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Abstract: We formulate a coupled pde-ode-model for the simultaneous determination of
concentrations and position of the carbonation front in concrete samples. The model is
based on a two-phase moving boundary formulation in D dimensions (D = 1,2,3) which
involves an additional relation at the front and a modified carbonation-reaction rate re-
stricted to a (thin) reaction layer near the front.

The geometry and numerical input data are modeled on accelerated-carbonation experiment
settings for Portland cement in the range of RH = 65% and [COs] = 3vol%, although the
model should be applicable to more general situations. Simulations show a good qualitative
agreement with experimental data - despite some drastic simplifications. It is shown that
the model captures essential features of the carbonation process.
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1 Introduction and problem statement

1.1  The carbonation process

Structural reinforced concrete is a composite material, in which the reinforcing steel is
embedded in concrete - a two phase material in itself, composed of aggregates and the
hydrated cement paste matrix.

One of the major risks for reinforced concrete structures is the corrosion of the steel rein-
forcement after depassivation of its surface occurs. In sound concretes steel is protected
from corrosion by passivation in a high alkaline environment (pH = 13 of the pore water)
due to the presence of Ca(OH),. If pH drops below approximately 10 (up to pH = 8.3 in
the fully carbonated zone), then passivation is lost. There are several scenarios leading to
such drops in pH. One is the occurrence of atmospheric CO, near the steel bars leading to
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the reaction, simplified as the overall carbonation reaction between Ca(OH )y and COsy:
Ca(OH)y 4+ CO; = CaCOs + Hy0. (1)

Besides Ca(OH ), there are other, important components of the cement paste matrix which
will undergo carbonation, such as the C'SH-phases. Since Ca(OH ), represents the bulk
of the carbonatable species in concrete, in a first approximation we restrict ourselves in
this note to Ca(OH),, although a quantitatively more stringent setting requires to take the
other reactions into account as well. For a more detailed description of the whole scenario cf.
Ref. [32] and of the carbonation reaction involving more species or more complex scenarios
than (1) involving intermediate reactions (like the formation of CO;~, e.g.) cf. Refs.
[45, 46, 47, 60, 61], e.g. Ref. [41] provides a more general framework for dealing with many
reactants. For simulations or more conceptually oriented modeling, many authors reduce
their setting to (1), because Ca(OH), is the major reactant in most practical situations,
and it is immediately linked to the corrosion risk.

Aside from carbonation another reason for depassivation of the reinforcing steel bars is the
occurrence of chloride ions at the steel surface.

In the presence of chlorides depassivation of the steel surface even occurs in non-carbonated
concrete, however, carbonation significantly reduces the chloride ion concentration neces-
sary for the breakdown - the so-called threshold concentration.

The mechanism of how the chloride ingress is affected by carbonation is not uniform: For
some types of concrete and environmental conditions carbonation seems to slow down chlo-
ridization, very often it plays an accelerating role. Vice versa, the influence of chlorides
on the carbonation reactions seems to be far less important. For papers dealing with the
coupled problem of carbonation and chloride attack, we refer to Refs. [59, 60, 38, 10, 20],

e.g.

Remark 1 In this note we concentrate on a (new way of) modeling intended to predict
the progress of carbonation with time. Chlorides will not play any role in this model (cf.
Refs. [60, 59, 56, 20] for information on the interplay of carbonation and chloride attack).
Moreover, besides restricting ourselves to carbonation of Ca(OH),, we assume the whole
process as isothermal. In this note temperature plays only the role of a parameter, although
the whole carbonation process is not isotherm and in real-life concrete structures (and thus:
inside of concrete samples or concrete members) atmospheric temperatures might vary. Our
approach is basically molecular rather than ionic, as customary in an essential part of the
literature. For (more general) approaches involving ionic transport we refer to Samson et
al, Ref. [55], and, in a related context, Marchand, Ref. [39].

This note has been inspired by a paper of Wittmann and Brieger (cf. Ref. [28]). In
their expository note the authors discuss several carbonation scenarios leading to Stefan-
problem type formulations of carbonation. On the more modeling side this note has been
influenced by the books by Gatignol and Prud’homme, Ref. [19] and Gurtin, Ref. [21],
where, among others, concepts of surface-based productions as limits of appropriate volume-
based productions are discussed.



1.2  Specification of the setting

For the sake of definiteness we concentrate on a cylindrical sample of concrete which is
exposed to COs(g)! and humidity from the environment. Fig. 1 shows a cross section
of such a piece. Denote by €(¢) the part of the concrete piece for which we model the
carbonation process. (t) might be a whole sample or a part of it (cf. Fig. 2a-c: the
hatched regions).

Q0

Figure 1: Cross section of a cylindrical concrete sample.
The grey area indicates a zone §(t) of steep change in
pH. Q(¢) is the uncarbonated zone. Q(t) is the partially
carbonated zone, I'¢;; - the exterior boundary.

// o . \r// -
7 T : 7
/ N \ ’/ \\ /'
Ten . ‘,“" /

p N

x 0 s L 2L-s(t) 21, x 0 2L x

Figure 2: Cross sections of Q(t). From left to right: Fig. 2a, Fig. 2b and Fig. 2c.

Introduction of time ¢ allows for possible changes of the shape and volume of the sample,
although in this note the size and shape of (the macroscopic sample) €2(¢) is assumed to be
constant.

The typical situation in a carbonation process can be summarized as follows: The concrete
sample consists of a solid skeleton €2,(¢) and the pore system €2,(t). €,(¢) is partially filled
with water, which clings as a film, due to van der Walls forces, to the walls of the pores.

LC0,(g) and COz(aq) denote the concentration of COs in the gaseous phase and in the aqueous phase,
respectively.
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Figure 3: Disproportionally magnified box B from Fig. 2 with carbona-
tion zone Q(t) and two candidates for the definition of the ’carbonation
front interface’ I'(t) (center-lined surface or inner surface of Q¢(t)). The
width of Q.(t) is e. From top to bottom: Fig. 5a, 5b, 5c.

The remaining parts of the pores are filled by water vapor and air. Vapor and water are
summarized as wetness or humidity. Depending on the practical situation to be modeled,
there might be transport of humidity through Q(¢) from or to the outside of Q(¢) or the
wetness is assumed to be present (and its distribution to be known).

The air-filled pores serve as the main route through which COy moves in €(t), since COq-
diffusion in the water is considerably slower and thus negligible in this approach. Originally
solid Ca(OH); resides in Q4(t) (i.e. in the solid skeleton). Due to the water adsorbed at
the pore walls, some parts of Ca(OH )(s) dissolve into the water. Moreover, some part of
the C'O, moves from the air filled pore volume into the water, where it might react with
dissolved Ca(OH ). Once CaCOj3(aq) is formed, it precipitates very fast on the walls of
the pores.

1.3 Carbonation zone, carbonated zones, carbonation fronts,
carbonation speed and penetration depth

Examination of partially carbonated samples reveals a relatively narrow area over which
pH drops considerably. This is indicated by the grayish ring () in Fig. 1. Usually
this area is associated with the first occurrence (seen from the center of specimen) of the
carbonation reaction(-s) taking place in or in the immediate neighborhood of this ring. Box
B from Fig. 2a is magnified in Fig. 3.

Fig. 4 shows a typical C'Oy-concentration profile. There are several possible explanations
for the concentration drop (in Q.(¢) or, in 1D :in (R, Q)) (cf. Fig. 4). We assume the next
one: At any instant the bulk of the carbonation reaction takes place in Q.(t) leading to
an almost complete consumption of the available Ca(OH)s(aq). Therefore [CO;] remains
(almost) constant in the area between the point of entry in the concrete and T';.
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Figure 5: COs-concentration profile (cf.
Ref. [26]) which does not give rise to the
introduction of interfacial reaction zones.
(@ defines the position of the reaction
front.

Figure 4: COs-concentration profile (cf.
Ref. [27]) with reference to the coordinate
system in Fig. 4. P and ) are possible
candidates for the interface position.

What happens to CO; on its way from T'pyy to Q(2)? If there is Ca(OH)2(aq) in this area,
produced by dissolution, e.g., then part of the C'Oy will be consumed by this reaction and
the rest will move to Q(¢) to be available for the carbonation reaction. Otherwise all CO,
will move into € (¢). In this note we restrict ourselves to a conceptual and quantitative
discussion of the latter case, for a discussion of the first one we refer to Ref. [§], e.g.

The middle line of the dotted area €2.(¢) in Fig. 4 goes along with the middle line of Q(t).

We will use Fig. 4 to introduce the notion of the carbonation front I'(t). There are
conceptually (at least) two options for such an introduction - in Fig. 3a and 3b I['(¢) is
placed along the centerline of Q.(¢), in Fig. 3c I'(¢) closes (¢) at the right side. In this
note we follow the suggestion from Fig. 3b.

For C'O,-profile as in Fig. 4, the concentration of C'O, should vanish on the right surface
of Q(t) (Fig. 3a). The exact size of the width e should be obtained from measurements
(directly via C'Oq). As it will turn out in section 4, the whole model is stable with respect
to small changes of € (cf. 3.11, remark a)).

Dual descriptions of §2.(¢) in terms of high spatial Ca(OH), concentration gradients or in
the gradients of carbonation degree could be meaningful alternatives to the choice of [COs].

Let z be a point on I'(t), n the normal to I'(¢) at x pointing into Qy(¢) (cf. Fig. 3).
The normal velocity $(z,t) of I'(t) (at z) is called the carbonation velocity (at z), the
corresponding speed is the carbonation speed (at z).

The model based on the limit case of the initial-carbonation reaction concentrated on
['(¢) will be called problem (Pr). The model based on describing carbonation where the
initial-carbonation reaction is concentrated on Q.(¢) by (Prc). The full problem, (Ps) of
carbonation reactions on 2. (t) as well as a posteriori carbonation reactions in the (partially)
carbonated part will be dealt with later (cf. Ref. [8]).

With reference to Fig. 3b we call the region €2;(¢) between the exterior boundary I'¢;; and
[';(t) the carbonated region, the rest, Qy(t), is the uncarbonated region. €. (t) is the (main-)
carbonation reaction zone, short: The carbonation zone.

Remark 2 In the bulk of the engineering literature one uses pH as the defining measure
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for the carbonation zone. But: If there are/were further sources or sinks for H*, then
the definition in terms of C'O;y seems to be preferable. Moreover, once all concentrations
are known, pH can be computed. For carbonation a corresponding formula containing
measurable data, is, under fairly general conditions, derived in Ref. [47].

