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1 Introduction

The common approach in most theories of plasticity is based on the concept
of intermediate configurations. It postulates the existence of a so called un-
loaded placement (configuration) and the decomposition of deformations into
elastic and plastic parts, cf. [Sed70], [Hau77], [Hil89], [HR99], [Hau00] e.g..
However there are disadvantages of such theories mentioned by some authors,
such as: Rotations of such unloaded placements remain undetermined or ar-
bitrary. Therefore some problems related to objectivity arise (see [Ber02],
p-2 and the papers quoted there). Another approach, based on the concept
of elastic ranges and material isomorphisms [Nol72], has been proposed in
[Ber92|, [Ber98|, which does not use the concept of unloaded configurations
and decomposition of deformations. This approach is free of the shortcom-
ings mentioned before. To model thermoplasticity the notion of isomorphic
thermoelastic ranges has been introduced by A. Bertram (see also [Nol72],
p-48). A modified version of this theory can be found in [Ber(2].

It is known that in some processes under certain thermal conditions there
are additional deformations due to phase changes in the material under con-
sideration. A typical situation is quenching of steel. Such phase changes
occur not only in ferrous alloys but also in other materials. These changes
and hence the deformations can be reversible as well as irreversible, but they
have another nature as the usual elastic or plastic deformation. To deal with
such processes the notion of Transformation-induced Plasticity (or TRIP for
brevity) has been introduced, see [FST96] for definitions and discussions on
this subject, we refer also to the book by W. Mitter [Mit87] for experimental
data of phase changes and for some analytical considerations. There are a lot
of micromechanical and phenomenological models (specially for martensitic
phase transformations) which have been proposed in last decades by differ-
ent authors, see e.g. [FS95], [Lev98|, [CBL00] and papers quoted there. A



model of this phenomenon under elasto-plastic deformation based on the con-
cept of intermediate configurations can be found in [WBO01]. To model both
plastic and phase-change induced deformations, in [WB01] two intermediate
configurations have been introduced.

Following Bertram we are going to introduce a model of thermoplasticity
allowing for TRIP. For this purpose we will introduce the notion of thermoe-
lastic range with phase changes. We call it thermo-phase-elastic range.

2 Preliminaries and definitions

2.1 Dependent and independent variables

In this subsection we specify the primary variables. To be independent from
the observer we will keep all considerations in Lagrangean coordinates. Hence
all equations and variables are invariant under rigid motions of the material
body. The reference placement is supposed to be (arbitrarily) chosen once.
Thus our setting is reference-free.

We suppose that the process is governed by deformations. Hence we choose
the right Cauchy-Green strain tensor C = FTF as independent variable.
F is the deformation gradient. Recall that C = FTF characterizes the
local deformations of material points and that it is symmetric by definition.
Further independent variables are the temperature # and g := V6. Since
we assume that phase changes might occur during the deformation, i.e. in
a thermo-phase-kinematical process, we have to introduce some parameters
describing phase changes. There are a lot of different parameters used in the
literature for this purpose such as volume fractions of phases & = %, Ve is the
volume of the product phase in a control volume V, (see e.g. [FST96]). Note
that £ may change even in case of a pure elastic deformation process if the
elastic moduli are different in parent and product phases. Another possible

parameter is the internal dimensionless time & = |E‘f,§‘x‘ € [0, 1], where ¢; is
t

the TRIP deformation tensor (see e.g. [Lev98]). As it was proved by Levitas
the standard thermodynamic approach cannot be applied because of the
local stress fluctuations due to the phase changes, which should be filtered
by the time averaging of the of the thermodynamic parameters responsible
for the phase changes over the duration of the phase change. We prefer to
use mass fractions, because they are invariant under pure elastic and plastic
deformations. So we introduce the following variables

Y=(Y1,..Y) with Y Y¥i=1 Y;>0, i=1..m.
i=1



Y describes the mass fractions of the relevant components, such as austenite,
pearlite or martensite in the case of steel. We refer to Y as internal variables.
Note that Y is a collection of scalar parameters which is not to be treated
as a vector. The evolution of the internal variables is supposed to satisfy an
ordinary differential equation of first order.

Y*=p(C.0,9,Y), (2.1)

where (*) denotes time derivative. 3 is a given function for a given materi-
al. Time ¢t is always nonnegative and time dependent (deformation-, phase
change- and other) processes are considered on finite time intervals.

