Zentrum für Technomathematik Fachbereich 3 – Mathematik und Informatik A posteriori error control for the Allen-Cahn Problem: circumventing Gronwall's inequality Daniel Kessler Ricardo H. Nochetto Alfred Schmidt Report 03–02 Berichte aus der Technomathematik Report 03-02 März 2003 # A POSTERIORI ERROR CONTROL FOR THE ALLEN-CAHN PROBLEM: CIRCUMVENTING GRONWALL'S INEQUALITY Daniel Kessler¹, Ricardo H. Nochetto^{1, 2} and Alfred Schmidt³ Abstract. Phase-field models, the simplest of which is Allen-Cahn's problem, are characterized by a small parameter ε that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on ε^{-2} . Using an energy argument combined with a topological continuation argument and a spectral estimate, we establish an a posteriori error control result with only a low order polynomial dependence in ε^{-1} . Our result is applicable to any conforming discretization technique that allows for a posteriori residual estimation. Residual estimators for an adaptive finite element scheme are derived to illustrate the theory. **Résumé**. Les modèles de champ de phase, dont le plus simple est le problème d'Allen-Cahn, sont caractérisés par un petit paramètre ε qui indique l'épaisseur de la couche d'interface entre deux phases. Il est particulièrement naturel d'employer des méthodes d'adaptation de maillage pour ces modèles. Cela requiert un contrôle de l'erreur a posteriori. Cependant, l'analyse de l'erreur par des méthodes classiques prend en compte la nonlinéarité non monotonne de ces problèmes en utilisant le lemme de Gronwall, ce qui amène à une dépendance exponentielle en ε^{-2} . En utilisant une méthode d'énergie combinée avec un argument topologique et une estimation spectrale, nous établissons un résultat de contrôle de l'erreur a posteriori avec une dépendence en ε^{-1} qui est seulement polynômiale de bas degré. Notre résultat s'applique à n'importe quel schéma de discrétisation conforme qui permette une estimation a posteriori du résidu. Des estimateurs résiduels explicites sont donnés pour un schéma d'éléments finis adaptatifs afin d'illustrer la théorie. 1991 Mathematics Subject Classification. 65M15, 65M60, 65M50. The date will be set by the publisher. #### 1. Introduction Phase-field models, the simplest of which is Allen-Cahn's problem, describe the evolution of a diffuse phase boundary, concentrated in a small region of size ε . They naturally call for adaptive mesh discretization techniques, which rely on error control based on a posteriori estimators. However, if Gronwall's lemma is used Keywords and phrases: A posteriori error estimates, phase-field models, adaptive finite element method Department of Mathematics, University of Maryland, College Park, MD 20742, USA ² Institute for Physical Sciences and Technology, College Park, MD 20742, USA ³ Zentrum für Technomathematik, Universität Bremen, Bibliothekstrasse 1, 28359 Bremen, Germany extensively, as is usually done in numerical analysis, the nonmonotone nonlinearity used to model phase separation leads to error estimates that grow exponentially as ε becomes small. The following paradox arises: the thinnest the interface region, the worst are the error estimators justifying the use of mesh adaption! The problem of the dependence on ϵ is already fully present in the Allen-Cahn equation [1]: $$\epsilon \frac{\partial u}{\partial t} - \epsilon \Delta u + \frac{1}{\epsilon} (u^3 - u) = 0.$$ In this paper, we derive new improved a posteriori error estimates for the Allen-Cahn equation, in which the dependence on ϵ^{-1} is no longer exponential, only polynomial. The main ingredient is the use of a spectral estimate established by P. de Mottoni and M. Schatzman [7] and X. Chen [4]. Our work was inspired by recent results of G. Caginalp and X. Chen [3] and X. Feng and A. Prohl [9]. Our result is presented in terms of error control to a given tolerance, and is directly applicable to any mesh adaptation strategy that is formulated in terms of error tolerance. For a posteriori error analysis, we work in the continuous setting, which has two distinctive advantages. On the one hand, it allows us to present the main argument in a clear analytical way, isolating the crucial step of the proof, which is based on a topological continuation argument. On the other hand, as we present it, this procedure could actually be extended to any conforming approximation method, in a transparent way clearly separated from the method-dependent a posteriori control of the residual. This paper is organized as follows. In Section 2, we define the functional setting and main lemmas for the Allen-Cahn problem. We also introduce a finite element discretization, and give a general definition of the residual, applicable to any conforming method. In Section 3, we will assume that there is an a posteriori estimation of the residual, and obtain error control criteria under this assumption. The results of Section 3 are therefore applicable to any conforming method which permits the derivation of a posteriori residual estimators. In Section 4, residual estimators will be derived for the finite element discretization introduced in Section 2. Together with the results from Section 3, we will then have a complete a posteriori error control criterion for a finite element method, which can be directly used for implementing adaptive mesh computations. Some illustrative simulations are finally presented in Section 5. ## 2. Setting: Continuous and Discrete Problems #### 2.1. Continuous Problem Let $\Omega \subset \mathbb{R}^d$, $d \in \{1, 2, 3\}$, be a convex domain and let T be a positive constant. We introduce the short notation Q_t for space-time domains $\Omega \times (0, t)$, for times $t \in [0, T]$. Let \mathbb{V} be the Sobolev space $H^1(\Omega)$, and \mathbb{V}' its dual. We will denote by $\langle .|. \rangle$ the duality pairing between \mathbb{V}' and \mathbb{V} , by (.,.) the $L^2(\Omega)$ scalar product, and by $\|.\|$ the $L^2(\Omega)$ norm. Let us recall an important embedding result from Dautrey and Lions [6] that will be useful later: Lemma 2.1 (Dautrey-Lions). The following properties are valid. - (1) $L^2(0,T; \mathbb{V}) \cap H^1(0,T; \mathbb{V}') \subset C^0(0,T; L^2(\Omega));$ - (2) If $v \in L^2(0,T; \mathbb{V}) \cap H^1(0,t; \mathbb{V}')$, then $\langle v_t | v \rangle = \frac{1}{2} \frac{d}{dt} ||v||^2$. Let $\varepsilon > 0$ be a given parameter, which can be thought of as the characteristic width of the transition layer whose evolution is described by the Allen-Cahn problem. Let $u_0 \in L^2(\Omega)$ be given initial data such that $u_0 \in [-1, +1]$ a.e. in Ω . Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be given by $s \mapsto f(s) = s^3 - s$. This is the nonlinearity defining the Allen-Cahn problem: **Problem 2.2** (Allen-Cahn Problem). Find $u \in L^2(0,T;\mathbb{V}) \cap H^1(0,t;\mathbb{V}')$ such that $u|_{t=0} = u_0$ and that a.e. in (0,T), $$\varepsilon \langle u_t | v \rangle + \varepsilon (\nabla u, \nabla v) + \frac{1}{\varepsilon} (f(u), v) = 0, \quad \forall v \in \mathbb{V}.$$ (1) It is known that this problem is well posed and admits a unique solution. Furthermore, this solution satisfies a maximum principle, which is also valid for more complex phase-field models [11]. **Lemma 2.3** (Maximum principle). If $u_0 \in [-1, +1]$ a.e. in Ω , then $u \in [-1, +1]$ a.e. in Q_T . Hence, for adequate initial data, Problem 2.2 is strictly equivalent to an analogous problem in which f is replaced by $$\tilde{f}(s) = \begin{cases} 2s+2, & s < -1, \\ f(s) & s \in [-1, +1], \\ 2s-2, & s > +1. \end{cases}$$ (2) This function \tilde{f} is Lipschitz continuous, with Lipschitz constant $L_f = 2$. Its first derivative is Lipschitz continuous as well, with Lipschitz constant $L_{f'} = 6$. For practical purposes, we will always be considering the problem formulated with this substitute function \tilde{f} , but omit the tilde in the notation. To obtain a finer estimate on the error, we will need to use a spectral estimate established by P. de Mottoni and M. Schatzman [7] and X. Chen [4]: **Lemma 2.4** (Spectral Estimate). Let the initial condition u_0 have a "compatible profile" with the Allen-Cahn equation, i.e. already describe bulk phase regions separated by transition zones of width $O(\varepsilon)$. Then there exists a constant λ_0 independent of ε such that for all $\varepsilon > 0$, the solution u of Problem 2.2 satisfies $$\varepsilon \|\nabla v\|_{L^{2}(\Omega)}^{2} + \frac{1}{\varepsilon} \left(f'(u)v, v\right) \ge -\lambda_{0}\varepsilon \|v\|_{L^{2}(\Omega)}^{2}. \tag{3}$$ #### 2.2. Discrete Problem Let $0 = t_0 < t_1 < \dots < t_N = T$ be a partition of [0,T] and $\tau_n = t_n - t_{n-1}$ be the time steps, for $n = 0, \dots, N$. Let \mathcal{T}_n , $0 = 1, \dots, N$, be conforming shape-regular meshes on Ω , and let $\mathbb{V}_n \in \mathbb{V}$ be piecewise polynomial (of at least degree one) finite element spaces on these meshes. We denote by $I_n : \mathbb{V} \cap C^0(\bar{\Omega}) \longrightarrow \mathbb{V}_n$ the Lagrange interpolation operators into these spaces. We can define an approximation of the Allen-Cahn problem by the following semi-implicit finite difference in time, finite element in space numerical scheme: **Problem 2.5** (Discrete Problem). Given $U_0 \in \mathbb{V}_0$, find $U_n \in \mathbb{V}_n$, $n = 1, \ldots, N$, s.t. for $n = 1, \ldots, N$ we have $$\varepsilon\left(\frac{U_n - I_n U_{n-1}}{\tau_n}, V\right) + \varepsilon\left(\nabla U_n, \nabla V\right) + \frac{1}{\varepsilon}\left(f(I_n U_{n-1}),
V\right) + \frac{1}{\varepsilon}\left(f'(I_n U_{n-1})(U_n - I_n U_{n-1}), V\right) = 0, \tag{4}$$ for all V in \mathbb{V}_n . The last two terms are the linearization of an implicit discretization of f(u); the reason for this choice is given in Section 5. Out of the sequence of functions U_n defined pointwise in time, we build a function continuous in time by piecewise \mathbb{P}_1 interpolation as follows: $$U(t) = \frac{t - t_{n-1}}{\tau_n} U_n + \frac{t_n - t}{\tau_n} U_{n-1}, \quad t \in [t_{n-1}, t_n], \quad n = 1, \dots, N.$$ (5) With this definition, the time derivative of U is a function defined for a.e. $t \in (0,T)$ as $$U_t = \frac{U_n - U_{n-1}}{\tau_n}, \quad t \in (t_{n-1}, t_n), \quad n = 1, \dots, N.$$ (6) Notice that $U \in H^1(Q_T) \subset L^2(0,T;\mathbb{V}) \cap H^1(0,t;\mathbb{V}')$, so this interpretation of the discrete solution is conforming with the continuous problem. #### 2.3. Residual We define the discrete equation residual $r \in L^2(0,T;\mathbb{V}')$ by requiring that for almost every t in (0,T), $$\langle r|v\rangle = \varepsilon (U_t, v) + \varepsilon (\nabla U, \nabla v) + \frac{1}{\varepsilon} (f(U), v), \quad \forall v \in \mathbb{V}.$$ (7) Such a residual can be defined for the solution of the Discrete Problem 2.5, or for the solution of any other conforming approximation of the Continuous Problem 2.2. Therefore, the concept of residual r is method independent. Throughout Section 3, we will assume that a posteriori residual estimators η_0 and η_1 can be built, such that $$\int_{0}^{T} \langle r | v \rangle \leq \eta_{0} \| v \|_{\mathbf{L}^{2}(Q_{T})} + \eta_{1} \| \nabla v \|_{\mathbf{L}^{2}(Q_{T})}, \quad \forall v \in \mathbb{V}.$$ (8) In Section 4, residual estimators will eventually be derived for Discrete Problem 2.5. ## 3. Error: Coarse and Fine Estimates Let e = U - u be the error at a generic time $t \in (0, T)$ and $e_0 = U_0 - u_0$ be the initial error, where u is the solution of Continuous Problem 2.2 satisfying (1) with initial condition $u_0 \in L^2(\Omega)$, and U is the solution of a conforming approximate problem. We assume that the residual of U defined by (7) can be estimated by (8). By the definition of u, and the assumption that U comes from a conforming discretization, we know that $$e \in L^2(0, T; \mathbb{V}) \cap H^1(0, t; \mathbb{V}').$$ (9) We want to estimate the error $||e||_{L^{\infty}(0,T;L^{2}(\Omega))}$, which makes sense thanks to Lemma 2.1. To this end, we resort to an *energy argument* combined with a *topological argument*, as explained below. #### 3.1. Error Equation Subtracting equation (1) from equation (7), we get a.e. in (0,T) $$\varepsilon(e_t, v) + \varepsilon(\nabla e, \nabla v) + \frac{1}{\varepsilon}(f(U) - f(u), v) = \langle r | v \rangle, \quad \forall v \in \mathbb{V}.$$ (10) Thanks to (9), this is true in particular for v = e. Therefore, using also Lemma 2.1, we get the error equation $$\frac{\varepsilon}{2} \frac{d}{dt} \|e\|^2 + \varepsilon \|\nabla e\|^2 + \frac{1}{\varepsilon} (f(U) - f(u), e) = \langle r|e \rangle, \quad \text{a.e.} \quad t \in (0, T).$$ (11) #### 3.2. Coarse Estimate Integrating (11) in time and using the Lipschitz continuity of f, we obtain for all $t \in [0, T]$ $$\frac{\varepsilon}{2} \|e(t)\|_{\mathcal{L}^{2}(\Omega)}^{2} + \varepsilon \|\nabla e\|_{\mathcal{L}^{2}(Q_{t})}^{2} \leq \frac{\varepsilon}{2} \|e_{0}\|_{\mathcal{L}^{2}(\Omega)}^{2} + \frac{L_{f}}{\varepsilon} \|e\|_{\mathcal{L}^{2}(Q_{t})}^{2} + \eta_{0} \|e\|_{\mathcal{L}^{2}(Q_{t})} + \eta_{1} \|\nabla e\|_{\mathcal{L}^{2}(Q_{t})}, \tag{12}$$ where η_0 and η_1 are residual estimators satisfying (8). Using Young's inequality, we can then establish that $$\|e(t)\|_{L^{2}(\Omega)}^{2} + \|\nabla e\|_{L^{2}(Q_{t})}^{2} \le \|e_{0}\|_{L^{2}(\Omega)}^{2} + \frac{4L_{f}}{\varepsilon^{2}} \|e\|_{L^{2}(Q_{t})}^{2} + \frac{\eta_{0}^{2}}{2L_{f}} + \frac{\eta_{1}^{2}}{\varepsilon^{2}}, \quad \forall t \in [0, T].