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Abstract

We propose a parallel algorithm for stabilizing large discrete-time linear control sys-
tems on a Beowulf cluster. Our algorithm first separates the Schur stable part of the
linear control system using an inverse-free iteration for the matrix disc function, and then
computes a stabilizing feedback matrix for the unstable part. This stage requires the
numerical solution of a Stein equation. This linear matrix equation is solved using the
sign function method after applying a Cayley transformation to the original equation.

The experimental results on a cluster composed of Intel P-II processors and a Myrinet
interconnection network show the parallelism and scalability of our approach.

Keywords: Linear control systems, stabilization, Stein equation, invariant subspace,
mathematical software.

1 Introduction

Consider a discrete time-invariant linear control system
Tk41 = Az + Bug, k=0,1,2,..., (1)

where g = 7 is given, A € R™*" is the state matrix, and B € IR"*™ is the input matrix. In
case the spectrum (or set of eigenvalues) of the state matrix, denoted by A(A), is contained
in the open unit disc we say that A is (Schur) stable or convergent (in other words, |[A| < 1
for all A € A(A)). The stabilization problem consists in finding a feedback matrix F' € R™*"
such that the input uy = Fzi, £k =0,1,2,..., yields a stable closed-loop system

J,‘k+1:(A+BF)J,‘k, k=0,1,2,.... (2)

This problem has a solution if the matrix pair (4, B) is stabilizable, i.e., rank ([A — AI,, B]) =
n for all A with |A| > 1 (hereafter, I,, denotes the identity matrix of order n) [20]. The sta-
bilization problem arises in control problems such as, e.g., the computation of an initial ap-
proximate solution in Newton’s method for solving discrete-time algebraic Riccati equations,

*Partially supported by the DAAD programme Acciones Integradas Hispano-Alemanas. Maribel Castillo
and Enrique S. Quintana-Orti were also supported by the Project GV99-59-1-14 of the Generalidad Valenciana.

tZentrum fiir Technomathematik, Fachbereich 3/Mathematik und Informatik, Universitit Bremen, D-
28334 Bremen, Germany; benner@math.uni-bremen.de.

iDepartamento. de Ingenierfa y Ciencia de los Computadores, Universidad Jaume I, 12.080-Castellén,
Spain; {castillo,quintana}@inf.uji.es.



simple synthesis methods to design controllers, and many more [11, 12, 22, 29]. Large-scale
problems occur whenever the linear system results from some sort of discretization of a partial
differential equation or from delay systems. There, the number of states is often a couple of
thousands.

The stabilization problem can in principal be solved as a pole assignment problem. Pole
assignment methods compute a feedback matrix such that the state matrix of the closed-
loop system (2) has a prespecified spectrum. In this sense, there is a high degree of freedom
in the design of the stabilizing feedback matrix as the poles can be chosen to lie anywhere
inside the unit circle. This approach however presents several drawbacks. First, the pole
assignment problem is probably an intrinsically ill-conditioned problem for systems of order
larger than 10 [3, 16, 23, 24]; second, how to choose the poles to improve the conditioning
of the problem is still an open problem; and third, most of the pole assignment algorithms
are based on QR algorithm-like procedures (see [3, 25, 31, 32] and the references therein)
which are not well-suited for parallel computation. Therefore, they are too expensive for
large control systems.

In this paper we follow an efficient approach for partial stabilization similar to those
proposed in [7, 16, 29]. Our stabilization procedure is composed of two stages. We first use
a spectral division technique, related with the matrix disc function [21, 4], to separate the
stable and the unstable parts of the spectrum of the state matrix. This stage is composed
of matrix algebra kernels such as QR factorizations, matrix products, etc., which are highly
efficient on parallel distributed architectures [10].

The second method of Lyapunov is then employed to stabilize the unstable part of the
system [2]. This stage requires solving a Stein equation of the form

AXAT - X -Q =0, (3)

where @ is symmetric positive semidefinite, and X is the sought-after solution. Under the
given assumptions (i.e., (4, B) is stabilizable), the Stein equation arising in this stage has
an anti-stable coefficient matrix (JA| > 1 for all A € A(A)), and a unique symmetric positive
semidefinite solution.