Let S = JF'TF~T be the symmetric second Piola-Kirchhoff stress tensor,
where J = det(F) and T is the Cauchy stress tensor. Let ¢ = JF~!qg be
the material heat flux, where gg is the corresponding heat flux in Eulerian
coordinates. Let e and 7 be the internal free energy and entropy, resp.

At the end of a given thermo-phase-kinematical process, say at time ¢ >
0, these quantities should be determined. Therefore they are considered
as dependent variables. Summarizing this setting, we have the following
constitutive equations

S(C,0,9,Y)(t) = F*{C,0,9,Y},

Q(C7 07 g’ Y) (t) = Fq{C7 0’ g7 Y}f)?

e(C,0,9,Y)(t) = F¢{C,0,9,Y}, (2.2)
( )(@®)

F'{C,0,9,Y},

where F5, F? F¢ F7 are (in general) functionals taking the history of the whole
process into account.

The set of S,q,e,n is called a caloro-dynamical state of the process. All
variables are supposed to be differentiable up to the order necessary for the
following considerations.

2.2 Material isomorphisms and symmetries

The notion of material isomorphisms has been introduced by W. Noll, cf.
[Nol58], §11 or [Nol72], §9. In our context it reads as follows: Let X; and X,
be two material points of the same body and let functionals F%l,XQ, F xa0
F& X, anl, x, describe the caloro-dynamical state of the body at the points

X; and X, respectively, as in (2.2).



Definition 2.1. If there exists a linear invertible mapping P and two real
constants e., 7, such that

Sx,(C,0,9,Y) det(P~Y)PSx,(PTCP,0,P"g,Y)P,

4x,(C,0,9,Y) = det(P ')Pqx,(PTCP,0,PTg,Y),

ex,(C,0,9,Y) = ex,(P'CP,0,PTgY) +e., (2.3)
( Y)

(
Nx, Caevga Nx, (PTCP797PT97 Y) + Ne,s

hold for all thermo-phase-kinematical states, then X; and X, are called iso-
morphic and P is called material isomorphism.

The purpose of this definition is to clarify what it means that two points X;
and X, consist of the same material. In the sequel we assume that we deal
with a material body whose points are materially isomorphic, i.e., the body
is homogeneous.

Following Noll (see [Nol72], §10) we introduce the symmetry group of a ma-
terial point X as follows: Choose X5 = X; in Definition 2.1. Then P in (2.3)
is called a material automorphism or a symmetry transformation at the point
X. The equations (2.3) are obviously satisfied if we choose P as identity, i.e.,
P =1 and e. = 0,17 = 0. It could be that not only the identity satisfies
(2.3). The collection of all such symmetries is called the symmetry group of
the material. In particular, a material point is called isotropic, if its sym-
metry group coincides with the group of all orthogonal transformations. We
quote a theorem from [Ber92], which lists some relations between symmetries
and material isomorphisms.

Theorem 2.1. (i) Let P be a material isomorphism between two material
points and G the symmetry group of the first point. Then PG, P! is the
symmetry group of the second one.

(ii) If P is a material isomorphism between two material points with symme-
try groups Gy and Gy, respectively, then A,PA, is a material isomorphism
between these points for all Ay € Gy and A, € G,,.

(i) Let P and P be material isomorphisms between two material points with
symmetry groups Gy and Gy, respectively, then Pp1l¢ G, and PP € G,.

2.3 Thermo-phase-elastic ranges and assumptions

Adapting an idea of Bertram (see for example [Ber98]), we introduce the
concept of thermo-phase-elastic ranges.



Definition 2.2. A thermo-phase-elastic range consists of a quintuple {Ep,

Spy @p, ep,np}, such that

(i) E, is a path-connected subset of the space of all independent and internal
variables (C, 0, g, Y') which is supposed to form a differentiable manifold with
boundary OE,,

(i) there is a set of material functions F'°, F'9, F¢  F" (see comment below),
which is continuously differentiable on E, and which can be extended onto
the whole space of independent variables such that the extension is still
continuously differentiable.

The boundary of E, is called the yield limit or yield surface. We formulate
the following

Assumption 2.1. (Existence of thermoelastic ranges) For any thermo-kine-
matical process with phase changes {C(t),0(t),g(t),Y(t)}, t € [0,T], there
exists a thermo-phase-elastic range | E,, Sp, gp, €y, Mp ¢ Such that

(i) its final value {C(T),0(T), 9(T),p(T)} is in E, and

(ii) for any continuation of this process which is entirely in E,, the caloro-

dynamical state at its end is determined by the elastic laws (corresponding
to the elastic range E,) FPS, Fi F3, 7 by its final value

S = F5(C,0,g,Y),
q = F)C,0,9,Y),

= FY(C,0,9,Y), (2.4)
n = FNC,0,9,Y).