$$ $$(13)$$ In particular, one may immediately conclude by Gronwall's lemma that $$\|e\|_{L^{\infty}(0,T;L^{2}(\Omega))}^{2} \le \left(\|e_{0}\|_{L^{2}(\Omega)}^{2} + \frac{\eta_{0}^{2}}{2L_{f}} + \frac{\eta_{1}^{2}}{\varepsilon^{2}}\right) \exp\left(\frac{4L_{f}}{\varepsilon^{2}}T\right).$$ (14) This is a coarse a posteriori estimate of the error, which is not satisfactory because of the exponential dependence in ε . However, this estimate is sharp without further assumptions on u, because the Allen-Cahn equation typically exhibits an exponentially fast initial transient regime for times of order $O(\varepsilon)$, until interfaces develop [7]. #### 3.3. Thought Experiment Let's imagine for a moment that inequality (13) could somehow be replaced by the following inequality: $$\|e(t)\|_{\mathrm{L}^{2}(\Omega)}^{2} \le \|e_{0}\|_{\mathrm{L}^{2}(\Omega)}^{2} + \eta^{2} + \frac{C}{\varepsilon^{2}} \|e\|_{\mathrm{L}^{2}(Q_{t})}^{3},$$ (15) where η is some residual estimator, and C a constant independent of ε . The main difference with (13) is the cubic power in the last term. We will show that this apparently minor difference is in fact really significant. Let us now define the time interval $$I_{\theta} = \left\{ t \in [0, T] \quad \middle| \quad ||e||_{\mathcal{L}^{\infty}(0, t; \mathcal{L}^{2}(\Omega))} \le \theta \right\}. \tag{16}$$ Notice that if a subinterval of [0,T] is open, closed and non-empty, then it is the full interval [0,T]. Since by Lemma $2.1\ e \in C^0(0,T;L^2(\Omega))$, then the interval I_{θ} is closed. Furthermore, if we make sure that $\|e_0\|_{L^2(\Omega)} \leq \theta$, then I_{θ} is non-empty. To conclude that $I_{\theta} = [0,T]$, it is therefore sufficient to have conditions ensuring that if $t \in I_{\theta}$ then $\|e\|_{L^{\infty}(0,t;L^2(\Omega))} < \theta$ (for t < T). Again, this relies on the knowledge that $\|e\|_{L^2(\Omega)} \in C^0[0,T]$. Notice for instance that for t in I_{θ} , $$\frac{C}{\varepsilon^2} \|e\|_{\mathrm{L}^2(Q_t)}^3 \le \frac{C}{\varepsilon^2} T \theta^3.$$ We want this quantity, as well as the other right-hand terms of (15), to be smaller than a fraction of θ^2 . Using (15), we can therefore conclude that the following conditions are sufficient to ensure that the $L^2(\Omega)$ norm of the error remains below a tolerance θ up to time T: $$\theta \le \frac{\varepsilon^2}{4CT},\tag{17}$$ $$\|e_0\|_{\mathcal{L}^2(\Omega)} \le \frac{\theta}{2},\tag{18}$$ $$\eta \le \frac{\theta}{2}.\tag{19}$$ What this tells us is that under a tight restriction on the permitted choice of the tolerance θ (it must be small enough relative to ε), if both the initial error and the residual estimator are below a fraction of the tolerance, then the error will be below the tolerance. More precisely, conditions (17)-(19) together with (15) ensure that if $t \in I_{\theta}$, then $\|e\|_{L^{\infty}(0,t;L^{2}(\Omega))}^{2} \leq \frac{3}{4}\theta^{2} < \theta^{2}$, so the interval I_{θ} is open, closed and non-empty as desired. Such a result is directly applicable to a mesh adaptation algorithm, where the user wants to set a tolerance for the error, and guarantee this tolerance by adapting the initial mesh to sufficiently resolve the initial condition, and the next meshes to sufficiently reduce the computed residual estimators. Next we will show how the spectral estimate of Lemma 2.4 allows us to infer an inequality somewhat similar to (15). The real problem is not as nice as a thought experiment, though, and we will loose a couple of orders in ε in the process. #### 3.4. Fine Estimate To obtain a finer estimate on the error, we will need to use Lemma 2.4. Notice that $f(U) - f(u) = \int_{0}^{e} f'(u+\xi)d\xi$. Thus, (11) with (3) applied to v = e result in $$\frac{\varepsilon}{2} \frac{d}{dt} \|e\|_{\mathcal{L}^2(\Omega)}^2 \le \lambda_0 \varepsilon \|e\|_{\mathcal{L}^2(\Omega)}^2 + \frac{1}{\varepsilon} \left(\int_0^e \left(f'(u) - f'(u+\xi) \right) d\xi, e \right) + \langle r|e \rangle, \quad \text{a.e. in } (0,T).$$ However, $$\left| \int_0^e (f'(u) - f'(u+\xi)) \, d\xi \right| \le L_{f'} \int_0^e \xi d\xi = \frac{L_{f'}}{2} e^2, \tag{21}$$ whence we get $$\frac{\varepsilon}{2} \frac{d}{dt} \|e\|_{L^{2}(\Omega)}^{2} \le \lambda_{0} \varepsilon \|e\|_{L^{2}(\Omega)}^{2} + \frac{L_{f'}}{2\varepsilon} \|e\|_{L^{3}(\Omega)}^{3} + \langle r|e \rangle \quad \text{a.e. in } (0, T).$$ (22) We are close to the assumptions of Section 3.3, but the norm that appears cubed is the $L^3(\Omega)$ norm, instead of the $L^2(\Omega)$ norm. Since the only norm stronger than $L^2(\Omega)$ at our disposal is the $H^1(\Omega)$ norm, which is not under control after using the spectral theorem, we will need to go back to a coarser version of the error inequality to gain complete control of the $L^3(\Omega)$ norm and finally be able to perform an argument similar to the one outlined in the Section 3.3. The idea is to use interpolation between $L^2(\Omega)$ and $H^1(\Omega)$. By Cauchy-Schwarz inequality, we know that $$||e||_{\mathbf{L}^{3}(\Omega)}^{3} \le ||e||_{\mathbf{L}^{4}(\Omega)}^{2} ||e||_{\mathbf{L}^{2}(\Omega)}.$$ (23) For space dimensions $d \leq 4$, $H^1(\Omega)$ is continuously embedded into $L^4(\Omega)$ (see [2]). Hence, denoting by C_S the Sobolev embedding constant, we deduce $$||e||_{\mathrm{L}^{3}(\Omega)}^{3} \le C_{S} ||e||_{\mathrm{H}^{1}(\Omega)}^{2} ||e||_{\mathrm{L}^{2}(\Omega)}.$$ (24) Therefore, integrating (22) in time and using (8), we infer that for all t in [0,T], $$\sup_{s \in (0,t)} \|e(s)\|_{\mathbf{L}^{2}(\Omega)}^{2} \leq \|e_{0}\|_{\mathbf{L}^{2}(\Omega)}^{2} + 2\lambda_{0} \|e\|_{\mathbf{L}^{2}(Q_{t})}^{2} + \frac{L_{f'}C_{S}}{\varepsilon^{2}} \|e\|_{\mathbf{L}^{2}(0,t;\mathbf{H}^{1}(\Omega))}^{2} \|e\|_{\mathbf{L}^{\infty}(0,t;\mathbf{L}^{2}(\Omega))}^{2} + \frac{2}{\varepsilon}\eta_{0} \|e\|_{\mathbf{L}^{2}(Q_{t})} + \frac{2}{\varepsilon}\eta_{1} \|\nabla