Remark 3 In this note we should clearly distinguish between the carbonation zone (%),
the (partially) carbonated zone 2;(¢) and the (not yet) carbonated zone 5(¢). In general
the bulk of reaction (1) takes place in 2.(¢). In this note all of (1) is assumed to happen in
Q(t). Sometimes parts (or all) of € (¢) are called ’fully carbonated zone’.

At any rate, in most situations is a small boundary layer of widths between a few mm and
some cm. The width of €2, is even much smaller.

The carbonation-penetration depth s is supposed to measure the distance between the
position of the carbonation front and the external surface of the carbonated sample. In
Fig. 2a,b. In Refs. [59, 60] s(¢) is defined by the isoline carbonation degree = 0.9. Other
definitions place s in the middle of the pH-drop zone or in the middle of the C'Os-drop
zone (if there is such a zone! cf. Fig. 4a) or at the isoline [CO,] = 6, § = very small or at
[COs] = 0 (cf. Ref. [28], Model 2).

1.4  Accelerated-carbonation experiments (ace’s)

In this note we will concentrate on a prediction model for the carbonation front in accel-
erated carbonation experiments (ace’s). Ace’s are used to predict the carbonation speed
experimentally. The corresponding lab experiments (cf. Ref. [18, 58], e.g.) are based
on real life situations where several of the parameters are considerably artificially changed
in such a way that the experimentally observed carbonation speed is far higher than the
corresponding one under natural conditions.

At the same time these experiments are used to check on the validity of some of the basic
ideas and assumptions put into the models. Without acceleration the experiments would
take years, with acceleration only a few weeks or months. We describe briefly the ace on
which our numerical setting is based on.

In Fig. 6 hardened cylindrical concrete samples (height = 20 cm, diameter = 10 c¢m) are
placed at time ¢ = 0 in a carbonation chamber with constant relative humidity (RH)
(here: RH = 0.65, in other experiments RH =~ 0.4 — 0.8) and constant C'O-concentration
(here: 3vol%, in other acceleration experiments: 1 — 2v0l%, under real-life condition the
COs-exposure is far lower, namely 0.03 vol%). The samples remain in the chamber for a
time 7' (here: T = 9 weeks) after which they are removed from the chamber. The choice
of RH = 0.65 is motivated by the experience that around this value of RH carbonation
advances at its highest speed. The whole cross section (cf. Fig. 2c) or parts of it (cf.
hatched parts in Fig. 2a, b) constitute €2(¢). Before being put in the chamber, the cylinders
have been pre-conditioned in such a way that the humidity in the sample corresponds almost
to the humidity of the chamber.
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Figure 6: Schematic set-up of the accelerated carbonation
experiment, cf. Ref. [58].

1.5 The aim and the character of the model

We formulate an (accelerated-) carbonation-experiment model allowing to calculate the
relevant concentrations, the carbonation degree as well as the carbonation speed simul-
taneously. The model consists of coupled differential equations (ode and pde’s) in ;(¢),
Q(t) and in Qy(t), respectively, supplemented by transmission conditions on I'(¢) and an
additional relation on I'(¢) implicitly determining the carbonation speed. We will discuss
two basic settings: Model (Pr.) and model (Pr) (cf. section 2).

The new modeling aspects will be the explicit introduction of a moving reaction front
and of an additional equation for the determination of this front and an appropriate choice
of the reaction rate. In section 4 we present simulations based on the settings (Pr) and
(Pr.). They are then compared with accelerated carbonation experiments Ref. [58].

We want to show that this sort of modeling is capable of predicting essential features of
Ca(OH)y-based carbonation processes. Furthermore, we show that one has some freedom
to formulate where ezactly the carbonation reaction takes place - on a narrow strip or on a
sharp interface.

1.6 The general formulation of the model

We deal with transport, reaction, dissolution, precipitation in the porous medium (%)
and in its parts (t),k = 1,¢,2, I'(¢). Denote by ¢ the corresponding volumetric porosity
(function) in Q(t) (¢ = @ in Qk(t), respectively), £p = gE(x,t) the mass concentration
of a substance E (E = COq,CaCO3, Ca(OH )2, moisture or others) being involved in the
process under consideration, &, := ¢EE (ie [ap £,(z,t)dz = mass of E in any control
volume AV), jg = jr(z,t) - the flux (-density vector, modeling diffusive, thermally induced,
con- or advective and charge-induced flows), fp = fg(z,t) - the corresponding source or
sink terms (modeling reaction, dissolution, precipitation, exchange between wet and dry



phases). The general equation describing all this is

0(Ep(z,1))

o + divgjp(x,t) = fe(z,t), € Q (orxz e Q(t)), t >0, i=1,2. (2)

An essential part of the modeling consists in specifying jr and fg for the corresponding
species, formulating transmission conditions on I'(¢), initial and boundary conditions for
E. Note that in the case of a carbonation reaction solely on I'(t), fcaco, might contain
expressions describing distributions concentrated on I'(t), rather than functions on §2(t),

e.g.

2 Notations and definitions

2.1 Time and space. Models (Pr) and (Pr.)

Q(t) denotes the whole modeling area of the concrete sample (short: the (concrete) sample)
at time ¢, Q;(¢) is the carbonated part, Qy(t) - the uncarbonated part, .(¢) and T'(¢),
respectively, are the reaction-region and the reaction-interface (i.e. the surface in the middle
of Q.(t) between Q;(t) and Q5(¢)). Initial time ¢ = 0 and final time ¢t = T are defined by
the experiment (cf. section 1.4). S := [0, 7] is the basic time interval, S’ := (¢, t + At] — an
arbitrary subinterval of S. t € S and x € () denote time and space variables, respectively.

I'c) 't

.

%
%

P x | Q x

Figure 7:  Geometry in model (Fr) and Figure 8: Another possible definition of

(Pre). the position of T'(%).

At initial time ¢ = 0 we assume that there is already some (possibly very small) carbonated
part ;9 with non-zero volume. ' denotes a generic control volume in Q(t), n = n(x) is
the unit normal on I'(¢) pointing into €5 (¢). Formally we have (Pr)=(Preo)-

The models (Pr) and (Pr.) are summarized in 1.4 and in 3.11, remark a), respectively.

2.2 Concentrations and flux densities

All concentrations are in g/cm?® and they depend on position z in the sample and on time
t > 0. Some of the concentrations are relevant on all of Q(¢), some only on €;(t) or on



Q9(t). In the latter case, the concentrations get an index 1 or 2, respectively. If they are
relevant on either € (t) or on Q5(¢), we do not use the extra index. If ¢g = ¢g(z,t) and
pe = pe(z,t) denote the mass concentration and the mass density of a substance E at z
and at time ¢, respectively, then ¢z := éEE and Mg stand for the corresponding volume
fraction and the molar mass of E, respectively.

w := [moisture] (in all of Q(t)), Wy := w(x,0) - initial moisture in Q(0), Wk, Weg - corre-
sponding restrictions of w to Qx(t), k= 1,2,

¢ := [COy(aq)] concentration of dissolved C'O, in pore water? , ¢, := initial concentration
of COy(aq) at t = 0, ¢, Cox, - cf. line before?,

d := [COs(g)] concentration of gaseous COs, dy := initial concentration of COs(g) at
t = 0,dg, do - cf. footnotes 2, 3,
h

:= [Ca(OH)s(aq)] concentration of aqueous calcium hydroxide, ho := initially available
Ca(OH)y(aq) in the wet part of Q5(0), hg, hor - cf. footnotes 2, 3,

<

w = concentration of dissolved CaCOj3 in Q, by := b(z,0), by, buwox - cf. footnotes 2, 3,

f=all

s := concentration of precipitated CaCOs in €, by := b(z,0), by, bsox - cf. footnotes 2, 3,
b= [CaCOs] := ¢yby, + ¢sbs := total concentration of calcium carbonate in € (t).

In order to emphasize in which part (€2;(¢) or Q2(¢)) a species (like water or Ca(OH )y(aq))
is considered, we add an index to the concentrations, w(-,t) stands for the water concen-
tration in Q(t) at time ¢, k = 1,2, e.g.,

Az(t) := Acoyout(t) := COs(g)-concentration at the boundary of the sample,

Mz(t) = Agout(t) := humidity-mass concentration at the boundary of the sample, corre-
sponding to the given exterior RH (cf. ace in Ref. [58]).

Awr(t), Az, (t) - corresponding (inner) boundary concentrations at the right side of the sim-
ulation area () of the asymmetrical setting (cf. 3.8).

2.3 Further material and process functions and constants

The numerical values of the following constants will be introduced in sections 4 and 6.
Dy, - effective diffusion coefficient for moisture in Q4 (¢), k£ =1, 2,

Dy, - effective diffusion coefficient for COs(aq) (cf. footnote 2),

Dy, - effective diffusion coefficient for COs(g) (cf. footnote 2),

Dy, - effective diffusion coefficient for Ca(OH)y(aq) (cf. footnote 2),

¢x - volumetric porosities in Q(t), k = 1,2, with ¢gs = 1 — ¢y,

Ow, Pa := water- and air filled, respectively, fraction of the pores in Q1 (%), ¢o + ¢ = 1,

Nrr, Nrre - 1'(t)- and 2. (t)-concentrated surface- and volume-reaction rates for the reaction

2 We introduce two different models: (Pr) and (Pr.), both requiring consideration of concentrations on
different domains. Thus, for the model (Pr) the concentrations ¢,d, b are defined in Q;(t) UT(t) and h in
Q5 (t)UT(¢). For the model (Pr.) the concentrations ¢,d, b are defined in Q; (t)UQ,(¢) and h in Qs (t)UQ. ().
The diffusion coefficients are defined on that parts of Q(t) where the corresponding species exist.

3 All species E = ¢,d, h, b have corresponding restrictions Ey, Eor, in Q4 (t), k=1,2.



(1) (ct. 3.1),

Py = mass transfer coefficient in Henry’s law, Qy :=exchange factor in Henry’s law (cf.
section 3.3 below),

P iss = factor in the dissolution law for Ca(OH)s, Q
tion of Ca(OH )z, k =1,2 (cf. 3.3),

MGa(OM)a(s) (x) := initial (i.e. before dissolution starts) concentration at x of Ca(OH)s(s)
which is awvailable for dissolution,

- rainss Pkeq *= €quilibrium concentra-

Shraiss ‘= switching factor (cf. 3.3),

K, k1 - rate constants arising in Arrhenius’ law.

