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Abstract. The aim of this paper is to describe and analyse functionals which can
be used for computing hyperthermia treatment plans. All these functionals have in
common that they can be optimized by efficient numerical methods. These methods
have been implemented and tested with realistic patient data from the Charité Berlin,
Campus Virchow-Klinikum. The results obtained by these fast routines are comparable
to those obtained by relatively expensive global optimization techniques. Thus the
described methods are very promising for online optimization in a hybrid system for
regional hyperthermia where a fast response to MR-based information is important.
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1. Introduction

Regional hyperthermia (RHT) is going to take a technological step in the next future.
The basic idea is to heat up a deaply seated tumor region €2 to desired temparatures as
complete as possible while keeping the temperatures in the surrounding healthy tissue
G \ Q) below specified critical values. In case of achieving a good heat treatment the
efficacy of a simultaneous or subsequent chemo- and/or radiotherapy regimen might be
enhanced.

The energy deposition inducing the temperature increase is achieved with a set of
N radiowave antennas surrounding the patient. The latest generation of hyperthermia
equipment uses up to N = 24 antennas, which are positioned on an elliptic cylinder
in three rings and operate at the same frequency in a defined phase relation. The free
parameters are the phase delays ¢, with respect to a reference phase and amplitudes
aj (j=1,...,N) of the emitted radiowaves.

A basic hyperthermia treatment plan (for N antennas) therefore consists of N
complex numbers p; = a; exp(—ig;) which determine the power deposition pattern and
the resulting temperature distribution in the body. More precisely the forward problem
of computing the steady state temperature distribution inside the body G for a given
set of parameters p = (py, ...,pn)" € CV can be splitted in two steps:

e computation of the resulting electric field distribution FE(x) inside the
inhomogeneous body by solving Maxwell’s equations,

e computation of the temperature distribution 7'(z) by solving the bio-heat-transfer
equation, assuming perfusion in every tissue point x of G.

Now we can state the inverse or optimization problem of hyperthermia treatment
planning in more detail. Let us assume that critical temperatures T.(z) has been
assigned by medical reasons for every point x € G \ Q in healthy tissues. Then we
are looking for

max Ty subject to T(z) < T.(z) Vz e G\Q (1)

peCN
where Ty, is the temperature achieved by 90% of x€Q . This is a high-
dimensional nonlinear optimization problem in a Banach space formulation which
requires substantial computational effort. Most of this paper deals with adequate
simplifications of this functional which can be solved efficiently.

Recently a second generation of hyperthermia systems is going to get installed in
some oncological centers. The above mentioned triple-ring applicator with 12 antenna
pairs, i.e. 24 antennas, ist now commercially available as the so-called SIGMA-Eye
applicator (BSD Medical Corp., Utah, USA). Simulation studies employing a global
optimization routine formerly have demonstrated that this 24-antenna applicator can
significantly improve the control of SAR-patterns (SAR: specific absorption rate) in
comparison to the clinically used SIGMA-60 applicator (consisting of one ring of 4
antenna pairs, i.e. 8 antennas) (Wust et al 1996).
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Modern hyperthermia systems are built in a hybrid technique, i.e. the RHT
applicators operate in the field of view of a magnetic resonance tomograph (MRT).
Online registration of temperature distributions (noninvasive thermography, see e.g.
(Wloderczyk et al 1998, Wloderczyk et al 1999, Roemer 1995), can elucidate regions
exceeding critical temperatures (typically > 43, 5°C, so-called hot spots), and enables in
conjunction with clinical informations (e.g. localized discomfort or other intolerances) a
reformulation of the optimization problem in (1). The latter is performed by modifying
perfusions and adapting weighting factors as described later in this paper. However,
a fast and reliable solution of the inverse problem (1) will be required in real-time
(preferably in seconds) during heat treatments under MR-monitoring by matching the
adjustments to the individual clinical characteristics.

This paper deals with the development of efficient and flexible optimization
strategies for regional radiofrequency hyperthermia which are useful for interactive
online control. A global optimization method, optimizing suitable functionals (objective
functions) by efficient search algorithms (e.g. used in (Wust et al 1996)), is utilized as a
reference method. The first basic ideas for an elegant formulation of hyperthermia
optimization problems as an eigenvalue-problem have been described in (Bohm et
al 1993) and (Bardati et al 1995). A considerable generalization of this approach
with respect to three-dimensional models, inclusion of temperature distribution, weight
functions and time dependencies is outlined in the following.