e\|_{\mathbf{L}^{2}(Q_{t})}.$$ (25) Using Young's inequality twice, with some arbitrary positive number δ , $$||e||_{L^{\infty}(0,t;L^{2}(\Omega))}^{2} \leq ||e_{0}||_{L^{2}(\Omega)}^{2} + 4\lambda_{0} ||e||_{L^{2}(Q_{t})}^{2} + \frac{1}{2\lambda_{0}} \left(\frac{\eta_{0}}{\varepsilon}\right)^{2} + \frac{L_{f'}C_{S}T}{\varepsilon^{2}} ||e||_{L^{\infty}(0,t;L^{2}(\Omega))}^{3} + \left(\frac{L_{f'}C_{S}}{\varepsilon^{2}} ||e||_{L^{\infty}(0,t;L^{2}(\Omega))} + \delta\right) ||\nabla e||_{L^{2}(Q_{t})}^{2} + \frac{1}{\delta} \left(\frac{\eta_{1}}{\varepsilon}\right)^{2}.$$ $$(26)$$ This last inequality, combined with (13) for the evaluation of $\|\nabla e\|_{\mathrm{L}^2(Q_t)}^2$, gives a finer error estimate than the evaluation of $\sup_{s\in(0,t)}\|e(s)\|_{\mathrm{L}^2(\Omega)}^2$ from (13). It is finer in the sense that $\varepsilon^{-2}\|e\|_{\mathrm{L}^\infty(0,t;\mathrm{L}^2(\Omega))}^2$ never appears by itself, but always multiplied by some other quantity susceptible of being controlled. There is thus hope of doing better than Gronwall's inequality, namely using a continuation argument similar to the one presented in Section 3.3. ## 3.5. Continuation Argument As in Section 3.3, let $$I_{\theta} = \left\{ t \in [0, T] \quad \middle| \quad ||e||_{\mathcal{L}^{\infty}(0, t; \mathcal{L}^{2}(\Omega))} \le \theta \right\}. \tag{27}$$ We are again looking for conditions ensuring that if $t \in I_{\theta}$, then $\|e\|_{L^{\infty}(0,t;L^{2}(\Omega))} < \theta$ (for $t \leq T$). Then if also $\|e_{0}\|_{L^{2}(\Omega)} \leq \theta$, the interval I_{θ} is open, closed and non-empty and therefore equal to the full interval [0,T]. In other words, $\|e\|_{L^{\infty}(0,T;L^{2}(\Omega))} \leq \theta$, and we thus control the L² error throughout the time interval [0,T]. The main difference with Section 3.3 lies in the sufficient conditions for I_{θ} to be an open interval. By definition of I_{θ} , $||e||_{L^{\infty}(0,t;L^{2}(\Omega))} \leq \theta$ and therefore $||e||_{L^{2}(Q_{t})}^{2} \leq T\theta^{2}$ when $t \in I_{\theta}$. Hence, we infer from inequalities (13) and (26) that for all t in I_{θ} , $$\|\nabla e\|_{L^{2}(Q_{t})}^{2} \leq \|e_{0}\|_{L^{2}(\Omega)}^{2} + 4TL_{f}\frac{\theta^{2}}{\varepsilon^{2}} + \frac{\eta_{0}^{2}}{2L_{f}} + \frac{\eta_{1}^{2}}{\varepsilon^{2}}$$ (28) and $$||e||_{L^{\infty}(0,t;L^{2}(\Omega))}^{2} \leq ||e_{0}||_{L^{2}(\Omega)}^{2} + 4\lambda_{0} ||e||_{L^{2}(Q_{t})} + \frac{1}{2\lambda_{0}} \left(\frac{\eta_{0}}{\varepsilon}\right)^{2} + L_{f'}C_{S}T\frac{\theta^{3}}{\varepsilon^{2}} + \left(L_{f'}C_{S}\frac{\theta}{\varepsilon^{2}} + \delta\right) ||\nabla e||_{L^{2}(Q_{t})}^{2} + \frac{1}{\delta} \left(\frac{\eta_{1}}{\varepsilon}\right)^{2}.$$ (29) However, we still need to use Gronwall's lemma on (29) to handle the second term of its right-hand side, which we would not be able to control otherwise; this results in the following inequality: $$\|e\|_{\mathcal{L}^{\infty}(0,t;\mathcal{L}^{2}(\Omega))}^{2} \leq \left(\|e_{0}\|_{\mathcal{L}^{2}(\Omega)}^{2} + \frac{1}{2\lambda_{0}} \left(\frac{\eta_{0}}{\varepsilon}\right)^{2} + L_{f'}C_{S}T\frac{\theta^{3}}{\varepsilon^{2}} + \left(L_{f'}C_{S}\frac{\theta}{\varepsilon^{2}} + \delta\right)\|\nabla e\|_{\mathcal{L}^{2}(Q_{t})}^{2} + \frac{1}{\delta} \left(\frac{\eta_{1}}{\varepsilon}\right)^{2}\right)e^{4\lambda_{0}T}.$$ $$(30)$$ Notice that now Gronwall's lemma did not introduce an exponential dependence on ε , since the Spectral Lemma 2.4 precisely ensures that λ_0 is independent of ε . Following the same line of proof as in Section 3.3, we want to find sufficient conditions on $\|e_0\|_{L^2(\Omega)}$, η_0 , η_1 and θ such that inequalities (30) and (28) enforce that $\|e\|_{L^{\infty}(0,t;L^2(\Omega))} \leq C\theta$ for some C lower than 1. In the thought experiment in Section 3.3, θ had to be controlled by ε^2 , as in condition (17). Now in the real problem, however, by careful observation of the fourth term of the right-hand side of (30) combined with the second term of the right-hand side of (28), one should be persuaded that θ must now be controlled by ε^4 for the product to be of order $\theta^2 \varepsilon^0$. We therefore impose the condition $$\theta \le \Lambda_0 \varepsilon^4,\tag{31}$$ and define $$\Lambda_0 = \frac{e^{-4\lambda_0 T}}{8L_f L_{f'} C_S \alpha T},\tag{32}$$ where α remains to be chosen later. We also choose $$\delta = \frac{e^{-4\lambda_0 T}}{8L_f \alpha T} \varepsilon^2. \tag{33}$$ This choice of δ , combined with (31), simplifies inequality (30) while keeping δ independent of θ . In fact we now have $$L_{f'}C_S \frac{\theta}{\varepsilon^2} + \delta \le \frac{e^{-4\lambda_0 T}}{4L_f \alpha T} \varepsilon^2. \tag{34}$$ Combining the latter with (30) and (28), we infer that for all t in I_{θ} , $$||e||_{L^{\infty}(0,t;L^{2}(\Omega))}^{2} \leq ||e_{0}||_{L^{2}(\Omega)}^{2} e^{4\lambda_{0}T} + \frac{e^{4\lambda_{0}T}}{2\lambda_{0}} \left(\frac{\eta_{0}}{\varepsilon}\right)^{2} + \frac{1}{8L_{f}\alpha}\varepsilon^{2}\theta^{2} + \frac{1}{4L_{f}\alpha T}\varepsilon^{2} ||e_{0}||_{L^{2}(\Omega)}^{2} + \frac{\theta^{2}}{\alpha} + \frac{1}{8L_{f}^{2}\alpha T}\varepsilon^{2}\eta_{0}^{2} + \frac{1}{4L_{f}\alpha T}\eta_{1}^{2} + 8L_{f}\alpha T e^{8\lambda_{0}T}\frac{\eta_{1}^{2}}{\varepsilon^{4}}.$$ $$(35)$$ To have a sufficient condition to conclude the argument, we want the first, second, fifth and last terms of the the right-hand side of the above inequality to be lower than $\theta^2/8$, and the remaining terms to be lower than $\theta^2/16$. This can be achieved by setting $\alpha = 8$ and then fulfilling the following 7 conditions: $$\|e_0\|_{\mathcal{L}^2(\Omega)} \le \frac{e^{-2\lambda_0 T}}{2\sqrt{2}} \theta \equiv \Lambda_1 \theta, \tag{36}$$ $$\frac{\eta_0}{\varepsilon} \le \frac{\sqrt{\lambda_0} e^{-2\lambda_0 T}}{2} \theta \equiv \Lambda_2 \theta, \tag{37}$$ $$\varepsilon \le 2\sqrt{L_f},$$ (38) $$\varepsilon \|e_0\|_{L^2(\Omega)} \le \sqrt{2L_f T} \theta,\tag{39}$$ $$\varepsilon \eta_0 \le 2L_f \sqrt{T}\theta,$$ (40) $$\eta_1 \le \sqrt{2L_f T} \theta,\tag{41}$$ $$\frac{\eta_1}{\varepsilon^2} \le \frac{e^{-4\lambda_0 T}}{16\sqrt{2L_f T}} \theta \equiv \Lambda_3 \theta. \tag{42}$$ Notice that for sufficiently small ε , condition (38) is trivial and conditions (39)-(41) are consequences of the remaining conditions. Therefore, if inequalities (31), (36), (37) and (42) are satisfied, then $||e(t)||_{L^2(\Omega)} \leq 3\theta/4$ for all t in I_{θ} , and the interval I_{θ} is open. We can then close the continuation argument and conclude that under these conditions, $I_{\theta} = [0, T]$. This is summarized in the following Theorem. **Theorem 3.1** (Error Control). Let u be a solution of the Allen-Cahn problem with interface width ε , with an initial condition u_0 that corresponds to developed interfaces, in the sense that the Spectral Estimate (3) is valid. Let U be a conforming approximation of u, whose residual can be controlled by a posteriori estimators η_0 and η_1 according to (8). Let the ε -independent constants $\Lambda_0, \ldots, \Lambda_3$ be defined as follows: $$\Lambda_0 = \frac{e^{-4\lambda_0 T}}{8L_f L_{f'} C_S \alpha T},\tag{43}$$ $$\Lambda_1 = \frac{e^{-2\lambda_0 T}}{2\sqrt{2}},\tag{44}$$ $$\Lambda_2 = \frac{\sqrt{\lambda_0} e^{-2\lambda_0 T}}{2},\tag{45}$$ $$\Lambda_2 = \frac{\sqrt{\lambda_0}e^{-2\lambda_0 T}}{2},$$ $$\Lambda_3 = \frac{e^{-4\lambda_0 T}}{16\sqrt{2L_f T}}.