3 The model

In this section we specify ¢, jg, fr in section 1.6 and formulate the corresponding boundary,
initial and, in particular, the interface conditions for E := COs(aq), COz(g), Ca(OH)s(aq)
etc.

3.1 Reaction rates

The reaction (1) takes place in Q(t) wherever there is sufficient Ca(OH )s(aq) and CO4(aq).
We distinguish between the volume based reaction in €;(¢) away from I'(¢) and the one
near or even only at I'(¢). In this note we assume the reaction at the carbonation front
as complete, i.e. once (1) has taken place on I'(¢) or in €.(t), we assume that there is
no more carbonation going on in €;(¢). In Ref. [8] we will address the full problem
by allowing subsequent dissolution of Ca(OH)s and reaction with COs in the already
(partially) carbonated zone.

In a situation with I'(¢)-based reactions it is not obvious what the ’correct’ formal expression
for the reaction rate, ngr, is, since - to our knowledge - volume rates cannot be just used
in very thin regions or even for surface based reactions without experimental evidence.
Therefore we modify existing volume reaction rates by introducing two parameters p and
q.

There are (at least) two competing candidates for reactions rates. We mention the approach
by Houst, Roelfstra, Wittmann, Saetta et al (cf. Refs. [26, 54] and also cf. Ref. [59], e.g.),
which reads in our notation as

rate for reaction (1) = 7, 1= adexp(—£%) f1 o fs,

where « is a constant, 7" is the absolute temperature, Ey is an activation energy, A is a
mean-collision number. f; is a scenario-switching factor describing the influence of relative
humidity ¢, := RH on the reaction:

) Zf 0 S Cy S Cywmin

0
fl(cw) = g(cw - cwmin)a Z.f Cywmin < Cy S 0.9 )
1, of 09<¢, <1
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P
where Cymin ~ 0.5, fo (=1 — (J’ ) , p = const. > 0, bpax := maximum amount of

bmax
CaCOs, fs = =°

Cmax

The other candidate for the reaction rate, n,, is the standard one for simple reactions, i.e.

Nsr = K)RFE]'L.

In some way, 7, is a variation of the latter rate for a simple reaction 7y, (cf. Steffens et al
Ref. [59], p. 938).

In the present note we are mainly interested in showing that our approach works in principle
(cf. 1.5) - therefore we prefer the seemingly simpler structure of 7, and use a generalization,

NRr, of Nsr -
Ner = Krr@h', p,q € [0,2], kgr := rate constant. (3)

In this case, ¢ and h stand for surface concentrations. If one considers the reaction to take
place on €2, (¢) rather than merely on I'(¢), the reaction rate, ngr., will be chosen as

77RI‘6(': t) = XQs(t)K'RDSEp('v t)Eq('a t): p,q € [07 2]7 KRgre ‘= rate constant, (4)

with xq. () denoting the characteristic function of the set €2, (¢). We will employ the latter
ansatz. p and g will be determined by a shooting argument.

Remark 4 In order to clarify the meaning of ngr, we recall the general concept of a surface
reaction rate for reactions on a moving surface. To this end consider the amount of C'aC'O3
produced on a moving surface, say on I' = I'(7), over an arbitrary time interval S’ :=
(t,t+At] and let Q' C Q be an arbitrary REV. Then pugr(S'x ') := fs' fQ’ﬂF(s) csirnrrdods
is the amount of CaCOj3 produced during S” on that part of I'(s) which is at time s in €'.
csir denotes the appropriate stoichiometric coefficient of the reaction. In (1) it is cgr = 1.
If (1) is considered as a volume reaction then

PRy (S x Q) ::/ / CstoTRvdTds
st Jor

is the amount of CaCQO;3 produced in Q' during S’ due to reaction, where ng, is the corre-
sponding volume based reaction rate. In (1) it is ¢g, = 1.

Now consider the special situation in which the reaction is concentrated on a zone of width
g £

e around T'(¢), Q. := (—5,5) x T'(t), set u%, = tre and Nree(x) = nry(z) if z € Q,
and ngye (z) := 0 otherwise. (Note: In the case of carbonation, €2, is the carbonation zone

€2c). Then the surface production measure pgr on I'(¢) is defined by lim,_,o %, (S X §2.) =
/LRF(S' X QI)

It is tacitly assumed in physical chemistry that the limit exists. This implies for the
corresponding reaction rates

gcstvnizv — CsTTRT @S € — 0. (5)

where convergence is to be understood in an appropriate sense. Hence, the production rate
nrr on I'(t) is mathematically defined by the volume rates 75! Therefore, at a formal level,
there is no freedom of choice of the structure of ngr.
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If one wishes to compare modeling concepts based on I'(t)-concentrated with those based
on Q. (t)-concentrated reactions, and, if both reactions are assumed to deliver the same
amounts, (5) indicates that a proper scaling of the two reaction rates is given by

1
£ ~ 3 g ~
€llgy R TIRT  OT Vice versa g, ~ —ngr- (6)

3.2 Transport

In this note we will neglect all convective ("back pack’, 'Huckepack‘) material transport, in
the underlying ace the specimens had been in moisture at the start of the test. Also, in the
case of carbonation, the corresponding transport is small. Moreover, we restrict ourselves
to diffusive transport and assume it to be governed by the common linear variant of Fick’s
first law, i.e., with reference to (2)

jr = —Dp¢Ven, (7)

where Dg := ﬁEQS is the corresponding effective diffusivity. For more comprehensive trans-
port models we refer to Refs. [23, 30], e.g. In general, Dr depends on porosity, RH,
carbonation degree and others (cf. Refs. [34, 59, 52, 47], e.g.). In particular, this applies
to D¢o, which is zero for very high RH and becomes larger for higher fractions of pore
air. For the sake of expositional simplicity we choose Dpg for all species E as constant in
each €;(t),7 = 1,2. That means that for E := CO,(g) we vary Dco,(q) around values corre-
sponding to the (high!) humidity outside the sample. The assumption of Do, () = const.
in Q4 (t) leads to a very week coupling of humidity and penetration depth which does not
correspond to reality. Finally we note that there is only a very remote and academic chance,
that (by the production of H,O via (1)) the humidity in €(¢) is considerably higher than
at the outside. Common understanding is that, in 1.4, this HyO is negligible with respect
to counting towards additional humidity in Q(¢).

3.3 Dissolution, change of CO, from the air phase into the water
phase, precipitation

The exchange of CO, between the air and the wet phase is modeled by a Henry-law
exchange term, i.e. by the sink term fg,.,,, = —Pu(Q gd — ). This yields a source term
for CO; in the wet phase, femenry = —famensy (cf. Ref. [55] for some related arguments
via homogenization). The carbonation reaction is modeled by using the reaction rate
Nrre(-,t) acting on Q. (¢) (cf. 3.1), which yields a sink term fgzeqe := —nrre on Q(t) for
COs, and source terms f; ... = +ngrre for CaCO3 as well as fgreac := 7Nrre for water
- concentrated on the carbonation-reaction zone €. (¢) in the wet phase of Q4 (¢). For the
scenario with I'(¢)-concentrated reactions we have accordingly fs..0c = fereac = —0gr,

Joureac = +nrr on T'(2).

Taking (3), (4) and (6) into account, we choose Ngr := Krreh', Ngre == € 'Ngr. The
availability of Ca(OH)s(aq) in Qy(t) is governed by three factors: Initial availability of
Ca(OH), - determined by the initial concentration ho(z, 0) in £5(0), consumption at I'(t)
and €.(¢) and dissolution of Ca(OH), in Q(t). The latter one is measured by the dis-
solution rate fz, 4., which tries to minimize the deviation of the concentration hj, from
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equilibrium-Ca (O H )y(aq)-concentration ey, i-€. frpgice = Prrgiss(Pe — Preq); & = 1,2 (lin-
ear non-instantaneous dissolution, equilibrium-deviation model).

A frequently used reasonable alternative and approximation for the dissolution rates is the
assumption of constant (instantaneous) dissolution, i.e. fj, s = Qﬁkd_ =const., k=1,2.
For other approaches modeling dissolution in our context we refer to Refs. [45, 36 37, 48]
e.g. Note that all dissolution rates underly a natural side condition: Once all Ca(OH )s(s)
that can be dissolved is exhausted, f4.,,, becomes zero. This can be formulated by intro-
ducing a switching factor

Stediss (L) = Shraiss ((Ca(OH)y(s)-available-for-dissolution at point z] :=

Y

_ | 0if [Ca(OH)y(s)-available-for-dissolution at point z] = 0
~ | 1 otherwise

and frraiss = ShrdissDikdiss(Pk—Preq) (non-instantaneous dissolution) and fr 45 = Shrdiss@rygre.
(instantaneous-dissolution model), respectively.

The switching criterion can be reformulated in the following way: Let MEa(Om)s(s) =
MGa(0m)y(s)(®) denote the initial (i.e. before dissolution starts) concentration at z of
Ca(OH),(s)-available-for-dissolution.

fot Jrkaiss (%, T)dT is the concentration of all Ca(OH),(ag) generated at the point z during
time (0, t] by dissolution. Then: [Ca(OH),(s)-available-for- dissolution at point z| = 0, if

fo fhkdzss(x T)dT 2 mCa(OH)z(s)( )

Precipitation will be modeled as instantaneous in the following sense: Once CaCO3(aq)
is formed, it precipitates right away, i.e. f; ... = —fp,reacr and therefore f; = f; ..

3.4 Balance equations

3.4.1 Transport of CO; in the air phase of ;(t) U Q(?)

% +div(fg) = famenry, 0 (1) UQ(). (®)

3.4.2 Transport and reaction of CO; in the wet phase of ;(t) U Q(¢)

oc
- + d’lU( ) fEHenry + fEreac in Ql (t) U Qe(t) (9)
0t ~——

cf. 3.5!