The Bartels-Stewart method is one of the most well-known and efficient algorithms for
solving Stein equations of moderate dimension [5]. In this method, the coefficient matrix A
is first reduced to a condensed form by means of the QR algorithm [14]; then, in a second
stage, the solution is obtained from the reduced equation by a backsubstitution procedure.
However, the QR algorithm is known to present a lack of scalability [17, 18]; moreover, the
parallelism in this algorithm is lower than that of the usual matrix algebra kernels (matrix
factorizations, matrix products, etc.).

For large order Stein equations with stable coeflicient matrix, Stein solvers based on the
Smith iteration or the sign function are more appropriate due to their parallel efficiency [8].
In case the coefficient matrix of the Stein equation is anti-stable (this is the case we are
facing here; see Section 3), the Smith iteration can not be used as it only converges for stable
coefficient matrices and therefore we propose to employ the sign function method.

The paper is structured as follows. In Section 2 we describe an inverse-free iteration for
the matrix disc function which can be used to divide the spectrum of a matrix along the
unit circle. In Sections 3 and 4 we review, respectively, the stabilizing procedure via the
second method of Lyapunov, and a solver for the Stein equation based on the sign function
of a Cayley transformed matrix pair. Section 5 discusses a few implementation details of the



complete algorithm for partial stabilization. Section 6 reports our numerical experiments on
a cluster of personal computers based on Intel P-II processors connected via a high-speed
system area network (Myrinet). Finally, in Section 7 we summarize our concluding remarks.

2 Spectral division with the matrix disc function

There exist several definitions of the matrix disc function (see, e.g., [6, 28]). For instance, let

I AR R
s[4 0 )s

be the Jordan decomposition of Z € IR"*" [14], where the Jordan blocks in J° € C¥*¥ and
Joo g n-k)x(n—k) contain, respectively, the eigenvalues of Z inside and outside the unit
circle. In case Z has no eigenvalues on the unit circle, the matriz disc function is given by

. . I, 0| -1
disc(Z) := Sl 0 O]S . (4)
Note that disc(Z) is unique and independent of the order of the eigenvalues in the Jordan
decomposition of Z [20].

In [21], Malyshev proposed an iterative procedure to divide the spectrum of a matrix
pencil along the unit circle, which can also be used to compute the matrix disc function of the
pencil [6]. In [4], Bai, Demmel and Gu refined this algorithm and provided a truly inverse-free
procedure for spectral division. Specifically, when applied to a matrix Z with no eigenvalues
on the unit circle the algorithm is based on the following iteration:

l —ng ] - l gi ZZ ] l ]f)k ] (QR factorization),

(5)
Zyr1 = UlyZy, Yiy1:=UpY,

with Zy := Z and Yy := I,,.

A practical stopping criterion for the iteration is to stop when ||Rx.1 — Rg|| < ¢ /€ || Rg]|
for a suitable matrix norm || - ||, a small order constant ¢, and ¢ the machine precision. Once
the stopping criterion is satisfied, two more iterations are carried out. Due to the quadratic
convergence of the iteration [4] the maximum attainable accuracy is ensured.

The matrix pair at convergence, (Zs,Ys), can be used to compute a basis for the stable
invariant subspace of Z as follows. First, compute a rank-revealing QR (RRQR) factoriza-
tion [14]

Y, = URII,

where U is orthogonal, II is a permutation matrix, and R is upper triangular, with rank (R) =
k. Next, factorize )
UT(Z,+Y,) = RU (RQ factorization),

where U is orthogonal, and R is upper triangular. The matrix U divides the spectrum of Z
as
AVRRVAD

T 717 —
UZU-[ 0 Zoy

] ) Z11 € RF*E) 75y € RF)X(n=h), (6)
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Here, A(Z11) contains the eigenvalues of Z inside the unit circle and A(Zy3) contains the
eigenvalues outside the unit circle. The first & columns of U are associated with the stable
part of the spectrum of Z and form an orthonormal basis for the stable invariant subspace of
this matrix.

The spectral division using the inverse-free iteration for the matrix disc function is only
composed of matrix kernels like matrix multiplication and (rank-revealing) QR factorizations
which can be efficiently implemented on parallel distributed architectures. Portable compu-
tational kernels for this matrix operations are provided in parallel linear algebra libraries as,
e.g., ScaLAPACK and PLAPACK [10, 30].