It seems to be a common understanding that the vast majority of solid ma-
terial has some elastic range which might be very small or not. Therefore
this assumption is not very restrictive. The second one below is stronger. It
assumes that mechanical properties of the material under consideration do
not change under any inelastic deformations.

Assumption 2.2. (Isomorphy of thermo-phase-elastic ranges) Let {EO, So,

qo, 60,770} and {Ep, Sp; Gp; €p, np} be two thermo-phase-elastic ranges of the
same material point. Then the constitutive elastic functionals are isomorphic,



i.e., there exists a material isomorphism P such that

S(C,0,q,Y) PF5(PTCP,0,PTg,Y)PT,

q(C,0,9,Y) = PF{PTCP,0,PTq,Y),

e(C,0,9,Y) = FE(PTCP,0,P"g,Y) +e,, (2.5)
n(C,0,9,Y) = FQ(PTCP,0,PTg,Y) + 1.

hold for all thermo-phase-kinematical states {C, 6, g, Y}. Note, that we have
dropped any index referring to a material point.

Some comments: As long as the thermo-phase-kinematical process belongs
to the current elastic range E,, the set of elastic laws (2.4) are the one-
to-one relations between dependent and independent variables (and hence
functionals in (2.4) and (2.5) become functions). But as soon as the process
leads to a penetration of the yield surface 0E,, the functions describing the
thermo-phase-elastic laws change. This change can be described by the time-
dependent variable P. With its help we can reduce the whole lot of elastic
laws in different elastic ranges to the set of initial elastic laws F5, F§,Fg,F{.
Note that the tensor P can neither be interpreted as a plastic nor as a
TRIP deformation. Following Bertram, we call it plastic transformation. In
general, it is not symmetric, although for isotropic materials it can be chosen
symmetric, moreover for metal plasticity P can be considered as unimodular,
see [Ber98], [Ber02] for details.

3 Description of the model

3.1 Yield criterion

As usual, in order to describe the set E, and its evolution during yielding
we use an indicator function ¢. ¢ is called the yield criterion. It assigns
to each deformed state some real number being zero on the boundary JE,
of the elastic range E,, negative in its interior and positive otherwise. It is
supposed to be independent of the temperature gradient g. We collect all
additional variables (which describe such features as hardening, e.g.) in a
vector H and include H as a parameter in ¢. H is supposed to belong to
some finite dimensional linear space. The yield criterion

¢»=¢(C,0,P,Y,H) (3.1)



is assumed to be continuously differentiable with respect to all its arguments.
We say that yielding occurs if and only if the deformation process does not
only reach the yield limit but also penetrates it, i.e., if both

#(C,0,P,Y,H)=0 (yield condition) (3.2)
and
0¢ 0¢ 0 . .\
—C*+=0"+=Y* 1 .
50 C* + 50 0° + oy ¥ > 0 (loading condition) (3.3)
hold.

Note that loading does not necessarily mean the increase of stress, as it is
defined in the space of deformations. In our context loading can also mean
phase change or change of temperature. If both yielding and loading condi-
tions simultaneously hold at some point X, then its elastic range changes. We
assume that this change can be described by appropriate evolution equations
for P and H:

P*=pP,C,0,9,Y,H,C* 6% flow rule (3.4)

H*=h(P,C,0,9,Y,H,C* 6*) hardening rule (3.5)

Note that P and H remain constant if the process remains in the same
elastic range and that they change if yielding occurs, i.e., both (3.2) and
(3.3) hold. For simplicity we consider only quasistatic processes, i.e. the
functional description of the caloro-dynamical state is rate independent. In
this case the functions p and h must be homogeneous of first degree in C*
and 6°. Therefore the last two equations can be rewritten as

P* = AP° = 3p°(P,C,0,9,Y, H,C",6%), (3.6)
H* = \H® = Mi*(P,C, 0,9, Y, H,C*,6%), (3.7)
where C° = |g—: and 0° = % show the direction of the corresponding in-

crements and p°, h° denote the restrictions of p and h, respectively, to the
normalized increments of deformation and temperature.

The positive plastic parameter A can be determined from the condition that
the deformation state belongs to the yield surface during yielding:

0 = ¢(C.0,Y,P,H) (3.8)
_ 0 e 0P, 0 o, 0P L. 0P .
=0 Tt Tty Y tagp Ut B
_ 9 e 0P 0D o 0F e 0P o
R Y Y

J— a¢ o] 8¢ [e}
Wherea——a—P-)\P —a—H-)\H.