3.4.3 Transport, reaction and dissolution of Ca(OH), in the wet phase of
a(t) U Qc(t)

Ohy, :
E + dzv(]hk) = fﬁkdiss + fﬁk'reac in 2 (t) U Qﬁ(t) (10)
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3.4.4 Transport and reaction and precipitation of CaC0Oj3 in the wet phase of
(2) UQ(t)

a(blwgw
ot

+ dl.’l)(jgw) = fgwprec + fgwreac in Ql (t) U QG(t)' (11)
N——

According to 3.3 we obtain for the precipitated CaCOs

6(251555
ot

+div(s,) = frpree 10 Q(8) UQ(H). (12)
——

=0

The total CaCOs-content follows from

2 = a0 U(E), (13)

Notice that, when discussing the model (Pr), €. should be dropped from the equations

(9)-(12).

3.4.5 Transport and generation of HyO in Q(t), k=1,2

Since water is supposed to be in the whole sample, there is only one equation for the
corresponding concentrations:

%—? + div(Jw) = fareac in Q(2). (14)

According to the sharp-interface scenario, fgreqc is a distribution concentrated on I'(¢)! Note
that the material parameters might be different in Q4 (¢) and Q5(¢), in particular: ¢ = ¢(z, t)
is ¢, if © € Qi (t) and it enters (14) twice - via the flux term and via the definition of w (cf.
section 1.6).

3.5 Remarks

(i) There are two different ways to model diffusive transport of CO; in the water phase.

(ia) Diffusion in water is very slow compared to diffusion in the air phase. Therefore some
authors neglect the diffusion term div(jz) in 3.4.2. This reduces the pde in 3.4.2 to an
ode (in t), in which x becomes a parameter and for which no boundary conditions with
respect to x are needed. In this case the boundary conditions for ¢ in 3.7 cannot be posed.
The space variable z is a parameter and only for z € T'(¢) and z € Q.(t), respectively, the
reaction term becomes relevant.
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(ib) Keeping diffusion of CO, in the wet phase in the model implies the necessity of bound-
ary conditions for C'Oy in the wet phase.

(ii) Compared to precipitation and reaction, the diffusive transport of Ca(OH)s(aq) is also
slow, hence one could possibly neglect the term div(j;) in Qq(2) (cf. [12, 54, 59], e.g.)

(iii) We call carbonation complete if all COy in (t) is consumed right away in €2 (¢) or at
['(t), respectively, and if all available Ca(OH), is consumed by (1) in Q.(¢) and on I'(¢),
respectively. In particular this means that there is no Ca(OH ), available in € (¢) \ Q. (t)
or Q(t) \ I['(t), respectively. Therefore, for the case of I'(t)-concentrated reactions we can
drop the equation for A; in 3.4.3. The quantitative consequences of this assumption for the
speed of the carbonation front will be discussed in Ref. [8].

3.6 Boundary conditions at the outside of the sample

The setting in 1.4 gives rise to Dirichlet boundary data for H,O, COy(g) and COs(aq) at
the surface of Q(t). w(0,t) is determined by the outside humidity. Furthermore, we assume
COs(g) and COs(aq) in Henry-law equilibrium, i.e. with respect to section 3.2, the given
outside C'Oy-concentration Aco,out Splits into two parts satisfying

¢(0,t) = Qyd(0,1),d(0,t) +¢(0,%) = Acoour(t)- (15)
Therefore
20,4) = A(t) = — L1 2o on®), A0,1) = ——— Acorou(d). (16)
14+ Qpn 1+ Qn
See also Refs. [2, 6], e.g.
The boundary conditions for w are given by
w(0,t) = Agout(t)- (17)

Because of 3.5(iii) there is no need for boundary conditions at the outside of Q(t) for

Ca(OH)y(aq).
3.7 Boundary conditions associated with the carbonation zone
(2.(t) and at the carbonation front I'(¢)

We discuss the two settings, (Pr) and (Pr.), separately.

3.7.1 (Pr): Boundary conditions on I'(t)

Since there is supposedly no COy in €s(t), there can’t be any flow of CO, from €;(¢) into
QQ (t), i.e.

Ja(-t) -n =0 at I'(2), (18)
where n denotes the normal field at I'(¢) pointing into Qs(%).
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Dissolved calcium hydroxide enters I'(¢) from 9(¢) and is there consumed by carbonation,
i.e., with an argument as for the derivation of the classical Stefan-melting-problem (cf. Ref.
[51], e.g.), the Rankine-Hugoniot conditions for moving interfaces (cf. Refs. [21, 62]) read
as

a5 1) - (=n) = nrr — 8(-, 1)h(:1). (19)
COs(aq) from € (t) enters I'(¢) and is consumed by carbonation, i.e.
Je(-,t) - n = nrr + 5(-, 1), 1), (20)
For CO4(g) we assume

ga(t) -n = 5(-t)d(-, ). (21)

Note: Clearly, this boundary condition is an idealization, as long as there is some C'Os(g)
at I'(¢). In some way, equally suited are Dirichlet-boundary conditions for CO,(g), i.e.

d(z,t) = 0 for x € ['(t).

Finally, we assume a no-jump condition for w, i.e. w(-,t) is continuous across I'(t).

3.7.2 (Pr.): Boundary conditions associated with the carbonation zone ()
The situation is depicted in Fig. 8. Ca(OH)s(aq) enters €2 (t) by diffusion from (%) and

reacts in €2, (¢). Since in this setting we disregard any other carbonation (such as in the rest
of ©4(t)), we have to require

Jio1) - (=n') = 0 at (). (22)

Here n' denotes the normal field on I';j(¢) pointing towards $s(%).

Similarly COs(aq) (as well as CO5(g)) enters Q. (t) from the rest of ;(¢) and reacts. Since
there is no reaction in €2,(t), we have to require

Je( 1) -n=jz(-,t) -n =0 at T',.(¢). (23)

3.8 Further boundary condition

We distinguish between three settings corresponding to Fig. 2a-c .

3.8.1 Boundary conditions with reference to Fig. 2a

Taking into account the symmetry with respect to x = L, one has

—Ja(z,t) - n(z) =0 _
(@) - n(z) =0 } at x = L. (24)
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An alternative used by some authors is
E(xa t) = A (t) _
B(2,1) = Ao (1) at x = L. (25)

Here );,(t) is a dissolution source centered at x = L.

3.8.2 Boundary conditions with reference to Fig. 2b

No further boundary conditions are needed.

3.8.3 Boundary conditions with reference to Fig. 2c

The only (obvious) requirement is that all concentrations and their space derivatives are
finite at r = 0.

3.9 An equation for the speed of the interface

3.9.1 Case 1: Model (Pr) — I'(t)-concentrated carbonation reaction. I'(¢) with
small curvature

Consider the advancement of I'(¢) over a time interval S" := (¢,¢ + At] (cf. Fig. 9).

AV

0 S0y
Figure 9: AV in 1D setting.

The amount of Ca(OH), consumed during S’ in AV is Ash(z,t)|T(t')| for some ¢ €
(t,t + At] (before carbonation). After ¢ + At this amount is removed by (1). The removed
amount follows from the reaction rate as

/ / nrr(z, 7)dodr = |L(t")| Atngr(x, t") (26)
S JT(7)
for some t" € (t,t 4+ At]. Therefore 3% = Hl;(é,'))" E(;t,)nRF(x,t"). Letting At — 0 on both
sides, one arrives at
§(x,t) = = ner(z,t),z € ['(t),t > 0. (27)
h(z,1t)
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The usual modifications of the argument for D > 1 yield (27), too (cf. Ref. [51], e.g.).
Note: (27) yields for D :=1 the

t
1
penetration depth : s(t) = s +/ = ner(x, T)dT. (28)
0 h(ﬂ?,’]’)

Unfortunately, this is not an explicit formula for s(¢), since the concentrations and s(t)

are coupled via (3) and (4) and the equations in 3.4 which are formulated on 4 (¢) which
depends on s(t)!

3.9.2 Case 2: ((t) is a cylinder, I'(¢) is a cylinder mantle. Completely sym-
metric setting as in Fig. 2c

We consider the advancement of I'(¢) as in Fig. 9.

Figure 10: Advancement of I'(¢) in 2D
setting with radial symmetry.

The whole argument is identical with the one for the previous case. Repeating the same
argument leading to (26) in polar coordinates and observing the angular symmetry of the
setting one obtains (25).

3.9.3 Case 3: Model (Pr.) — Q.(t)-concentrated carbonation reaction

In analogy to 3.9.1 and using (6) we postulate

5(t) = [g / y E(x,t)dx] h /Q y nire (2, t)dz. (29)
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3.10 Initial conditions

Initial conditions for Ca(OH ), are based on the ace-setting (Ref. [58]), a (here not used)
theoretical background for the initial values of Ca(OH), (as well as of the major C'SH-
phases) could be provided by Ref. [46], e.g.). The initially carbonated part 2y, as well as
the other initial conditions are supposed to be known (for calculations see section 4), i.e.

bi(z,0) = boj(z),j = a,w
c(r,0) = 2o(x) (30)
d(z,0) = do(z)
h(z,0) = ho(x)
Ql(O) = Ql(), QQ(O) = QQO = AN QIO- (31)

3.11 Remarks

a) The model (Pr) (i.e. equations in 3.4 together with 3.5, initial conditions in 3.10,
boundary conditions in 3.6, 3.7.1 and 3.1-3.3, and also, the equation (27) for the interface
speed) is well posed (cf. Refs. [9, 7], i.e. for given data (initial and boundary values,
constants in the dissolution and precipitation laws, reactions constants, reaction exponents
p and ¢, Q; etc. there is exactly one solution vector X := (s,, b, ¢, d, h). The same applies
for the model (Pr.) (i.e. 3.1-3.3, 3.4 and 3.5, 3.6, 3.7.2 (!), 3.10 and 3.9). Denote by
X, := (s.,W,, b, ¢, d., h.) the corresponding solution vector with respect to the same data.
Recall that by 3.1 and (28) the reaction rate depends on some concentrations, ngr.(z,t) =

Nere(C:(z,t), he(z,t)), where

MRre(7, 8) == Kprer’s? (32)

and
nrr (2, t) = Trr (€(2, 1), h(z, 1)) (33)
with Ngr(r,s) := kgr rPs? and assume engr. = Far, then (i) X. “=° X, and even (ii)
X, 2 X (theoretically and numerically). (i) implies that small changes of the data- and

model input do not change the solution output. In particular, a change of the exact width
e of .(t) will not change the general outcome X, very much. (ii) suggests that (Pr.) can
be considered as an approximation of (Pr) or, vice versa, (Pr) can be considered as an
approximation for (Pr¢) for small .

b) From a numerical point of view, (Pr¢) is generally easier to handle than (Pr), since the
evaluation of the I'(t)-concentrated reaction terms relies on only a single point (if D = 1,
then this point is s(¢)) or on a curve or surface (if the relevant space dimension D satisfies
D > 1, then this is I'(t)), whereas the Q. (¢)-based reaction-term expressions rely on an
interval (if D = 1), or on a proper area or volume (if D > 1).

c¢) The Stefan-heat-conduction problem is phenomenologically similar to our situation: Two
'phases’ (melt and solid) are separated by a mush region, Q,,(¢), defined by
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enthalpy of ice < enthalpy of mixture < enthalpy of water.