The matrix disc function is related with the inverse-free iteration (5) as shown in [6]:

disc (Z) = hmk—)oo(Zk + Yk)_IYk,
I —disc(Z) = limy_yoo(Zy, + Yi) "1 2.
3 Stabilizing discrete-time linear control systems

The second method of Lyapunov is a simple numerical procedure for stabilizing linear control
systems. Specifically, in the discrete-time case, the method relies on the following result [2].

Theorem 3.1 Let the pair (A, B) be stabilizable. Then,
F=-BY (X +BBT)"4
is a stabilizing feedback matriz, where X is the solution of the Stein equation
AXAT — X —2BBT =0, 0 < o < min(1,min{|\|; ) € A(A4)}),
and Z* denotes the Moore-Penrose inverse of a matriz Z [14].

Consider we have to stabilize a system defined by the matrix pair (A, B), and assume U
divides the spectrum of A as in (6). Applying this transformation to the matrix B, we obtain

T | B1
oo [B]

where B; € R¥*™ and By, € R(™%)*": the stabilization problem is then reduced to finding a
feedback matrix Fy € R™*("~k) that stabilizes the matrix pair (Asg, Bo).

Note that the matrix Ao is anti-stable (A(Ag2) lies outside the unit circle) and therefore
we can simply set @ =1 in the procedure described in Theorem 3.1 to stabilize (Ag2, B2). In
order to solve the anti-stable Stein equation associated with (Agg, Bs), we propose to use the
sign function method as described in the next section.

4 Solving Stein equations with the sign function method
The Stein equation is related with the Lyapunov equation of the form

AX + XAT +Q =0, (7)



via the Cayley transformation. Specifically, if we apply the transformation
c(A) = (A-I;) A+ I) (8)

to A from (3), then the Stein equation is equivalent to the Lyapunov equation (7) with
A =c(A) and Q = 2(A — I,)'Q(A — I,)"T. In other words, the Stein equation and the
Lyapunov equation resulting from the Cayley transformation share the same solution.

The Stein equation can also be related with the generalized Lyapunov equation AXE” +
EXAT+Q =0, with A= (A+1,), E = (E—1,), and Q = 2Q [8]. No explicit inversions are
required for this transformation. The cost of solving this generalized Lyapunov equation is,
in general, higher than that of solving the standard equation in (7), so we do not explicitly
investigate this approach here as we focus on the parallelization aspect of the problem. Note,
however, that in case c¢(A) is ill-conditioned, using the generalized Lyapunov equation may
give more accurate results.

The sign function method was first introduced in 1971 by Roberts for solving algebraic
Riccati equations [28]. Roberts also shows how to solve Lyapunov equations via the matrix

~

sign function in case A(A) is contained in the open left half complex plane. (The algorithm
can also be applied in case A(A) is contained in the open right half complex plane as is the
case when A = ¢(A) and A is anti-stable.)
Let Z € R™! have no eigenvalues on the imaginary axis and denote by
_ J- 0 1
s=s[% 4o

its Jordan decomposition with J~ € €**, J* e €¢=F)*(=k) containing the Jordan blocks
corresponding to the eigenvalues in the open left and right half planes, respectively. Then the
matriz sign function of Z is defined as

i -1 0 _
sign (Z) ::S[ Ok I, ] St

Note that sign (Z) is unique and independent of the order of the eigenvalues in the Jordan
decomposition of Z [20]. Many other equivalent definitions for sign (Z) can be given. For
more details see, e.g., the survey paper [19].

The sign function can be computed via the Newton iteration for the equation Z? = I
where the starting point is chosen as Z, i.e.,

Zo = 2, Zps = Q@+Zﬁ)m, k=0,1,2,.... (9)
It is shown in [28] that sign (Z) = limy_, o Z; and moreover that
: AT 0 0 0

mgn(l O A )—i—]gn—Zl X I]’ (10)

i.e., under the given assumptions, (7) can be solved by applying the iteration (9) to Zy :=

Q
and exploiting the block-triangular structure of all matrices involved, (9) boils down to

[ 4 ﬂ%T]. In [28] it is also observed that applying the Newton iteration (9) to this matrix

Ay := A, MH:@Q@+@&,

X k=0,1,2,..., (11)
Qo=0Q,  Qupr= 3 (Qr+ 451 QuALT),
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and hence from (10) it follows that X = % (limg s 00 Qk)-

When A is obtained as A = c(A), with A an anti-stable matrix, limy_,,, Ay = I, and a
suitable stopping criterion is ||A — I,;|| < ¢ v/€||A]||; two more iterations are performed once
this criterion is satisfied as the quadratic convergence of the iteration ensures the maximum
attainable accuracy.