2. Methods

First in subsection 2.1 the basic equations for FE-field, power and temperature
distribution are outlined. In the following we define functionals which are suitable to
optimize the power deposition pattern (subsection 2.2) or the temperature distribution
directly (subsection 2.3). The formulation of the optimization problem is performed in
a way that requires the solution of a generalized eigenvalue problem. For the latter task
efficient routines are available.

2.1. Basic mathematical models

We assume N antennas operating in a coherent mode at frequency w. The free
parameters consist of N complex amplitudes p; = a; exp(—ig;), which are combined
in the vector p. Each antenna generates an electric field p;E;(z), where E; describes
the normalized electric field of antenna j alone, assuming a;,; = 0 and a 502 load
for the other antennas ¢ # j . The relation between homogeneous and inhomogeneous
media, given by Maxwell’s equations, is included in the E;’s. Integral equation methods
(Wust et al 1999b), finite difference methods (Nadobny et al 1998) as well as finite
element methods (Beck et al 1999), are employed to calculate E;(z). Various problems
and controversies concerning the E-field calculation are discussed elswhere (Wust et al
1999b, Gellermann et al 1999).
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The total electric field is then generated by a superposition of the basic electric
fields Ej:

Ep)(x) = > pj Bi(z) . (2)

A relevant quantity for hyperthermia treatment is not the electric field itself but
rather the absorbed power (ARD), absorbed rate density, in W/dm?), which also depends
on the electric conductivity o (in S/m):

ARD(p)(z) = o(z) [E(z)[*.

First mathematical approaches in hyperthermia treatment planning focussed on
optimizing the ARD distribution, see e.g. (B6hm et al 1993). We will describe this
approach in more detail in section 2.2.

The ultimate aim of hyperthermia treatment plannig is to optimize the resulting
temperature distribution. So far no complete and efficient model exists, which
incorporates all aspects of the heat transfer (diffusion, perfusion, large vessels, whole
whessel free temperature regulation etc.). However a standard simplified model, the
stationary bio-heat-transfer-equation, governs major aspects and produces results which
agree sufficiently with reality. More precisely its solution determines the increase in
temperature, Thyp(2), achieved by a given ARD-distribution:

div(x gradThyp) — cWThyp + ARD = 0 . (3)

Here ¢ combines several quantities describing the material properties of the blood flow,
W (z) models the local perfusion, x(x) denotes thermal conductivity.

Thus the computation of a temperature distribution essentially consists of two steps.
Given a control vector p one has to compute the E; by solving Maxwells equations
(see above) and to compute 7' by solving (3), exploiting the fact, that a slightly more
complicated superposition principle analogous to (2) holds for Tiy,. Equation (3) is
solved very efficiently using an adaptive finite-element code (Bornemann et al 1993,
Deuflhard et al 1989). The inverse or optimization problem is formulated in (1).

2.2. Functionals for hyperthermia treatment planning

As already stated, optimizing the functional in (1) requires to solve a high-dimensional,
non-linear optimization problem. This approach is not suitable for computer-aided
optimizations in real time.

One specific optimization criterion was introduced in (Béhm et al 1993). This
approach starts with a functional which compares the absorbed energy in the tumor
region ) with the absorbed energy in the healthy tissues G \ Q:

[ o(@)|E(z)* dz
max 2 —  max Elle2@,0) ' (4)
pec [pl=t [ o(@)|E(x)[>dz  pecV |pll=1 ||E||r2c\a0)
G\
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This functional differs substantially from (1). However, from a mathematical point of
view, the advantage of this new functional lies in its Hilbert space structure, which
allows an efficient computation. Using (2) this functional is equivalent to

max (p, Ap)ev 5)

peC¥,lp =1 (p, Bp)cx
with N x N matrices A, B:

(6)

This problem is solved by the normalized eigenvector corresponding to the largest
generalized eigenvalue of

Ap = A\Bp . (7)

The normalized largest eigenvector only gives the relationship between the different
antenna parameters p;. Hence, the final treatment plan is achieved by multiplying p
with an additional amplitude factor a, s.t. all restrictions in the healthy tissue are met.

In its original form this elegant approach was realized in a 2D setting. A gene-
ralization to higher dimensions is easily performed, but has several additional severe
drawbacks:

(i) averaging over G \ Q gives little weight to overheated areas of small extension in
the healthy tissue, i.e. the resulting hyperthermia treatment plan can produce
pronounced hot spots,

(ii) the approach is limited to optimize the ARD distribution, i.e. the influence of the
heat transport with respect to the temperature distribution is neglected.