The temperature is zero in all of €,,(¢)! Only under special circumstances 2,,,(¢) is a nar-
row strip (cf. Ref. [40]). We have not been able to see whether there are more than
phenomenological analogies between the Stefan-problem and the carbonation-front-setting.

3.12 Related approaches

Comprehensive approaches for modeling concrete carbonation, i.e. continuum models incor-
porating transport, reaction, dissolution and precipitation, seem to become quite common
(cf. Refs. [26, 28, 45, 46, 47, 53, 54, 60, 59], e.g.). Some of these authors consider 2D-
settings (Refs. [54, 60], e.g.). Related moving boundary considerations can be found in Ref.
[26] (expository introduction of several moving boundary scenarios). In a different context,
chemical reaction fronts have been treated in Ref. [44], e.g.

We note that in related fields (such as leaching and dissolution in concrete) moving-
boundary formulations have proved to be a successful modeling tool for a long time (cf.
Refs. [48, 36, 50], e.g.).

4 Numerical simulation of accelerated carbonation
tests

4.1 Simulation strategy

In our simulation we will study the following questions:

1. Do the models (Pr) and (Pr.) reproduce a behavior of carbonating concrete which
one would expect? Examples: v/t-law for penetration curves (for large t), relatively
rapid change of concentrations in €.

2. How ’stable’ are the models (Pr) and (Pr¢), respectively? More precisely: How does
a change of some of the model parameters affects the model output? Example for
such parameters: Diffusion coefficient for CO(g), size of the reaction constants.

3. Can model (Pr) be replaced by (Pr¢) if € is small? Formally: Is (Pr) the limit of (Pr)
as € — 0 for otherwise fixed data?

4. How stable are the models with respect to the choice of the structure of the reaction
rates? More precisely: How does a change of &k, p and ¢ (cf. (3), (4)) affects the model
output?

5. Are the models capable of reproducing experimental data?

Note: Question 5 is more of a academic interest, since the models (Pr) and (Pr¢) neglect
other carbonatable phases as well as carbonation in €);.

20



4.2 Numerical approach to Model (Fr)

In this section we discuss some results obtained via numerical simulation of the equations
described by the model (Pr) (see Remarks 3.11 a)). The major difficulty in solving the
problem numerically is the moving boundary. One of the possible solutions is to transform
the problem into an appropriate fixed domain formulation (for instance, cf. Ref. [14]).
However, such formulations are not achieved without a trade-off which complicates the
underlying pde structure by introducing additional non-linearities to compensate the fixing
of the moving boundary. In this paper we use the Landau-type transformations (cf., e.g.,
Refs. [35, 6, 14])
x
€0,s(t)] > y=—= €[0,1]

s(t)
memn¢y+y:z:ig

to normalize the length of the carbonated layer and of the uncarbonated layer. See the
reference picture Fig. 2a. Writing

and

€ [0,1]

wily,t) = @i(z,1) — gy, 1= 1,2 (34)
c(y,t) = ez, 1) = Az, (35)
d(y,t) = d(z,t) — Ag, (36)
h(y,t) = h(z,t) — A\, (37)
b(y,t) = bz, t) — N, (38)

we obtain a system of equations on the fixed domain 0 < y < 1. The domain becomes sim-
pler, whereas the system becomes more complex than the original problem. The functions
wi, Ws, ¢, h, b, d and s are nonlinearly related. The model equations given in section 3.4
transform into
D, 5(t
wl,t = Tt);wl,yy + Qywl,y + 77F(1= t)a (39)

s(t)

S(t
—(1 - 40
Wa,yy + I — S(t) ( y)w27y’ ( )

D., (1
Ct = s(t)2c,yy + z(t; yey + P (Qud — ¢) + P (QuAi — Ae) (41)
o Dd1 S(t)

d, = ydy — Py (Qud — ¢) — Py (QuAq — o), (42)

02 50
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Dy, $(¢)
hy=——"——h,y+—"—(1—1y)h, + Shodiss Phadiss, 43
)t (L . S(t))Q Yy L _ S(t)( y) ) h2d h2d ( )
s(t
bt: ( )yb,y+nr(1,t)a (44)

Tos(t)

where - = nr(y,t)* denotes the reaction rate in the new variables (y,t). In order to
simplify the notations, we dropped the index R when denoting the reaction rate. Thus,
Ngre, Nrr become nre, nr. The boundary and interface conditions described in sections 3.6,
3.7.1, 3.8.1 and 3.9.1 become

wi(0,) = 0, —wi,y(1,) =0, (45)
wa(1,8) =0, 72%5ws,(0,1) =0, (46)
c(0,8) = 0, —5ghey(1,6) =mr(1,2), (47)
d(0,t) =0, —5%d,(1,1) =0, (48)
h(1,t) =0, 7-25hy(0,1) = nr(0,1), (49)

and

1

where t > 0, 0 < y < 1 and h(1,?) is the concentration of Ca(OH)y(aq) at I'(¢). In the
accelerated test, the carbonation process was assumed to start when a very thin layer of
carbonated concrete was initially present on the surface of concrete. This layer, denoted
by Q10°, was carbonated during the 5 months after the curing, when the concrete was
exposed to the climatization room (at controlled humidity and temperature) with 0.03vol.%
COs(g). Therefore, the concentrations of chemical species within this layer were initially
taken to be w;(z,0) = Wy () = Ag,,i = 1,2, &(z,0) = &(x) = Ag, d(z,0) = do(z) = g,
h(z,0) = ho(z) = N;,, b(z,0) = bo(z) = N5. Cf. (34)-(38), we then obtain

w;(y,0) =0,i=1,2 (51)
c(y,0) =0, (52)
d(y,0) =0, (53)

4Cf. (32) and (33), fgr. denotes the reaction rate concentrated in € (t) depending on some concentra-
tions, and, ngrr. denotes the same reaction rate pointing out the dependence on (z,t) variables. Similar
considerations are made for the I'(t)-concentrated reaction. To denote the reaction rate in the transformed
domain 0 < y < 1, t > 0, we used the same notation as in the case of the physical domain 0 < x < L, t > 0.
5We assume that the layer ;¢ has the width dig > 0. See also the comments in section 4.4.2.
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h(y,0) = 0, (54)

b(y,0) = 0. (55)
Take
s(0) = so, (56)

where sy > 0 represents the width of the initial layer.

To solve numerically the system (39)-(56), we used its weak formulation. Hence, we ob-
tained:

D Do Du
(0100) = S 010,8) — S0, 0.060) — D () + LDV, 6T
_ S(t) o D,, w _ D,, w /
(wZ,t7 Y) = L—s(t) (1-y) 2,y; ¥) + (L - S(t))2 2,y(17t)w(1) (L — S(t))Q( 2.y, ¥ ),
(58)
(c08) = 1) e ) = s (0.0000) = 57t (et
~ DU + (P(Qud = ).0) + (P(Quda = X0, ). (59)
_ 3@ _ Da _Da
(d,t7 ¢) - S(t) (yd,Zﬂ 1/}) 82 (t) d,y(O, t),(/J(O) Sg(t) (da:lﬂ ¢ )
—(Pu(Qud — ¢),¥) — (Pu(QuAz — Ao), ¥), (60)
_ s _ _ Dw _ Dn, N
(h,ta ’(/)) - L _ S(t) ((1 y)h,y’ ¢) + (L _ s(t))2h,y(1’t)w(1) (L _ s(t))Q (h;y’w)
I @) nr(0,1)1(0) 4 (Shadiss Pradissh, 1) (61)
(b ) = 2 (b ) + (1, 00(0), (62

for 1 € H'([0, 1])(the usual Sobolev space), where (-, -) denotes the L?-inner product in the
space variable.
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In order to carry out the simulation, we used a linear-spline based Galerkin scheme (cf.
Refs. [49], p. 63-72, [3], p. 283-286 and [6], e.g.) to discretize the system (57)-(61). For

n=12...,let {wn o denote the standard piecewise linear splines on the interval [0, 1]
defined Wlth respect to the uniform mesh [0 ..,1]. That is, for j =0,1,2,...,n
ny _ J 1=y —3l, ifye 55 52]n[0,1]
v ) = { 0, elsewhere on [0, 1].
We let
wi (y, t) ZWU Wiy), t>0,0<y<1, (63)
wh (y, 1) ZWQJ Yl (y), t>0,0<y <1, (64)
=> Cr)Yp(y), t>0,0<y <1, (65)
=Y DiOY(y), t>0, 0<y <1, (66)
W'(y,t) =Y HP (O (y), t>0, 0<y <1, (67)
7j=1
b"(y,t) = Y Bi () (y), t>0,0<y <1, (68)
j=1
with
W) = Wi (t), Wia(t), .., W ()] € R",
W3 () = W31 (8), Wh(2), ... Wi, (1) € R,
Cn(t) = [CF(1), G (t), -, Cr(®)]" € R™,
D™(t) = [D}(t), D5 (#),. .., Da(1)]" € R",
H"(t) = [H} (), Hy (1),..., Hy(1)]" € R,
B"(t) = [BI (1), B3 (t),. ., Bi(t)]" € R,

the superscript 7' denoting transpose.