3.2 Consequences from the second law of thermody-
namics

In this section we derive some restrictions from the thermodynamic postu-
lates. For this purpose we introduce the Helmholtz free energy by means of
the Legendre transformation ¢ = e — nf, for which we set

QJJO(PTCPaQa PTg’ Y) = 6C'(I)TC’P7 Oa PTga Y) - OUO(PTCPa 07 PTg7 Y)

and
Y.(P,H) = e.(P,H) (3.10)
so that during yielding the following holds
¥p(C.0,9,Y) = 4po(P"CP,0,P"g,Y) + o(P, H) — n.(P, H).  (3.11)

From the second law of thermodynamics it follows that the dissipation in-
equality

1

1
P+ b + 5 V0 - 5pglsp .C*<0 (3.12)

holds for all admissible thermodynamical processes. For the rate of the free
energy we obtain

Y* = Y(PTCP,0,PTg,Y) + (P, H) — 0*n.(P, H) — 0112(P, H)

= %-(PTCP)'+%9'+%°-(PTg)'+;b—;-Y'+g%-P'

+ ?Iﬁ;-H'—e'nc(P,H)—e(g?;-P'+Z7I7;-H')

= P%PT-C'—F%@'—FP%—?-g'+%-Y'—0‘nc(P,H)

+ (20P%+g®88—1/;+g%—03%)-AP°+(2‘I”;—9§;’;)-AH°

For the stress power we have the following expression

1 1
5pgls,,(c, 0,9,Y)-C* = 5,061 det(P"HPSy(PTCP,0,PTq,Y)PT.C"
(3.13)



Substituting these expressions into the dissipation inequality (3.12) we obtain

1
0 > _5p5180.+QP(079795Y)ﬁ+w;;(cagvgay)+np(0707.gay)9.
0

= —%pal det(P_l)PSO(PTCP, 9, PTg, Y)PT .C*+ P % PO

oC
9o 9o

g —1 T T ] (]
—— -det(P ")Pq(P"CP,0,P ¢, Y)+ —0*+ P— - 3.14
+ 00 0 € ( ) qO( 'Y g, ) + 96 + ag g ( )
T T ° 61/10 °
+ m(PTCP,0,PTg,Y)0" + 52V
8¢0 5¢0 5¢c 877c 81/]6 5%
2C0P — — —0 — — 0
+ (20 ac T9% %, Tap ~Uap oH  oH
This inequality holds for all C*, 8,6°, g, ¢°, Y*. It follows that for any thermo-
kinematical processes we have

)-,\P°+( )-)\H"

Theorem 3.1. (i) The Helmholtz free energy does not depend on the tem-
perature gradient g.
(ii) The Gibbs relations

9o

So = 2poP—— P" 3.15
o
= ——. 3.16
"o 90 ( )
hold.
(iii) The heat-conduction inequality
q-9<0. (3.17)
holds.
(iv) For the thermodynamic forces ¢; = _?9—1@’ 1 < i < m, the following
inequality
> ¢ Yi>0, (3.18)
i=1

holds, i.e the dissipation rate due to the thermodynamical forces is nonneg-
ative.
(v) During yielding the following residual inequality must be also fulfilled:

0. one .
— ptCSp TPt (aiP(P,H)—ea";(P,H)) P* (3.19)
. e .
+ (8—H(P,H)—08H(P,H)>-H < 0.



3.3 Constitutive functions

We conclude our considerations by summarizing the complete set of con-
stituent functions for the thermo-elasto-plastic material with phase changes:

the referential law for the heat flux 0(C,0,9,Y)

the rule for the phase changes B(C,0,4,Y)

the free energies o(C, 0) and ¢.(P, H) — On.(P, H)
the yield criterion #(C,0,P, H)

the rule for the flow direction p°(P,CH,g,H,C°,6°)

the rule for the hardening direction h°(P,C,0,9,H,C°, 6°)

which should be known for a given material. This finishes the formulation of
the model.

4 Conclusions

The phenomenological model described above is a generalization of the finite
thermoplastisity theory of Bertram for the deformation processes with phase
changes. Mass fractions of the phases were used to keep the objectivity of the
model. Rate-independence has also been assumed. A generalization to the
rate-dependent case can be done as in [Ber(2], the relation of this approach

to the classical theories based on the concept of the unloaded configuration
can be found in [Ber98|.
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