Other iterative schemes for computing the sign function like the Newton-Schulz iteration
or Halley’s method (see, e.g., [19]) can also be implemented efficiently to solve Lyapunov
equations.

The solution of the Lyapunov equation via (11) only requires basic numerical linear algebra
tools like inversion and/or solution of linear systems. Here we propose to use a matrix
inversion algorithm based on Gauss-Jordan transformations which provides a higher efficiency
than the usual procedure based on LU factorization [26]. Hence, the sign function method
is an appropriate tool to design and implement efficient and portable numerical software for
distributed memory parallel computers.

5 Implementation issues

The proposed stabilization method for a discrete-time linear system represented by a matrix
pair (A, B) can be described algorithmically as follows.

1. Apply iteration (5), with Zy = A, Yy = I,,, until convergence.

2. Compute an RRQR factorization
Y, = URII,

where U is orthogonal, II is a permutation matrix, and R is upper triangular, with

rank (R) = k.
3. Compute an RQ factorization
U'(Zs +Y;) = RU,
where U is orthogonal and R is upper triangular.

4. Let U = (Uy, Us) be a partitioning of U, with U; € R™* and U, € R™ (%) Compute
A22 = UQTAUQ and Bg = UéTB

5. Solve the Stein equation
A X AL, — X —2B,BY =0,

using the sign function method applied to the Lyapunov equation resulting from the
Cayley transformation as in (7), (8).

6. Compute Fy = —B3 (X + ByBI)* Ay and the stabilizing feedback as F = (0, F5)U™”.

In stage 2, we can use a QR factorization with column pivoting to obtain an approximate
rank-revealing factorization [14]. Theoretically this orthogonal factorization may fail to reveal
the rank, though in practice this is a reliable numerical tool [9, 27].

In case A has eigenvalues on the unit circle we can nevertheless apply the algorithm to the
matrix pair (A/7, B) for 7 € R slightly smaller than 1. Thus, we divide the spectrum of A



along a circle of radius 7 and stabilize those eigenvalues with absolute magnitude larger than
7. Choosing 7 carefully so that A/7 has no eigenvalues close to the unit circle we can avoid
numerical difficulties associated with eigenvalues close to the unit circle. (Notice that, in such
a case, we have to modify the corresponding value of o in Theorem 3.1.) The same technique
can also be used to obtain a certain degree of stability, i.e., A(A+ BF) C {\ € C;|\ < 7}

In control problems usually the state matrix only has a few unstable eigenvalues. The
subsystem to stabilize in Stages 4, 5, and 6 is small and the cost of these stages is therefore
negligible when compared to that of Stages 1, 2 and 3.

Our algorithms are implemented using ScaLAPACK (scalable linear algebra package) and
PB-BLAS (parallel block basic linear algebra subprograms) [10]. These are public-domain
parallel libraries for MIMD computers which can be run on any machine that supports ei-
ther PVM [13] or MPI [15]. ScaLAPACK provides scalable parallel distributed kernels for
many of the matrix algebra kernels available in LAPACK [1]. This library employs BLAS
and LAPACK for serial computations and the BLACS (basic linear algebra communication
subprograms) for communication.

6 Experimental results

In this section we evaluate and compare the performance of the following algorithms for
partial stabilization of discrete linear control systems:

— PDGEDST: Parallel routine based on the matrix disc function for spectral division and
the Cayley transformation+sign function for solving the Stein equation.

— DGEDSTQR: Serial routine based on the QR algorithm [14] for both dividing the spectrum
and solving the corresponding Stein equation.

Both routines are implemented using Fortran 77 and the kernels in LAPACK. A parallel
implementation of DGEDSTQR is not possible as this algorithm requires several matrix kernels
which are not available in ScaLAPACK (basically, reordering of eigenvalues in the Schur form
and solution of a Stein equation with triangular coefficient matrix).