The Galerkin equations are then given by

MYWR(t) = — 2B KmWE() + S8 0wy )+

+ [k (CR(t) + Ao)” (H(2) + Az) ] e, 1 > 0,
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i) = ——2m_genwp( - 2Oy
M0 =~ (RO - [ g @)
MMCn () = — KON + SE LEO" (1)
_sn—l(t) [k (Cg(t) + )\C)p (H{Z(t) + )\h)Q] e (71)

n a n D 1 n n Sn n n
M"D™M(t) = -5 KD (t) + SR LD 1)+ )
—Py (QuM™D™(t) — M"C™(t)) — Py (Qu\2 — A2) ,t > 0,
MU = — s K HP 2) — 720 L ()
— 2 [k (C™(t) + Xe)” (HP(t) + Ap)Y € + Shadiss Prodiss M"H™(t),t > 0,
L—s™(t)
(73)
. ™ (¢
M B (t) = 28 LPB(t) + [k (CT() + A (HP(1) + M)t > 0. (74)
The initial conditions are
Wi (0) =0, (75)
W3 (0) =0, (76)
C"(0) =0, (77)
D"(0) =0, (78)
H"(0) =0, (79)
B™(0) = 0. (80)

To describe the discrete interface condition we took into account the following reaction rate
proportional to the product of concentration across I'(t):

1

YOSy

(), >0, (81)
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where nr(t) = k(CR(t)+ )P (HT (t)+A;)? and p, g € [0, 2] are the reaction orders of COy(aq)
and Ca(OH)2(aq), respectively. The values C7'(t) and HJ'(t) are the corresponding amounts
of COy(aq) and Ca(OH )y(aq) participating to the reaction on the surface I'(¢). For more
details on surface chemical kinetics, see Ref. [2], Chapter 26, e.g.

Notice that in the simulation results we assumed the equilibrium concentrations \;, ¢+ =
W1, Wa, &, d, h, b, which appear in the model as Dirichlet boundary conditions, to be con-
stant. In the present approach these concentrations (valid in Q(¢)) do not differ from the
corresponding initial concentrations (valid in ©(0)). See also section 3.10.

The matrices M", K" € Rmtx(+) pn [n e R™™ and e',e”, A7, A2 € R", n € N,n > 1
are given by

(2 & 0 0 0 0 0 0 ]
§ 3 5 0 0 0 0 0
1 2 1
0 ¢ 2 + 0 0 0 0
1
Mr==]0 0 3+ 2 < 0 0 0
n 6 3 6
0 0 0 0 0 s 2 4
0 0 0 0 0 0 : 5 |
[ 1 -1 0 0 0 0 0 0]
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
K'=n| 0 0 -1 2 -1 ... 0 0 0
0 0 0 0 0 -1 2 -1
| 0 0 0 0 0 0 -1 1 |
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B 1 3i+1 T
—1 o0 0 0 0 0
-(FF) -5 o 0 0 0
L=
e T T
|0 0 0 0 0 (%) %
—6n—2 6(i—n)—1 T
i : 0 0o ... 0 0 0
6(i—n)+1 1 6(i—n)—1
— 3 T3 3 0 0 0 0
1
Lt ==
n
|0 0 0 0 0o Sl L
e"=1[0,0,...,0, 1", e'=[10,...,0, 0",
oy [l 111" U 11"
c C n’n’”"n’Qn I d — d nana"'anazn )
where

1 1
M),y = / SR )y, (K™ = / S )y, 6,5 = 1,2, .. on+ 1,

1 1
(L7 =/ yoi (W)v; (y)dy, (L] =/ (v = DYt w)Yy (vdy, i,5 =1,2,...,n.
0 0

The stiffness matrix M™ is sparse, symmetric, positive definite and diagonally dominant.
Therefore inversion is well conditioned and straightforward. To obtain the results presented
below, the initial value problem (56), (69)-(81) was integrated on a SUN ULTRA SPARC-
IT 5-10 using the MATLAB built-in code ode15s (see details in Ref. [57]) to invert a
(6n + 1) x (6n + 1) stiff system.

4.3 Simulation results for (Pr)

The numerical results were obtained using the material parameters summarized in Table
3. These parameters and their variations were used to simulate their effects on the car-
bonation depth. In order to test the model using known values from literature, all of the
parameters listed in Table 3 were assumed as constant throughout the concrete sample.
Other assumptions on the choice of rate law might also be taken into consideration (see,
for instance, Refs. [13, 45, 46, 47, 54, 59, 38]).
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4.3.1 Standing assumptions

e No other reacting or competing species besides CO4(g) and Ca(OH )z(aq) contribute to
the carbonation reaction. More precisely, the calcium ion liberated from the dissolution of
calcium silicate hydrate (3CaO - 25i0; - 3H50, or shortly, CSH) is not considered, since
its solubility in alkaline environment is quite low compared with that of calcium hydrox-
ide. This restriction implies that a few of molecules of Ca(OH)y(s), which are enclosed
by non-carbonated C'SH parts, do not react with COy(aq). Hence, we expect that, in
reality, further carbonation with lower velocity might take place. In the present numerical
approach we consider only the case of complete carbonation of Ca(OH ). This means that
right behind or at the interface I'(¢) the maximum of production of CaCOj is reached (or
equivalently, the degree of carbonation attains its maximum). Since in the composition of
CEM I the carbonatable reactants K20 and NasO are present in only very small amounts
(see Table 6), we neglect their contribution to COy consumption.

e The law describing the surface reaction rate is given cf. Ref. [2], p. 787. We assume that
reaction (1) is of the order p + ¢ with p, ¢ € [0, 2].

e Hydration of concrete has been completed during the 5 months after curing. We assume
that during the accelerated test no significant production by hydration appears. Therefore,
the influences of the degree of hydration and porosity change due to subsequent hydration
on the carbonation rate can be neglected.

e The concrete is unsaturated and sufficiently wet to permit carbonation. The inner parts
of the pores are considered as filled with liquid water (namely, water in aqueous phase)
and moisture (i.e. a mixture of dry air and water vapor under isobar conditions). Water
molecules are considered attached to a water layer against the pore walls in the places where
dissolution, precipitation and carbonation reactions happen.

e The calcium hydroxide content is considered available in solution and free to react with
COs(aq). The very low solubility of the main reaction product (calcite) implies a fast pre-
cipitation of CaCOjs(aq) on the pore walls.

e The temperature of the reaction mixture is constant throughout the course of the accel-
erated test.

e The range of relative humidity in which the model given in Section 3 is applicable is
[0.4,0.7]. In the numerical example the concrete sample is considered in equilibrium with
0.65 relative humidity. Since we are not aware of the exact water content vs. relative
humidity relationship for the concrete sample placed in the carbonation chamber, we took
into account two possible (initial) values for the water content (e.g., cf. Table 6 and Fig.
18, respectively) corresponding to 0.65 RH.
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4.3.2 Simulation results

Parameters tested Values Carb. depth after 9 weeks
Reaction orders, (p, q) (1,1) Dimensionless 8.5 mm
(1.2,0.8) 33
(k, Dg,, ) = (5,7,2 x 10°) (1.1,0.9) 16
Carbonation rate constant, & 5 (g cm™3)'"77% day~! 16
(compare to Ref. [38]) 0.5 0.17
(p,¢, Day, @) = (1,1,7,2 x 103) 50 55
Factor « in relation (*) below  10* Dimensionless 2.5
(», 4,k Dg,) = (1,1,5,7) 2 x 10° 16
(%) $(t) = FELDTRED" 5 x 107 30
102 96

Table 1: Results of robustness analysis for controlling parameters.

Several numerical experiments were done to identify the carbonation rate constant k, the
reaction orders (p, q), the diffusion coefficient D, of COy(g) and their contribution in the
carbonation process. In this model (cf. 3.10), the carbonation process is assumed to begin
when a very thin layer of CaC'O; is initially present at the boundary of the sample.

The simulations were performed using the parameter values in Table 3. Sensitivity analyses
were done with respect to the influence of the CO4(g) effective diffusion coefficient on the
calculated penetration depth and with respect to the carbonation rate law. The values for
the effective diffusion coefficient of CO5(g) given in Refs. [46] and [59] are included within
the chosen numerical range (Table 3), when the inner relative humidity of the sample is
0.65. The results for varying the rate constant k, the reaction orders p, g of the reactants
COs(g) and Ca(OH)s(aq), and also, the diffusivity D,, are given in Table 1.

The results indicate a strong dependence of the penetration speed on the structure of
carbonation reaction rate and on the range of effective diffusion coefficient for CO,(g). It
was numerically confirmed (within the ranges from Table 3) that the carbonation reaction is
much faster than the diffusion of COs(g). The change in reaction orders (p, ¢) has a lower
influence on the carbonation depth than the alteration of the rate constant k. Increase
in the diffusivity of COy(g) led to a considerable increase in the penetration depth (see
Table 1). We remark that one of most important parameters is the rate constant k. Fig.
11 show the ’concentration vs. depth’ profiles for the species involved in the carbonation
process and point out their numerical range near the carbonation front. In Fig. 12 and
Fig. 13 the numerical solution is compared to averaged carbonation depths measured on
cross-sectioned concrete slices immediately after spraying with phenolphthalein.

The results show that the carbonation speed behaves like ¢# with 3 close to % as t increases
(as should be expected for constant humidity conditions). For small ¢, § is close to 1.
One observes that the deviation of the numerical predictions from the measurements (cf.
Ref. [58]) is between 2 — 3 mm and 1 — 2 c¢m for a 9 weeks test. This shows a relatively
high speed of carbonation possibly due to the fact that, in this model, only dissolved
Ca(OH), participates to the reaction (1). We expect a lower carbonation speed when all
the carbonatable species react with C'Os,.
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Figure 11:  Simulation via (Pr) model: (a) Profiles of COz(g) in Q;(t); (b)
Profiles of Ca(OH)2(aq) in Q2(t); (c) Moisture profiles in 4(¢); (d) Moisture
profiles in Q9(¢). Pictures (a) and (b) point out the consumption of COs(g) and
of Ca(OH), at the interface I'(t), respectively, whereas (¢) and (d) show typical
profiles of moisture in Q;(¢) and Qs(¢), respectively. The position of the moving
interface between the carbonated part and uncarbonated part is indicated by the
end of each curve. Plots were obtained from data at the end of each 7 days interval.
Dy, = 3.5 cm*day™, (p,q) = (2,0) and k =5 x 10® (g cm_?’)_1 day~!. See Table
3 for other input parameters.
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4.4 Numerical approach of Model (Pr)
4.4.1 The simulation procedure

As in section 4.2, we used the following modified Landau-type transformations

y:;@%g,ﬁxEMdﬂ+g] (82)
and
L—x . €
y:ztaﬁig,ﬁxeM®—§J] (83)

to transform the moving regions Q1 (¢) U () and Q5(t) U Q2 (¢) into fixed ones. In € (¢) U
Q(t), 0 < z < s(t) + 5, the moving I',(¢) is fixed so that + = 0 becomes y = 0 and
z=s(t)+5isy =1 In Q(t) UQ(t), s(t) — 5§ < = < L, the moving I';(t) is fixed so that
x = s(t) — § becomes y =1 and x = L is y = 0. Denoting

€

e=1— ———
! s(t) + &

and
€

_L—s(t)+§’

we notice that the layer Q. (¢) transforms successively into [li¢, 1] and [la, 1], respectively
(cf. (82), and then, cf. (83)).