$$ (45) For ε sufficiently small, if a tolerance θ is given subject to the constraint $$\theta \le \Lambda_0 \varepsilon^4,\tag{47}$$ and the initial error e_0 and residual estimators η_0 and η_1 satisfy the conditions $$||e_0||_{L^2(\Omega)} \le \Lambda_1 \theta, \tag{48}$$ $$\eta_0 \le \Lambda_2 \varepsilon \theta, \tag{49}$$ $$\eta_1 \le \Lambda_3 \varepsilon^2 \theta, \tag{50}$$ then $$||e||_{\mathcal{L}^{\infty}(0,T;\mathcal{L}^{2}(\Omega))} \le \theta \tag{51}$$ Remark 3.2 (Comparison between coarse and fine estimates). A consequence of Theorem 3.1 is that if a tolerance θ is given under constraint (47), then $$\Lambda_1^{-1} \|e_0\|_{\mathcal{L}^2(\Omega)} + \Lambda_2^{-1} \frac{\eta_0}{\varepsilon} + \Lambda_3^{-1} \frac{\eta_1}{\varepsilon^2} \le \theta \quad \Longrightarrow \quad \|e\|_{\mathcal{L}^\infty(0,T;\mathcal{L}^2(\Omega))} \le \theta. \tag{52}$$ Correspondingly, a consequence of the coarse estimate (14) was that for any given tolerance θ , $$\left(\left\|e_{0}\right\|_{\mathrm{L}^{2}(\Omega)} + (2L_{f})^{-1/2}\eta_{0} + \frac{\eta_{1}}{\varepsilon}\right) \exp\left(\frac{2L_{f}}{\varepsilon^{2}}T\right) \leq \theta \quad \Longrightarrow \quad \left\|e\right\|_{\mathrm{L}^{\infty}(0,T;\mathrm{L}^{2}(\Omega))} \leq \theta. \tag{53}$$ Therefore we can see that, subject to constraint (47), we have been able to remove an exponential dependence on ε^{-2} , and replace it by low degree polynomial dependence on ε^{-1} . #### 3.6. Conclusion Given a tolerance θ , we can guarantee that the error of a solution of the Numerical Scheme 2.5 with respect to the solution of the Allen-Cahn Problem 2.2 is below this tolerance in the $\|.\|_{L^{\infty}(0,t;L^{2}(\Omega))}$ norm if conditions (47)-(50) are fulfilled. These conditions rely only on a posteriori quantities. There is no exponential dependence on ε . In this section, we assumed that a posteriori residual estimators η_0 and η_1 could be computed for a conforming discretization of (1). In the next section, we actually show a way to do this in the case of the adaptive finite element method (4). #### 4. Residual Estimators In this section we want to derive an a posteriori estimation of the residual r defined in equation (7), when the discrete
problem is defined by (4) and (5). If $t \in (t_{n-1}, t_n)$, then for all $v \in \mathbb{V}$, $$\langle r|v\rangle = \varepsilon \left(\left(\frac{1}{\tau_n} + \frac{f'(I_n U_{n-1})}{\varepsilon^2} \right) (U_n - I_n U_{n-1}), v \right) + \varepsilon \left(\nabla U_n, \nabla v \right) + \frac{1}{\varepsilon} \left(f(I_n U_{n-1}), v \right)$$ (54) $$+ \quad \varepsilon \left(\nabla (U - U_n), \nabla v \right) + \frac{1}{\varepsilon} \left(f(U) - f(U_n), v \right) \tag{55}$$ $$+ \frac{\varepsilon}{\tau_n} \left(I_n U_{n-1} - U_{n-1}, v \right) \tag{56}$$ $$+ \frac{1}{\varepsilon} \left(f(U_n) - f(I_n U_{n-1}) - f'(I_n U_{n-1}) \left(U_n - I_n U_{n-1} \right), v \right). \tag{57}$$ In this way we have clearly split the residual in three distinct contributions: a space discretization residual r^h in (54), a time discretization residual r^t in (55), and a coarsening residual r^c in (56). The linearization residual r^l in (57) is a higher order term that will eventually be neglected. We will now proceed to estimate each of them separately. #### 4.1. Space Discretization Residual This contribution to the residual is actually described by the operator of the discrete problem extended to apply to the whole space \mathbb{V} . So in particular, in view of (4), it is clear that for $t \in (t_{n-1}, t_n)$, $$\langle r^h | V \rangle = 0, \quad \forall V \in \mathbb{V}_n.$$ (58) This so-called Galerkin orthogonality is true in particular for $V = \pi_n v$, the Clément interpolant of an arbitrary element v of \mathbb{V} . Therefore, from the definition of r^h and (58), it follows that in $t \in (t_{n-1}, t_n)$, for all v in \mathbb{V} , $$\langle r^{h}|v\rangle = \varepsilon \left(\left(\frac{1}{\tau_{n}} + \frac{f'(I_{n}U_{n-1})}{\varepsilon^{2}} \right) (U_{n} - I_{n}U_{n-1}), v - \pi_{n}v \right) + \varepsilon \left(\nabla U_{n}, \nabla (v - \pi_{n}v) \right) + \frac{1}{\varepsilon} \left(f(I_{n}U_{n-1}), v - \pi_{n}v \right). \tag{59}$$ To estimate this contribution to the residual, we proceed as for a standard *elliptic* residual: We split the integrals in (59) over the elements of the triangulation, and integrate by part on each element, where the finite element functions are polynomials and therefore infinitely differentiable. Thus, for $t \in (t_{n-1}, t_n)$, $$\langle r^h | v \rangle = \sum_{S \in \mathcal{T}_n} (R_n, v - \pi_n v)_{\mathbf{L}^2(S)} + \sum_{\gamma \in \Gamma_n} (J_n, v - \pi_n v)_{\mathbf{L}^2(\gamma)} \quad \forall v \in \mathbb{V}, \tag{60}$$ where Γ_n is the set of all interior edges of the triangulation \mathcal{T}_n , and the element residual R_n and the jump residual J_n are defined respectively by $$R_n|_S = \left(\frac{1}{\tau_n} + \frac{f'(I_n U_{n-1})}{\varepsilon^2}\right) (U_n - I_n U_{n-1}) - \varepsilon(\Delta U_n)|_S + \frac{1}{\varepsilon} f(I_n U_{n-1}), \quad \forall S \in \mathcal{T}_n$$ (61) and $$J_n|_{\gamma} = \left[\frac{\partial U_n}{\partial \nu}\right]_{\gamma}, \quad \forall \gamma \in \Gamma_n. \tag{62}$$ Using the standard error estimates for Clément interpolation [5], we can therefore conclude that for $t \in (t_{n-1}, t_n)$ $$\langle r^h | v \rangle \leq C_{Cl} \left(\|hR_n\|_{\mathcal{L}^2(\Omega)} + \|h^{1/2} J_n\|_{\mathcal{L}^2(\mathcal{T}_n)} \right) \|\nabla v\|_{\mathcal{L}^2(\Omega)}, \quad \forall v \in \mathbb{V}, \tag{63}$$ where C_{Cl} is a constant from the interpolation estimate depending only on the maximum number of neighbours a simplex can have in \mathcal{T}_n . This constant is independent of the mesh size h in the case of shape-regular meshes, e.g. adaptive meshes obtained by a bisection algorithm as in the finite element package ALBERT [12]. Remark 4.1. We stress that the mesh-dependent weights in (63) correspond to the correct scaling for the gradient ∇e of the error and *not* for e! Since ∇e does not appear explicitly in (51), we conclude that (63) is suboptimal. For linear parabolic problems, it is possible to restore the expected order via elliptic reconstruction [10]. The situation is much more subtle for nonlinear parabolic problems, and even more extreme if they are singularly perturbed. We refer to Section 5, where this statement is corroborated by simulations. #### 4.2. Time Discretization Residual It is straightforward that for $t \in (t_{n-1}, t_n)$, $$\langle r^{t}|v\rangle \leq \varepsilon \left\|\nabla \left(U_{n} - U_{n-1}\right)\right\|_{\mathcal{L}^{2}(\Omega)} \left\|\nabla v\right\|_{\mathcal{L}^{2}(\Omega)} + \frac{L_{f}}{\varepsilon} \left\|U_{n} - U_{n-1}\right\|_{\mathcal{L}^{2}(\Omega)} \left\|v\right\|_{\mathcal{L}^{2}(\Omega)}, \quad \forall v \in \mathbb{V}.