpreted as follows: Approximation 3[*](p) causes a deviation in G* which
is identified as the perturbation ¢. For this perturbation an additional correction step of type (8) is
performed. Of course, the new approximation will again cause a deviation in G* and the corrector
iteration method is born.

Note, that the fixed point in Theorem 3 is not unique, cf. Biiskens [4]. Nevertheless, any fixed
point of iteration (14) fulfills (15)—(17), especially the higher order of optimality in the objective.
Now it becomes evident why the discretizations in (2)—(5) were chosen in such manner that the con-
straints are independent on the state: Iteration (14) needs no objective calculation and hence can
be performed without solving the expensive underlying PDE system. Only the control constraints
have to be computed, which is generally cheap.

6 Example: The Burgers Equation

In order to illustrate the performance of the algorithms presented in Sections 2—5 the nonlinear
one-dimensional viscous Burgers equation is investigated subject to a tracking-type PDE optimal
control problem with control constraints, cf. Volkwein [20]. All computations were performed on
a 1GHz PIII personal computer using the code NUDOCCCS.

Minimize
F(y,u,p) = — /[y(:v,t) —0.035)%dz dt + (1 +p2)0/[u1(t)2 +us(t)?]dt |,
subject to ? K (18)
ye(z,t) = (1+p1)vyae(a,t) —y(z, t)ys(z,t) + pet,
y(z,t0) = (1+ps)2*(1—-2z)(1-2),
yz(oa ) = wu (t)7
yz(]-: ) u2(t)7

(AVARI

C(ul (t)a U2 (t)7p3:p4)7

with ng =ny = 1, ny =2, np = 6, Q = [0,1], Q, = (0,1), o = 0.01, » = 0.1, & = 1000. For the
method of lines, the first derivative y,(x;,t) at a discretized spatial point z; in the interior of
is approximated by the second order formula

y(-’L'l + A.’L’,t) - y(xl - A$7t)

Yo(z1,t) = SRy , (19)




while second order derivatives are approximated by the second order formula

T+ Az, t) — 2y, t) +y(x — Az, t

The state variables on the boundaries y(0,t) and y(1,t), entering the right hand side of the PDE
when (18) approximating y,(z,t) and y,,(z,t), are calculated by the second order approximations

dy(Az,t) — y(2Ax,t) — 2Azuy(t)

y(0,t) =~ )
3 (21)
dy(1 — Az, t) — y(1 — 2Az,t) + 2Azus(t)
y(1,t) = 3 .

All computations are performed with 18 lines for the spatial variable 2 which leads to Az = % and
a system of 16 first order ordinary differential equations if the Neumann conditions are directly
inserted into all functions. An explicit fourth order Runge-Kutta scheme and a linear interpolation
of the control variable is used for the integration in time. In order to be able to use this explicit
Runge—Kutta scheme, it is necessary to choose a sufficiently high number N; = 51 of grid points
for the discretized time interval. Similar results can be achieved by using an implicit Runge-Kutta
method with fewer time steps, at the expense of additional numerical cost. The spatial integral in
the objective is approximated by the trapezoidal method.

The perturbation parameter p; is connected to the viscosity coefficient v while perturbations in the
objective are concerned with p». The perturbations p3 and ps will be used to simulate deviations
in the constraints defined later on. The parameter ps allows for deviations in the initial values.
Finally parameter pg produces a forcing term on the right hand side which grows with time.

The optimal solutions calculated hereafter are obtained from the discretized formulation (5) for
the nominal perturbation parameter po = (0,0,0,0,0,0)%.

6.1 The unconstrained case

First we consider the unconstraint case with n, = 0. After about 2.5 seconds of computational time,
the optimal nominal solution is obtained with an objective value F(y(po),u(po),po) =~ 2.176303 -
10~2. The nominal state in the interior and the unperturbed optimal control functions are depicted
in Figure 1.
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Figure 1: Nominal state y(z,t) (left), nominal optimal controls w(t), ua(t) (right) for the uncon-
strained case.

All assumptions of Theorem 1 have been carefully checked numerically for the discretized problem,
and the Hessian of the Lagrangian has been found to be positive definite. Hence the sensitivity



differentials of the control variables for p1, p2, ps and pg, can be obtained from expression (7) and
are depicted in Figure 2.

duy (t)
dp

Figure 2: Sensitivity differentials (po) (top) and d“;ISt) (po) (bottom) of the control variables

for the unconstrained case.