Introducing the homogenized concentrations

l2€ =

c(y,t) = &z, 1) — Aey (84)
d(y,t) = d(z,t) — \g, (85)
h(y,t) = h(z,t) — A, (86)
b(y,t) = b(z,t) — X, (87)

and using the transformations (82) and (83), we obtain a system of equations on the fixed
domain 0 < y < 1. According to (82) and (83), the pde’s in model (Pr.) (defined in section
3.11) transform into:

c $(t)
Ci = 2 C, + cYc, +fEHenr +f6reac, (88)
(s +5)" " O+ ”
Dy 5()
d, = - , + eyd, +f_ enry? (89)
L)+ ) T s g e
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Figure 12: Carbonation penetration (in cm) af-
ter 9 weeks of accelerated testing (simulation via (Pr)
model). The graphs were obtained varying (p,q) =
(1,1),(1.1,0.9), (1.2,0.8), (1.25,0.75), when (k, Dy ,c) =
(5,7,2 x 10%) are kept fixed. The penetration depths after
9 weeks shown in plots 3 and 4 (here and in Fig. 13) are
twice as high as in the ace test. '+’ denotes experimental

values.
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Figure 13: Carbonation penetration (in cm) after 9 weeks
of accelerated testing (simulation via (Pr) model). The
graphs were obtained varying the COs(g) diffusivity Dy, =
1,2, 2. 7(cf. Ref. [59]), when (p,q, k,) = (1,1,5 x 103(cf.
Ref. [38]), 10) are kept fixed and A\; = 58.92x 10 % g cm 3.
4+’ denotes experimental values.
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h, = h, + € yh’, + f_ 1SS + f_reaca (90)
t (S(t) _ % _ L)2 Yy S(t) — £ I Y h2d h
$(¢)
b, = b 7 . 1
,t S(t) + %y Y + fbwreac (9 )

Note: For the case of non-constant diffusion coefficients one obtains a slightly different
system of pde’s.

The boundary conditions associated with the model (Pr.) (cf. section 3.7.2) become

c(0,) =0, —artecy(L,1) = 5 (1) (e(1,8) + ), (92)
d(0,8) = 0, —gited,(1,6) = 5 (1) (d (1,1) + Ag), (93)
B(0,6) =0, s 2hy(1,0) = =5 (8) (h(1,8) + X5) (94)

and the relation defining the speed of the layer Q.(¢) (cf. section 3.9), reads as

fn e (w, t)dz

, (95)
‘ fQE(t) (z,1) + Ag) dz

s(t) =

where ¢ >0 and 0 < y < 1.
We keep the same initial conditions and uniform mesh as in section 4.2.

The weak formulation of the transformed problem (88)-(95) together with the Galerkin
ansatz (65) - (68) lead to the following system of ode’s:

nem — Dey nn § (t) nemn
MPOn(t) = ke (1) + S LpCn () -
— (Ot + M) e+ (96)

+Py (QgM"D"(t) — M™C™(t)) + Py (QH/\E — Xg) + [eaes >0,

nyn — Dgy n n (1) nn
MPDMt) = B KD (D) + LD~
—tp (Da(t) + Ag) e~ (97)

—Py (QuM"D"(t) — M"C"(t)) — Py (QuXj — A7), >0,

M"H™(t) = P KM HM () + g S LPHM (1)~

- ("(H)-5-L)? HOR

— e (HR(8) + Ap) "+ (98)

+Shadiss Pradiss M"H"(t) + fi .., t >0,
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MnBMt) = Sj(";g%L;LBn(t) +fro >0, (99)

where the discrete production terms are given by

2o = ~Fewe =~ +2/ (4:0) + 2" (0", 0) + M) 3 )y (100
and
n — k n q,/.n
fﬁreac - I — Sn( 2 P /l25 y7 ) + Ae ) (h (y: ) + /\h) ,lp ( ) (101)
The initial conditions are
Cc™(0) =0, (102)
D"(0) =0, (103)
H"(0) =0, (104)
B"(0) = 0. (105)

We approximate (95) with (106), where the right-hand side of (95) was transformed by
means of (65) and (67):

s"(t) = 6?576(()). (106)
We keep
s™(0) = so. (107)

The following trapezoidal rules were used to compute the integrals in the right-hand side
of (106):

L (t) = ey (Ch (8) +Ae)” (Hy, (8) + A5) "+

3 (CF @)+ Xe)” (HP () + A7) + 5 (CR(8) + Ae) (HE(E) + M) ¢ > 0,
(108)

and

n Hy 5 H
Iﬁe(t) = I- s”(t)—f—E ()\h + 5 + Z] =noc+1 (t) + %) 5t > 0, (109)

where n;. = n — [6(80+;)] —1and nge =n — [m] — 1, while the width of Q.(t) is

considered constant. It is worth mentioning that the expressions listed above approximate
'sufficiently well” §™(¢). A similar approach was adopted to calculate the production terms
by reaction (100) and (101). Within this approach we consider sy = dig + 5, where dig > 0
represents the width of the initial layer ;(0) = Q4. In calculations we chose dyp = 1073.

With the initial concentrations set as in (102)-(105) and also (107), the resulting initial
value problem was integrated using a standard variable step-size numerical ode integration
scheme. We used, as in sections 4.2 and 4.3, the MATLAB routine ode15s.
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4.4.2 Simulation results

This section contains the numerical experiments done for the (Pre) model. We aim a
comparison between the penetration depths obtained in the moving-interface approach (Pr)
and those obtained in the present moving-layer setting (Pr.). The input-data configuration
used in 4.4.2 is given in the appendix.

We make the same standing modeling assumptions as in section 4.2. Additionally, in
this numerical approach the humidity has the role of a parameter. Calcium carbonate
concentration in the initial layer €, is assumed to be 10~* gem 3.

In simulating numerically the (Pr.) model, the qualitative behavior of the profiles of con-
centration near the carbonation front obtained in (Pr) model has been observed again. See,
e.g., Fig. 15. In Fig. 14 and in Fig. 16 - 17 one may see the change in penetration depth
when varying® successively the parameters Dg,, p, q, k, €. If not otherwise mentioned,
n = 100.

We varied the effective diffusion coefficient, Dy,, of CO4(g). The results are shown in Fig.
16 where we plot the layer position as a function of time. Increasing D, we note faster
penetration. This phenomenon persists also if one chooses different widths €. As expected
(cf. the experiments done for the model (Pr) in Fig. 13, and also, cf. Ref. [32], e.g.) the
penetration depths (and hence, the layer position) exhibit a near square-root behavior with
time. Moreover, the ’square-root shape’ of the curve 'penetration depth vs. time’ seems to
be more stable here as in the sharp-interface model. Slight changes in the exponents p, g
lead to the same shape of the plots ’layer position as a function of time’. However, cf. Fig.
14 smaller values for p produced lower carbonation depths, whereas bigger variations of ¢
did not affect drastically the penetration depths. Changing the reaction-rate constant £ by
a factor of % or ﬁ implies that the position s(¢) would reach L after 9 weeks of accelerated
exposure.

Within the frame of the (Pr.) model, we looked specially for some information about the
influence of the size of Q.(¢) (the moving carbonation layer) on the penetration depth.
Therefore, cf. Fig. 17, e.g., we found that, for smaller values of the width € the precision of
prediction seems to increase. If the layer’s width e is large, then the mesh may be coarsened,
and thus, the calculations are usually faster. If ¢ = L, then the boundary conditions need
further discussions.

The production term by (non)-instantaneous dissolution, fzy4:.,, had no significant influence
on the penetration depth. However, the exchange terms by Henry’s law, ferenrys famenry
influenced drastically the speed of carbonation (thus, to obtain Fig. 14 - 17 we used a
reduced mass transfer factor kT% ~ 7 day™'). The production terms by reaction, fzecqe,
Sireac a0 fir0qc, change their influence on the penetration depth in the same time with the
modification of €, and therefore, cf. Fig. 17 for smaller values of the width € the precision
of prediction seems to increase, i.e. the calculated s(t) is closer to the measured one.

The results indicate, as in the case of model (Pr), strong influences of the structure of the
carbonation reaction rate and of the range of effective diffusion coefficient of CO4(g) on the
carbonation depth.

The whole model is stable with respect to small changes of e.

6Each numerical experiment represents the variation of one parameter while the other parameters and
the input-data configuration are kept constant.
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Figure 14: Carbonation penetration (in cm)
after 9 weeks of accelerated testing (simula-
tion via (Pp¢) model). The graphs were ob-
tained varying (p,q) = (2,0), (1.9,0.4), (1.7,0.3),
(1,1), (1.3,1), when (,k,Dg,) = (5.5 X
103(cf. Ref. [38]),3.5 (cf. Ref. [59]),103(cf. (106))

are kept fixed. '+’ denotes experimental values.
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Figure 15: Simulation via (Pr¢) model. (a) profiles of CO2(g) in Q1 (t) U Qc(t) (at left
side) and (b) profiles of Ca(OH)2(aq) in Q9(t) U Q(t) (at right side). In (a) one notes the
consumption of C'Oy(g), whereas in (b) one observes the consumption of Ca(OH)2(aq). The
plots were obtained from data at the end of each 7-days interval. The position of the moving
layer between the carbonated part and the uncarbonated part is indicated by the end of each
curve. (Dg,,k,a,p,q,€) = (3.5,5 x 103,1,1.8,0.8, ﬁ).
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Figure 16: Carbonation penetration (in cm) after
9 weeks of accelerated testing (simulation via (Pre)
model). The graphs were obtained varying the effective
diffusivity of COy(g) Dy, = %,7, 22—1, 14. (e,p,q,k,a) =
(185, 1.7,0.4,5 x 103, 10%) are kept fixed. '+’ denotes
experimental values.
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Figure 17: Carbonation penetration (in cm) af-
ter 9 weeks of accelerated testing (simulation via
(Pr¢) model). The graphs were obtained varying the
width ¢ = %’ﬁ’ﬁ’%o’ﬁ when n = 200 and
(k,Dg,,p,q,0) = (5 x 10%,3.5,1,1,10%) are kept fixed.
Comparing the graphs from bottom to top one notes
that smaller € imply higher penetration speeds §(t). "+’

denotes experimental values.
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4.5 Interpretations of the numerical experiments

In this study, a moving boundary model [for each of the two scenarios (Pr) and (Pr)], for the
prediction of carbonation-penetration depth of concrete exposed to CO4(g) was developed.
The effects of several parameters on the carbonation rate were simulated. These included
effective diffusivity of CO(g), carbonation rate constant and the structure of the reaction
rates.