All our experiments were performed using IEEE double precision arithmetic (¢ ~ 2.204 x
1071%) on a cluster of Intel P-II processors at 300MHz, with 128 MBytes of RAM each.
The BLAS implementation we used achieves around 180 Mflops (millions of floating—point
arithmetic operations per second) for the matrix-matrix product (routine DGEMM). The nodes
of the system were connected via a Myrinet multistage interconnection network. A simple
loop—back test offered a latency of 33 usec. and a bandwidth around 200 Mbit/sec. for this
network.

In our first experiment we generate a random matrix pair (4, B), with n = m = 20
and entries uniformly distributed in [—1, 1]. In Figure 1 we report the distribution of the
spectrum of A and A + BF, with F' computed by means of algorithm PDGEDST. The figure
shows that, after applying the algorithm, the closed—loop system is stable. No significant
differences were found when algorithm DGEDSTQR was employed.

We next evaluate the performance of the parallel stabilizing algorithms based on the disc
and sign functions. Following the usual case in control problems, we generate random matrix
pairs (A, B) with a large number of stable eigenvalues (about 99%). The stable and unstable
eigenvalues are uniformly distributed in [0, 1) and (1, 10], respectively. The cost of the parallel
stabilizing algorithms is basically due to the cost of separating the spectrum of the stable and



Figure 1: Distribution of A(A) (left) and A(A+ BF) (right), with A and B random matrices
(n = m = 20), and F' computed by means of algorithm PDGEDST.

anti-stable part of the system as stabilizing the anti-stable part only requires the resolution
of a small Stein equation (of dimension O(n/100)). Actually, this equation is so small that it
can be solved serially on 1 node using, e.g., the QR algorithm [5]. No noticeable differences
were found in both the execution time and the numerical accuracy in that case.

Figure 2 shows the execution times of the stabilizing algorithms DGEDSTQR (results on 1
processor) and PDGEDST (results on n, = 2,4,...,16 processors) for a large linear control
system. In general, using the QR algorithm to separate the spectrum is computationally less
expensive than using the disc function for the same purpose (depending on the number of
iterations required by the inverse-free iterative scheme). However, the parallelism of the disc
function approach provides a considerable reduction in the execution time when the number
of processors is increased from 2 to 4 and from there to 6. The reduction is less significant
for a larger number of processors as the ratio between the problem size and the number of
processors becomes too small.
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Figure 2: Execution times of the stabilization algorithms DGEDSTQR and PDGEDST for
n=m=1400.



Figure 3 reports the execution time of algorithms DGEDSTQR (results on 1 processor) and
PDGEDST (results on n, = 2,4,...,16 processors) for linear control systems (A, B) of varying
dimension n = m. (As most of the computational cost is spent dividing the spectrum of the
state matrix no significant difference was found for a usual case in control, m < n.)
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Figure 3: Execution times of DGEDSTQR and PDGEDST on 4,9, 16 processors.

We also analyze the scalability of the parallel stabilizing algorithms. For this purpose, we
fix the dimension of the problem per node to n/\/n_p = 1000 and compute the Mflop ratio
per node (millions of flops per second on a node) of the algorithm. Figure 4 reports a high
scalability of our parallel algorithms as there is only a minor decrease in the Mflop ratio as
the number of processors is increased.

1 4 9 16 25 30
Number of processors (np)

Figure 4: Mflop ratio per node of the parallel stabilizing algorithm PDGEDST for n/,/n,=1000.
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Concluding remarks

We have presented parallel algorithms for the stabilization of large discrete-time linear control
systems. Qur new solvers employ an inverse-free iteration for the matrix disc function to
initially separate the unstable part of the spectrum of the state matrix. The subsystem is
stabilized using the second method of Lyapunov and the Stein equation arising in this stage
is solved by means of the sign function applied to a Cayley transformed pair.

Our two-stage approach can be used to stabilize large linear control systems, with a few

thousands of state variables, and only requires scalable matrix algebra kernels which are
highly efficient on parallel distributed architectures. The experimental results on a Beowulf
cluster show the performance of our new parallel routines.
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