$$ $$(64)$$ ## 4.3. Coarsening Residual It is also straightforward that for $t \in (t_{n-1}, t_n)$, $$\langle r^{c}|v\rangle = (r^{c}, v) \leq \frac{\varepsilon}{\tau_{n}} \|U_{n-1} - I_{n}U_{n-1}\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}, \quad \forall v \in \mathbb{V}.$$ $$(65)$$ #### 4.4. Linearization Residual By Taylor's expansion, $$|f(U_n) - f(I_n U_{n-1}) - f'(I_n U_{n-1}) (U_n - I_n U_{n-1})| \le \frac{L_{f'}}{2} |U_n - I_n U_{n-1}|^2,$$ (66) so $$|f(U_n) - f(I_n U_{n-1}) - f'(I_n U_{n-1}) (U_n - I_n U_{n-1})| \le L_{f'} |U_n - U_{n-1}|^2 + L_{f'} |U_{n-1} - I_n U_{n-1}|^2.$$ (67) When the time-steps are small enough, these higher order terms are much smaller than the corresponding lower-order terms already present in the time residual r^t and coarsening residual r^c . We can therefore neglect them, and the linearization residual r^l will not be taken into account. ## 4.5. Residual Estimators Puting all estimators together, we conclude that for a.e. $t \in (0,T)$, inequality (8) holds, with $\eta_0 = \eta_0^t + \eta_0^c$ and $\eta_1 = \eta_1^h + \eta_1^t$, where $$\eta_1^h = C_{Cl} \left(\sum_{n=1}^N \tau_n \left(\sum_{S \in \mathcal{T}_n} \|hR_n\|_{L^2(S)}^2 + \sum_{\gamma \in \Gamma_n} \|h^{1/2} J_n\|_{L^2(\gamma)}^2 \right) \right)^{1/2}$$ (68) $$\eta_1^t = \varepsilon \sum_{n=1}^N \left(\tau_n \| \nabla (U_n - U_{n-1}) \|_{L^2(\Omega)}^2 \right)^{1/2}$$ (69) $$\eta_0^t = \frac{L_f}{\varepsilon} \sum_{n=1}^N \left(\tau_n \| U_n - U_{n-1} \|_{L^2(\Omega)}^2 \right)^{1/2}$$ (70) $$\eta_0^c = \varepsilon \sum_{n=1}^N \left(\tau_n \| U_{n-1} - I_n U_{n-1} \|_{L^2(\Omega)}^2 \right)^{1/2}$$ (71) According to Theorem 3.1, control of these residual estimators via (49) and (50), for sufficiently low tolerance θ and initial error e_0 , will ensure that the $L^2(\Omega)$ error of the adaptive finite element approximation remains below the tolerance θ throughout the simulation. #### 5. Numerical experiments We have implemented numerical simulations of the Allen-Cahn problem using the adaptive finite element package ALBERT [12]. In ALBERT, an initial simplicial macro-mesh is refined by successive bisections of its elements. It can later also be coarsened, by operations of junction of two elements which initially constituted a single element. The refining and coarsening algorithms ensure that the mesh remains conforming at every computation of each timestep of the solution. We have chosen ALBERT's error equidistribution strategy for mesh adaption, i.e. both refinement and coarsening of the succesive meshes based on residual estimators (68) and (71). For the following tests, we have however kept fixed time steps, since we are enclined to believe (and the tests have verified) that for the Allen-Cahn problem, fixed time-step computations lead to errors of the same order of magnitude at each time step (whereas a fixed mesh clearly does not yield the same order of magnitude of error for each element). To perform numerical error convergence tests, we have imposed as an exact solution a propagating front, with which to compare the numerical solution by adding an extra artificial source term to the right hand side of the Allen-Cahn equation: We have imposed the solution $$\hat{u}(x,t) = \tanh\left(\frac{x_1 - 0.6t - 0.2}{\varepsilon\sqrt{2}}\right),$$ thus requiring the extra source term $$\hat{g}(x,t) = \frac{0.6}{\varepsilon\sqrt{2}} \left(\hat{u}^2(x,t) - 1 \right),\,$$ which is just a convenient way of writing $\partial \hat{u}/\partial t$. The imposed solution \hat{u} verifies exactly the *stationary* Allen-Cahn equation for all t, which is an indication that it satisfies the "profile across the interface" required by Lemma 2.4. Before presenting numerical results, let us mention that our earlier numerical tests have shown us that an explicit time discretization for the nonlinearity f leads to largely dominant error from time discretization. It seems that the speed of the front is not captured well. To reach a similar error as from space discretization, millions of time steps are needed even for relatively large values of ε . In contrast, the linearization approach that we later adopted (see (4)) leads to much better resolution of the interface speed and thus a much smaller time discretization error, making the use of reasonable time step sizes possible, as demonstrated in the numerical examples. Notice that the theory is essentially the same with or without linearization, or even with a fully implicit scheme. It is the numerical experiments that convinced us that the linearized implicit approach gives us the best of two worlds: reasonable time discretization error and linear discrete equation. We now present a table of numerical results for the $L^{\infty}(0,T;L^{2}(\Omega))$ error between the numerical solution U of numerical scheme (4) with added source term \hat{g} and the exact solution \hat{u} , for different values of ε and space dimension d=1. We have decreased the space error tolerance θ linearly with the timestep τ , with ratios experimentally chosen for each value of ε in order to get efficient convergence results. We denote by N_{τ} the number of timesteps in the time interval [0,T]. Important
characteristics of the adaptively refined mesh are the average number of degrees of freedom throughout a computation (#DOFs), as well as the maximum in time of the minimal mesh element size $(\max_t \min_x h)$, which is a characteristic of the resolution of the transition zone. The solution itself is characterized by its error $e = \|U - \hat{u}\|_{L^{\infty}(0,T;L^{2}(\Omega))}$. Finally, the quantity we are most interested in is the experimental order of convergence $$OC = \frac{\ln e_i - \ln e_{i-1}}{\ln \theta_i - \ln \theta_{i-1}},$$ where i is an index for the successive tests. | i | heta | #DOFs | $\max \min h$ | $N_{ au}$ | e | oc | | |---|-------------------------------|-------|--|-----------|----------------------------|------|--| | 0 | 4.00e+01 | 19 | $\overset{t}{3.12}\overset{x}{ ext{e-02}}$ | 250 | 1.30e-01 | _ | | | 1 | 2.00e + 01 | 33 | $1.56\mathrm{e} ext{-}02$ | 500 | $5.30\mathrm{e}\text{-}02$ | 1.30 | | | 2 | 1.00e + 01 | 60 | 7.81e-03 | 1000 | 1.33e-02 | 2.00 | | | 3 | 5.00e+00 | 108 | $3.91\mathrm{e}\text{-}03$ | 2000 | 3.38e-03 | 1.97 | | | 4 | 2.50e + 00 | 209 | 1.95 e-03 | 4000 | 9.68e-04 | 1.80 | | | 5 | 1.25e + 00 | 269 | $1.95 e{-}03$ | 8000 | 1.96e-04 | 2.30 | | | 6 | $6.25\mathrm{e} ext{-}01$ | 530 | 9.77 e-04 | 16000 | 4.80 e - 05 | 2.03 | | | | Table 1. $\varepsilon = 0.08$ | | | | | | | | i | heta | #DOFs | $\max_t \min_x h$ | $N_{ au}$ | e | oc | |-----------------------------|---------------------------|-------|-------------------|-----------|-------------|------| | 0 | 4.00e+01 | 38 | 7.81e-03 | 1000 | 4.90 e-02 | | | 1 | 2.00e + 01 | 68 | $3.91 e{-03}$ | 2000 | 1.96 e-02 | 1.32 | | 2 | 1.00e + 01 | 130 | $3.91 e{-03}$ | 4000 | 4.74e-03 | 2.05 | | 3 | 5.00e + 00 | 253 | 1.95 e-03 | 8000 | 1.34e-03 | 1.83 | | 4 | 2.50e + 00 | 499 | 1.95 e-03 | 16000 | 3.26e-04 | 2.04 | | 5 | 1.25e + 00 | 990 | 9.77e-04 | 32000 | 7.90 e-05 | 2.05 | | 6 | $6.25\mathrm{e} ext{-}01$ | 1972 | 9.77e-04 | 64000 | 1.86 e - 05 | 2.08 | | Table 2. $\varepsilon=0.04$ | | | | | | | We also summarize the numerical results with graphics of the error as a function of the tolerance in log-log scale. In Figure 1, we can observe that the error does not decrease linearly with the tolerance, as would be expected if our error control was optimal, but quadratically. This can be explained by the fact that the space residual estimator we use is linear in the local mesh size h, whereas it is a priori expected that the L^2 error | i | heta | #DOFs | $\max_t \min_r h$ | $N_{ au}$ | e | OC | | |---|-------------------------------|-------|-------------------|-----------|-------------|------|--| | 0 | 4.00e + 01 | 114 | 3.91e-03 | 4000 | 4.93 e-02 | | | | 1 | 2.00e+01 | 146 | 1.95 e-03 | 8000 | 6.46 e - 03 | 2.93 | | | 2 | 1.00e + 01 | 285 | 1.95 e-03 | 16000 | 1.53 e-03 | 2.08 | | | 3 | 5.00e + 00 | 561 | 9.77e-04 | 32000 | 4.29e-04 | 1.83 | | | 4 | 2.50e + 00 | 1114 | 9.77e-04 | 64000 | 1.04e-04 | 2.04 | | | 5 | 1.25e + 00 | 2219 | 4.88e-04 | 128000 | 2.58 e-05 | 2.01 | | | | Table 3. $\varepsilon = 0.02$ | | | | | | | should decrease in fact as h^2 . Therefore, our numerical experiments show that the theoretical results of this paper are not optimal with respect to the numerical parameters; this is consistent with Remark 4.1, and is due to the energy argument. We conjecture that an optimal space residual estimator could be obtained using a duality technique, but nonstandard though if one seeks to remain rigorous throughout the derivation of the result [8]. FIGURE 1. Error reduction # ACKNOWLEDGEMENTS This work was partially supported by NSF grant DMS-0204670 as well as NSF-DAAD grant INT-0129243. The first author acknowledges financial support from the Swiss National Science Foundation. The authors also wish to thank Prof. R. Pego for insights on the spectral theory for the Allen-Cahn equation. ## REFERENCES - [1] S. M. Allen and J. W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall., 27:1085–1095, 1979. - [2] H. Brézis. Analyse fonctionnelle. Dunod, Paris, 1999. - [3] G. Caginalp and X. Chen. Convergence of the phase-field model to its sharp interface limits. Euro. J. Appl. Math., 9:417-445, 1998. - [4] X. Chen. Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Part. Diff. Eq., 19:1371-1395, 1994. - [5] Ph. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Numér, 9:77-84, 1975. - [6] R. Dautrey and J.-L. Lions. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson, 1988. - [7] P. de Mottoni and M. Schatzman. Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc., 347:1533-1589, 1995. - [8] K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems iv: Nonlinear problems. SIAM J, Numer. Anal., 32:1729-1749, 1995. - [9] X. Feng and A. Prohl. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. *Num. Math.*, Published online by Springer-Verlag in 2002 printed version pending. - [10] Ch. Makridakis and R. H. Nochetto. Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal., (to appear). - [11] J. Rappaz and J.-F. Scheid. Existence of solutions to a phase-field model for the solidification process of a binary alloy. Math. Methods Appl. Sci., 23:491-513, 2000. - [12] A. Schmidt and K. Siebert. ALBERT: An adaptive hierarchical finite element toolbox, Preprint 06/2000 Freiburg edition. ## Berichte aus der Technomathematik ISSN 1435-7968 http://www.math.uni-bremen.de/zetem/berichte.html — Vertrieb durch den Autor — # Reports Stand: 19. März 2003 98-01. Peter Benner, Heike Faßbender: An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem, Juli 1998. 98-02. Heike Faßbender: Sliding Window Schemes for Discrete Least-Squares Approximation by Trigonometric Polynomials, Juli 1998. 98–03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Ortí: Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998. 98-04. Peter Benner: Computational Methods for Linear-Quadratic Optimization, August 1998. 98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí: Solving Algebraic Riccati Equations on Parallel Computers Using Newton's Method with Exact Line Search, August 1998. 98-06. Lars Grüne, Fabian Wirth: On the rate of convergence of infinite horizon discounted optimal value functions, November 1998. 98-07. Peter Benner, Volker Mehrmann, Hongguo Xu: A Note on the Numerical Solution of Complex Hamiltonian and Skew-Hamiltonian Eigenvalue Problems, November 1998. 98-08. Eberhard Bänsch, Burkhard Höhn: Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998. 99-01. Heike Faßbender: The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999. 99-02. Heike Faßbender: Error Analysis of the symplectic Lanczos Method for the symplectic Eigenvalue Problem, März 1999. 99-03. Eberhard Bänsch, Alfred Schmidt: Simulation of dendritic crystal growth with thermal convection, März 1999. 99–04. Eberhard Bänsch: Finite element discretization of the Navier-Stokes equations with a free capillary surface, März 1999. 99-05. Peter Benner: Mathematik in der Berufspraxis, Juli 1999. 99-06. Andrew D.B. Paice, Fabian R. Wirth: Robustness of nonlinear systems and their domains of attraction, August 1999. 99-07. Peter Benner, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí: Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers, September 1999. #### 99–08. Ronald Stöver: Collocation methods for solving linear differential-algebraic boundary value problems, September 1999. #### 99-09. Huseyin Akcay: Modelling with Orthonormal Basis Functions, September 1999. 99-10. Heike Faßbender, D. Steven Mackey, Niloufer Mackey: Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems, Oktober 1999. 99-11. Peter Benner, Vincente Hernández, Antonio Pastor: On the Kleinman Iteration for Nonstabilizable System, Oktober 1999. ## 99-12. Peter Benner, Heike Faßbender: A Hybrid Method for the Numerical Solution of Discrete-Time Algebraic Riccati Equations, November 1999. 99–13. Peter Benner, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí: Numerical Solution of Schur Stable Linear Matrix Equations on Multicomputers, November 1999. ## 99-14. Eberhard Bänsch, Karol Mikula: Adaptivity in 3D Image Processing, Dezember 1999. 