The position of the carbonation front (sharp interface or layer) is obtained solving a moving
boundary problem. The concentrations of COs(g) and Ca(OH)y(aq) are calculated near
the reaction front. The following conclusions can be drawn:

e Fig. 11 (a), (b) show typical concentration profiles of COs(g), CO2(aq) and Ca(OH )a(aq)
during accelerated carbonation. They are in agreement with the profiles given by Brieger
and Wittmann (Fig. 4 in Ref. [26], p. 640), and by Papadakis et al (Fig. 5 in Ref. [45],
p. 1645). The numerical prediction of the position of the carbonation front is relatively
close to the depth of carbonation measured by means of phenolphthalein by Sisomphon and
Franke, Ref. [18], for CEM I and w/c = 0.60 (7 days curing). Similar results were obtained
by Ishida and Maekawa (see Fig. 8 and Fig. 9 in Ref. [29], and also, Fig. 11 and Fig. 12
in Ref. [38], e.g.) without considering explicitly the sharp-interface model.

e Modifications of the reaction constant k£ and of the reaction orders p,q showed drastic
changes in the evolution of carbonation and in the square-root behavior of the front’s
penetration. The square-root shape of the curve ’carbonation depth vs. time’ may be
obtained or lost by varying these reaction orders, when the effective diffusivity of CO5(g)
and the rate constant are kept constant.

e In the (Pr) model the wetness is coupled with the other variables only by the presence of
the production term fg,reqe (i-€. production of water by reaction (1)). Fig. 11 (c¢) and (d)
point out that, based on the model discussed here, only a relatively small amount of water
is produced by the carbonation reaction. Therefore the two reaction-diffusion equations
describing the moisture behavior in Q;(¢) and Qy(t) can be neglected within this model
without harming neither the calculation of penetration depth s, nor the evaluation of c,
d, h and b near the interface. Therefore, in the moving-layer setting we considered that
the humidity has the role of a parameter [strongly influencing the diffusion coefficient of
CO4(g), for instance (cf. [45, 47], e.g.)].

e It was numerically observed that, in the (Pr) model, the production term by (non)-
instantaneous dissolution, f;o4, and also, the production terms by Henry’s law, fimenry
and fzpenry, do not affect essentially the qualitative behavior of the profiles of CO(g) and
Ca(OH)y(aq) near the interface I'(t). A different situation appears in the (Pr.) setting
where the terms fzgenr, and fzhenry influence significantly the carbonation speed, and
hence, the penetration depth.

The numerical values of many of the model parameters (effective diffusivities, tortuosity
in ©,(¢), carbonation rate constant etc.) and their correlation with the material proper-
ties (type of cement, water/cement ratio, degree of hydration, curing time, dependence of
porosity on carbonation rate etc.) are only poorly known.

Despite of the mentioned drawbacks (difficulty to obtain real data, standing model restric-
tions, and so on), the moving boundary approach provides a good framework for further
investigation of reaction influence on overall carbonation process. We expect that better
experimental data (e.g., pore size distributions, water content/relative humidity relation-
ship, Dy, , investigation of free calcium hydroxide content in the proximity of the observed
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front, mass-transfer coefficients etc.) will simplify the system of equations, and hence, the
numerical model will become more reliable and effective. This way of modeling can be
adapted to various experimental settings.

5

5.1

Conclusions

Re. questions in 4.1

1. Re. question 1:

e (Pr): In Fig. 12 and Fig. 13 the penetration curve exhibits a near-v/Z-type

behavior for large times. Note: In the context of ace 9 weeks represents large
time!

A large concentration gradient for Ca(OH), in (t) can be observed near I'(t)
(cf. Fig. 11 (b)).

e (Pr.): Near-\/t-type behavior as above (cf. Fig. 14, Fig. 16 and Fig. 17).

The concentration of Ca(OH ), in Qs (¢t)US (t) decreases rapidly near the reaction
layer Qc(t) (see Fig. 15 (b)).

2. Re. question 2:

e (Pr): Increasing the diffusion coefficient of COs(g) or the rate constant k, we

note faster penetration speeds (see Fig. 13 and Table 1). Small increase of &
imply large changes in the penetration speed.

e (Pre): Relatively small increase in the diffusivity of CO4(g) leads to a consider-

able increase in the penetration depth (see Fig. 16).

3. Re. question 3:

e If the reaction rate in (Pr), nre, and the one in (Pr), nr, are related by enr, = nr

(cf. (6)), then the model output for (Pr.) is close to the one for (FPr).
Smaller € imply higher penetration speeds (see Fig. 17).

4. Re. question 4:

e (Pr): The penetration speed curve strongly depends on the structure of carbon-

ation rate (see Fig. 12). Note: Fig. 12 shows examples of penetration curves
being far from +/¢-like behavior.

e (Pr.): Not so small changes in p and ¢ lead to a drastic change of the penetration

depth curves (see Fig. 12). Higher values for p produce higher carbonation
speeds, whereas larger variations of ¢ do not affect drastically the penetration
speeds.

5. Re. question 5:

e Both models (Pr) and (Pr.) are capable to reproduce experimental data. See,

e.g., Fig. 13 (plot 1), Fig. 14, Fig. 16 and Fig. 17 (plot 5), where the experi-
mental values are given cf. the ace in Ref. [58].
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5.2 General evaluation

The model is capable to reflect the major characteristics of the carbonation process such as
shape and order of magnitude of the concentrations and their curves, high sensitivity with
respect to the diffusion coefficient for C'O,, and dominance of the reaction speed against
transport, e.g. Moreover the simulations indicate a strong dependence on the choice of the
reaction kinetics. The model allows some freedom in the choice (for numerical simulations)
of the location of the carbonation reaction - it does not matter very much whether the
reaction is assumed to happen entirely on the interface I'(¢) or in a small strip around that
interface.

At the current modeling stage quantitative deviations from measurements are attributed
to the neglection of other carbonatable phases such as C'SH and to the assumption that
the carbonation reaction is restricted to I'(¢) or to a neighboring strip Q.().

6 Appendix

Quantity Definition Dimensions Value
w/c Water:cement ratio - 0.60
a/c Aggregate:cement ratio - 5.1429
Pe Cement density, Refs. [58, 24| g cm™3 3.15
Pa Aggregate density, Ref. [58] g cm™3 2.7
PH,0 Water density, Refs. [58, 24] g cm™3 1

Pep Cement paste density (CEM I 0.60), Ref. [58] g cm™ 1.7439
PCa0 Calcium oxide density, Ref. [16] g cm™3 3.34

Table 2: Material characteristics of the concrete sample.
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Quantity  Definition Dimensions Value/range®
D.y,, D, Effective moisture diffusivities, Refs. [59, 33] cm? day~' (0.9, 90]

Dy, Effective Ca(OH)2(aq) diffusivity, Ref. [45] cm? day™'  0.864

D., Effective CO4(aq) diffusivity, Ref. [13] cm? day™!  [0.62,6.2]
Aa; Initial values of moisture : = 1,2, Fig. 18 and Table 6 g ecm ™3 [0.061,0.123]
A Initial concentration of COy(g), Ref. [58] g cm™3 58.92 x 10~*
Ap Initial value for CaCOs g cm™3 0

A, Initial value for Ca(OH)s(aq), Ref. [33] gcm™3 775 x 1073
S0 Initial position of reaction front in (Pr) model® cm 107°

2L Length of the observed slab, Ref. [58] cm 10

o3} Porosity of non-carbonated concrete, Ref. [33] - 0.15

o Porosity of carbonated concrete, Ref. [33] - 0.13

Qu Exchange term in Henry’s law, Refs. [45, 6] - 0.8227

Py Mass transfer coefficient of COy(g) in pore water, Ref. [6] day™ 35760

P rdiss Factor in the dissolution law, k = 1, ¢, 2 day~! =

kr Mass transfer constant of COs(g), air to water, Ref. [6] cm day ™! 7

% Surface area to volume ratio, for air, Ref. [6] cm™t 10*

e Surface area to volume ratio, for water, Ref. [6] cm ! 10*

Table 3: Numerical data for several parameters and input variables.

®The threshold values introduced in this table are taken from literature (cf. section 6). We use
numerical ranges and not precise values since we are not aware of measurements for these parameters
within the ace described in section 1.4

%In the (Pr.) model s, has the meaning described in section 4.4.2.

Quantity  Definition Dimensions Value

R Gas constant, Ref. [16] mol ! K™! atm 8206 x 107°
H Henry’s law constant for COs(g), Ref. [46] mol m3atm~!  34.2

Mu,o Molecular weight of water, Ref. [16] g mol™! 18

Mco, Molecular weight of C'O,, Ref. [16] g mol™! 44

Mcaco,  Molecular weight of aragonite/calcite, Ref. [16] g mol™* 100.087
Mecqomy, Molecular weight of Ca(OH ),, Ref. [16] g mol ! 74

pcaon),  Density of Ca(OH), Ref. [16] gem? 2.24

PCaCOs Density of CaCOj (calcite), Ref. [16] g cm ™3 2.711

Table 4: Useful physical and material constants.
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Figure 18: Sorption isotherm, cf. Ref.

23].

Portland cement (CEM I)

S10q 20
AlyO3 6
F€203 3
CaO 63
MgO 1.5

SO3 2
NayO and K0 1
Others 1
Loss on ignition 2
Insoluble residue 0.5

Table 5: Composition (mass
fraction %), cf. Ref. [42].
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RH (%) w (kg/m3)
0 0
50 42
60 54
70 68
80 84
90 110
93 120
95 130
Table 6: Material data for

concrete showing the relation
between relative humidity RH
and moisture content w, cf.
Ref. [1], III-4 . See also Fig.
4 in Ref. [27].
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