In order to judge the quality of the real-time approximation (8) for the unconstrained Burgers
problem, we set up the following Table 1 which lists the relative errors

51kl —H(>
gy o= L (pz)jé)(p),[;)( ®.2) o o)

of the objective for different perturbations p. Herein and in the following Cl[g] denotes the relative
error of the objective obtained after an integration of the perturbed system using the nominal
control variables.

| [ Fw ] e ]
p=(0,0,0,0,-0.1,—0.1) 4.38-10 1 3.18-10 5
p=(0,0,0,0, 1,0.1) 4.27-10701 3.05-107%
p=(-0.1,-0.1,0,0,0,0) 5.77-10704 8.22-10706
p=(—0. 02 0.02,0,0,—0.02,0.02) 7.95- 10702 2.81-10795
p= (0 01,0.01,0,0,0.05,0. 05) 3.29.1079 1.05-1079
p= (0 01,0.01,0,0,0.01,0. 01) 3.91-10792 4.33.10797
p=(0.1,0.1,0,0,0.1,0.1) 4.94-107° 5.56 - 1004

Table 1: Real-time approximations for different perturbations in the unconstrained case.

Although perturbations of up to 10% are considered to be large perturbations, the numerical
results clearly indicate the real-time capability of the proposed method and show the higher order
approximations of the objective for the unconstrained case as predicted by Theorem 2.

The computing time for calculating the real-time approximation of the complete controls varies
between about 2-10~7 seconds (only one perturbation holds p; # 0,7 = 1,...,6) and about 8-10~7
seconds (four perturbations hold p; # 0, ¢ = 1,...,6) on a PIII 1GHz personal computer. Note
that only a few floating point operations have to be performed. Inpractical implementations the
computing time can be reduced further by a factor 51 (number of grid points in time), if the time,
during the runtime of the real Burgers process, is used for computing the approximation (8).

6.2 Box constraints
Next we consider box constraints of form

—0.015(1 4 p3) < u;(t) < 0.015(1+p3), i=1,2, (23)

with an additional perturbation ps3. The optimal nominal solution is now obtained with an objec-
tive value F(y(po),u(po),po) ~ 2.178279 - 10~ 2 after about 2.6 seconds of computing time. The
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Figure 3: Nominal state y(z,t) (left), nominal optimal controls u;(t), u2(t) (right) for the box
constrained case.

nominal state in the interior and the unperturbed optimal controls are given in Figure 3.

Note that there are two boundary arcs for the controls.

The Hessian of the Lagrangian has been found to be positive definite on the kernel of the Jacobian
of the active constraints and all other assumptions of Theorem 1 hold for the discretized problem,
at least numerically. Hence expression (7) yields the sensitivity differentials of the control variables
for p1—ps, ps and pg. The sensitivity differentials of the control variables are shown in Figure 4.

Figure 4: Sensitivity differentials dudl—p(t)

for the box constrained case.

(po) (top) and du%p(t)(po) (bottom) of the control variables

Note that the sensitivities of the controls in Figure 4 are zero on the boundary arcs for p1, pa, ps
and pg and that the overshooting at each junction point of the control constraints results from the
linear interpolation of the control variables. Table 2 lists the relative errors C[Hk] (p) of the objective
as defined in (22) for the box constrained Burgers problem.

Again the considered perturbations of up to 50% can be understood as large perturbations. Nev-
ertheless the perturbed optimal solutions are well approximated. The crucial message from this
example is however the admissibility of the approximated control variables after only one real-time
correction step. This follows from Theorems 1-3 and is due to the fact that the treated constraints
are linear in the control variables. Hence additional correction steps as proposed in (14) are not
necessary for box constrained problems. Computing times are similar to the unconstrained case.



| [ e ] e ]

p=(0.1,05,0,0,0,0) 3.22-10°03 8.75-10
p=(0,0,0.1,0,0,0) 4.45-107%4 7.03- 100
p = (0.01,0.01,0.01, 0,0.001, 0) 3.98-10-04 1.99 - 1006
p = (0.01,0.01,0.01,0,0,0) 5.76 - 10~ 4.87-10-10
p=(-0.01,-0.01,-0.01,0,0,0.01) | 3.28-10~% 2.26 - 1006
p = (—0.02,0.02,—0.05,0,0,0) 2.94-10-% 1.60 - 1006
p = (0.05,-0.02,0.05,0,0,0) 3.23-107%4 2.83 10706
p = (—0.01,0.01,—0.01,0,0,0) 5.53- 10705 5.62- 101

Table 2: Admissible real-time approximations for different perturbations in the box constrained
case.