00-01. Peter Benner, Volker Mehrmann, Hongguo Xu: Perturbation Analysis for the Eigenvalue Problem of a Formal Product of Matrices, Januar 2000. ## 00-02. Ziping Huang: Finite Element Method for Mixed Problems with Penalty, Januar 2000. ## 00-03. Gianfrancesco Martinico: Recursive mesh refinement in 3D, Februar 2000. 00-04. Eberhard Bänsch, Christoph Egbers, Oliver Meincke, Nicoleta Scurtu: Taylor-Couette System with Asymmetric Boundary Conditions, Februar 2000. ## 00-05. Peter Benner: Symplectic Balancing of Hamiltonian Matrices, Februar 2000. 00-06. Fabio Camilli, Lars Grüne, Fabian Wirth: A regularization of Zubov's equation for robust domains of attraction, März 2000. 00–07. Michael Wolff, Eberhard Bänsch, Michael Böhm, Dominic Davis: Modellierung der Abkühlung von Stahlbrammen, März 2000. # 00–08. Stephan Dahlke, Peter Maaß, Gerd Teschke: Interpolating Scaling Functions with Duals, April 2000. #### 00-09. Jochen Behrens, Fabian Wirth: A globalization procedure for locally stabilizing controllers, Mai 2000. - 00-10. Peter Maaß, Gerd Teschke, Werner Willmann, Günter Wollmann: Detection and Classification of Material Attributes A Practical Application of Wavelet Analysis, Mai 2000. - 00-11. Stefan Boschert, Alfred Schmidt, Kunibert G. Siebert, Eberhard Bänsch, Klaus-Werner Benz, Gerhard Dziuk, Thomas
Kaiser: Simulation of Industrial Crystal Growth by the Vertical Bridgman Method, Mai 2000. - 00–12. Volker Lehmann, Gerd Teschke: Wavelet Based Methods for Improved Wind Profiler Signal Processing, Mai 2000. - 00-13. Stephan Dahlke, Peter Maass: A Note on Interpolating Scaling Functions, August 2000. - 00-14. Ronny Ramlau, Rolf Clackdoyle, Frédéric Noo, Girish Bal: Accurate Attenuation Correction in SPECT Imaging using Optimization of Bilinear Functions and Assuming an Unknown Spatially-Varying Attenuation Distribution, September 2000. - 00–15. Peter Kunkel, Ronald Stöver: Symmetric collocation methods for linear differential-algebraic boundary value problems, September 2000. - 00-16. Fabian Wirth: The generalized spectral radius and extremal norms, Oktober 2000. - 00–17. Frank Stenger, Ahmad Reza Naghsh-Nilchi, Jenny Niebsch, Ronny Ramlau: A unified approach to the approximate solution of PDE, November 2000. - 00-18. Peter Benner, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí: Parallel algorithms for model reduction of discrete-time systems, Dezember 2000. - 00-19. Ronny Ramlau: A steepest descent algorithm for the global minimization of Tikhonov-Phillips functional, Dezember 2000. - 01-01. Efficient methods in hyperthermia treatment planning: Torsten Köhler, Peter Maass, Peter Wust, Martin Seebass, Januar 2001. - 01–02. Parallel Algorithms for LQ Optimal Control of Discrete-Time Periodic Linear Systems: Peter Benner, Ralph Byers, Rafael Mayo, Enrique S. Quintana-Ortí, Vicente Hernández, Februar 2001. - 01–03. Peter Benner, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí: Efficient Numerical Algorithms for Balanced Stochastic Truncation, März 2001. - 01-04. Peter Benner, Maribel Castillo, Enrique S. Quintana-Ortí: Partial Stabilization of Large-Scale Discrete-Time Linear Control Systems, März 2001. - 01-05. Stephan Dahlke: Besov Regularity for Edge Singularities in Polyhedral Domains, Mai 2001. - 01-06. Fabian Wirth: A linearization principle for robustness with respect to time-varying perturbations, Mai 2001. 01–07. Stephan Dahlke, Wolfgang Dahmen, Karsten Urban: *Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates, Juli 2001. #### 01–08. Ronny Ramlau: Morozov's Discrepancy Principle for Tikhonov regularization of nonlinear operators, Juli 2001. #### 01–09. Michael Wolff: Einführung des Drucks für die instationären Stokes-Gleichungen mittels der Methode von Kaplan, Juli 2001. 01–10. Stephan Dahlke, Peter Maaß, Gerd Teschke: Reconstruction of Reflectivity Desities by Wavelet Transforms, August 2001. 01–11. Stephan Dahlke: Besov Regularity for the Neumann Problem, August 2001. 01–12. Bernard Haasdonk, Mario Ohlberger, Martin Rumpf, Alfred Schmidt, Kunibert G. Siebert: h-p-Multiresolution Visualization of Adaptive Finite Element Simulations, Oktober 2001. 01-13. Stephan Dahlke, Gabriele Steidl, Gerd Teschke: Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to Analyzing Functions on Spheres, August 2001. 02-01. Michael Wolff, Michael Böhm: Zur Modellierung der Thermoelasto-Plastizität mit Phasenumwandlungen bei Stählen sowie der Umwandlungsplastizität, Februar 2002. 02-02. Stephan Dahlke, Peter Maaß: An Outline of Adaptive Wavelet Galerkin Methods for Tikhonov Regularization of Inverse Parabolic Problems, April 2002. 02–03. Alfred Schmidt: A Multi-Mesh Finite Element Method for Phase Field Simulations, April 2002. 02–04. Sergey N. Dachkovski, Michael Böhm: A Note on Finite Thermoplasticity with Phase Changes, Juli 2002. 02–05. Michael Wolff, Michael Böhm: Phasenumwandlungen und Umwandlungsplastizität bei Stählen im Konzept der Thermoelasto-Plastizität, Juli 2002. 02-06. Gerd Teschke: Construction of Generalized Uncertainty Principles and Wavelets in Anisotropic Sobolev Spaces, August 2002. 02–07. Ronny Ramlau: TIGRA - an iterative algorithm for regularizing nonlinear ill-posed problems, August 2002. 02-08. Michael Lukaschewitsch, Peter Maaß, Michael Pidcock: Tikhonov regularization for Electrical Impedance Tomography on unbounded domains, Oktober 2002. - 02–09. Volker Dicken, Peter Maaß, Ingo Menz, Jenny Niebsch, Ronny Ramlau: Inverse Unwuchtidentifikation an Flugtriebwerken mit Quetschöldämpfern, Oktober 2002. - 02-10. Torsten Köhler, Peter Maaß, Jan Kalden: Time-series forecasting for total volume data and charge back data, November 2002. - 02–11. Angelika Bunse-Gerstner: A Short Introduction to Iterative Methods for Large Linear Systems, November 2002. - 02–12. Peter Kunkel, Volker Mehrmann, Ronald Stöver: Symmetric Collocation for Unstructured Nonlinear Differential-Algebraic Equations of Arbitrary Index, November 2002. - 02-13. Michael Wolff: Ringvorlesung: Distortion Engineering 2 Kontinuumsmechanische Modellierung des Materialverhaltens von Stahl unter Berücksichtigung von Phasenumwandlungen, Dezember 2002. - 02–14. Michael Böhm, Martin Hunkel, Alfred Schmidt, Michael Wolff: Evaluation of various phase-transition models for 100Cr6 for application in commercial FEM programs, Dezember 2002. - 03-01. Michael Wolff, Michael Böhm, Serguei Dachkovski: Volumenanteile versus Massenanteile der Dilatometerversuch aus der Sicht der Kontinuumsmechanik, Januar 2003. - 03–02. Daniel Kessler, Ricardo H. Nochetto, Alfred Schmidt: A posteriori error control for the Allen-Cahn Problem: circumventing Gronwall's inequality, März 2003.