6.3 Nonlinear control constraints

Finally we consider a coupled nonlinear control constraint of the form
ur(t)? + ua(t)? < 0.000225(1 4+ pg), i=1,2 (24)

with an additional perturbation ps. Since (24) is a nonlinear constraint we cannot expect, that
in case of an active constraint the linear real-time approximation (8) ensures the admissibility of
the solution in one step . Here, the nominal objective is calculated after about 3.5 seconds of
computing time to F(y(po),u(po),po) ~ 2.51 - 10~2. The nominal state in the interior and the
unperturbed optimal control functions are given in Figure 5.
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Figure 5: Nominal state y(z,t) (left), nominal optimal controls w1 (t), ua(t) (right) for the nonlinear
control constrained case.

There is one boundary arc at the beginning of the time interval.

All assumptions of Theorem 1 have been checked numerically. The Hessian of the Lagrangian
is positive definite on the kernel of the Jacobian of the active constraints. Hence expression (7)
yields the sensitivity differentials g—;(po) and ‘;—Z(O) of the control variables for p;, p» and py—
ps- The sensitivity differentials of the control variables w.r.t parameter p are shown in Figure 6.
The sensitivity differentials of the control variables with respect to linear perturbations ¢ in the
constraints are neglected for the lack of space.

Note that the sensitivities of the controls in Figure 6 have jumps along the time axis at junction
points and that the overshooting at each junction point of the control constraint results from the
linear interpolation of the control variables. Table 3 lists the relative errors C[Hk] (p) of the objective

10



:
|

—

8 2 & B

|
|

Figure 6: Sensitivity differentials d“dl—zft)(pg) (top) and d“dLIft)(pg) (bottom) of the control variables
for the nonlinear control constrained case.

as defined in (22) and the error Cgc] (p) in the nonlinear control constraint,

Cgf] (p) := max G} (Z[k] (p),p)

& —ooo022s P OLZe (25)

for the first eight iterates, for perturbations p, = (0.05,0,0,-0.05,0,0),
p = (=0.1,0.01,0,0.1,0,0), p. = (0.2,0.05,0, —0.5,0.02, 0).

P = Da D =D D = D¢
S | F e | &) RO )
5.00-10792 ] 1.08-10"°% [ 1.00-107°T [ 3.01-10"%* [[ 5.00- 107 %1 | 5.57-10" %
6.35-107%% | 1.88-107% | 2.54-1079 | 3.96-107% || 6.27-10792 | 2.36- 10"
1.60-1079 | 1.14-1079® || 1.25-107% | 5.83-107°7 || 1.66-10792 | 5.99-10"%
4.05-107°7 | 3.55-107%8 || 6.12-10796 | 3.58-107°7 || 4.75-107°3 | 8.14-1079¢
1.02-107%8 | 3.67-107°% || 2.99-10797 | 3.69-107°7 || 1.38-107%% | 7.04-107°6
2.60-1071° | 3.68-1079 || 1.46-107°8 | 3.68-107°7 || 4.04-107%4 | 1.15-1079°
6.58 - 10712 | 3.68-10798 || 7.12-10"1° | 3.69-10797 || 1.18-107%4 | 1.28-1079°
1.67-10713 | 3.68-10798 || 3.47-10"1! | 3.69-107°7 || 3.46-1079% | 1.32.1079°
4.28-10715 | 3.68-107% || 1.70-10"'2 | 3.69-10797 || 9.95-10% | 1.33-10 %

O ~J O Ui W N - O

Table 3: Admissible real-time approximations for different perturbations in the nonlinear control
constrained case.

Even in the case of a large perturbation p. the method converges. Further iterations lead to ad-
missible solutions within machine precision. Computing times for each of the eight iterates are
similar to the two exaples discussed before since an evaluation of the nonlinear control constraint
(24) at each discretized time step can be done by only six floating point operations.

7 Conclusion

Real-time methods based on the parametric sensitivity analysis of perturbed PDE optimal con-
trol problems with control constraints have been proposed. Under the assumption of convergence
to the assumed unique continuous solution, the original control problem has been discretized via
various stages to obtain a perturbed NLP problem for the discrete control variables. For this finite-
dimensional problem, we are able to compute the sensitivity differentials of the optimal solution
with respect to the perturbation parameters. These sensitivities allow for an approximation of the
corresponding continuous variables of the original PDE optimal control problem and have been
used for real-time optimal control strategies. The examples show that it is possible to calculate
accurate solutions in a robust way.
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