The main purpose of this paper is to find a functional, which has the same structure
as (4) but which better models clinical demands. I.e. we want to keep the efficient way
of maximizing the resulting functional by a generalized eigenvalue problem.

Of course we would like to compare the results of our optimization procedure with
the global optimum obtained by (1). However this functional is time-consuming to
maximize. Hence, we use as reference the results obtained by a method described in
(Lang et al 1997). The authors solve

;2&2 Q/ fi(z) dz + vggéz fo(z) dz + vga\/n fa(z) dz (8)
with
(43 —T(x))*> for T(x) <43°C
fiz) =

0 otherwise,
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(

(T'(z) —42)*> for T(z) > 42°C
fa(z) = <
\ 0 otherwise,
[ (T(z) - Tu(z) —€)?  for T(z)>T.(zx) —¢
f3(z) = <
\ 0 otherwise,

(with weight factors v; and vy for the corresponding terms) by an iterative method
(damped Gauss-Newton method). This approach is a compromise between numerical
efficiency and medical/clinical demands. We would like to stress, that approximating
the global maximum of this functional can be done with reasonable numerical effort,
but even a single step of the Gauss-Newton-iteration requires substantially more
computation time then maximizing the functional (4) by solving (7) as described.

2.3. Efficient functionals for optimizing temperature distribution

Again, we start with the basic functional (4). We will discuss various improvements of
this functional leading to a clinically relevant and practical methodology for computing
hyperthermia treatment plans. All of these functionals have the same structure as (4),
hence they can be maximized by the simple eigenvalue computation. More specifically,
we will follow two ideas:

e Temperature optimization: we introduce a functional, which allows to incorporate
the temperature solution of the bio-heat-equation in a suitable Hilbert space
functional,

e Generation of weight functions: theory offers the possibility of introducing suitable
weight functions which can be used to consider particular attributes of the patient.

In section 2.2 we have described the method from (Béhm et al 1993) for optimizing
the ARD-distribution

N
ARD(z) = o(2)|E(@)]” = ) pp;o(e)Ei(2)E;(x) .
ij=1

In a first attempt we have experimented with functionals like (4), where the L?-norm
has been replaced by more general Sobolev norms of order s > 0 . This change was
done in order to give more importance to localized structures with large derivatives like
hot spots. The success of this approach was limited because the electric field E also
exhibits dicontinuities at every boundary between organs, bones, muscles etc., thus not
only hot spots are weighted by using those norms. Moreover optimizing ARD instead
of T" is often not reflecting clinical conditions, in particular if we are not considering any

kind of heat transport.
So we turn to optimizing the temperature distribution itself. The main problem
is to find adequate function spaces and functionals, which also allow an optimization
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by a generalized eigenvalue problem. The temperature 7(x), which is finally reached
by the hyperthermia treatment plan p, has two components: the basal temperature
T,as, which describes the temperature prior to the treatment, and Ty, the temperature
increase due to p and the related ARD-distribution. Thus for each z € G we have
T(z) = Thas(x) + Thyp(z) . The quantity Tiy, is computed by solving the bio-heat-
transfer equation (3), which describes a linear dependence of Tjy, on ARD. So we
have

N
Tiyp(ARD)(2) = ) pipTup(0EE;)(z) = (p, M(2)p)
ij=1

where the coefficients of the matrix M(z) = (M (z)));;=, are the solutions of (3) with
ARD(z) = o(z)E;(z)E;(z). Hence, we restrict ourselves to optimize the increase in
temperature Ty, in an L'-setting. This is reasonable, because the basal temperature is
rather homogeneous in the relevant interior of the body. We define

f Thyp(z) dz

Q

max . 9
pec =1 [ Thyp(z) dz (©)
a\Q

The functional (9) again is maximized by solving a generalized eigenvalue problem as
stated in (7), where A, B now are N x N matrices with

A;j :/ M;j(z) dz , By = / M;j(z) dz .
Q G\
For more details see (K6hler 1999).
Significant improvements could be achieved by introducing suitable weight functions
w. For this purpose we modify (9) to
(j; Thyp (2) w(z) dz

max , 10
pECN ||p||=1 f Thyp(x) w(zr) dz 1o
G\Q

which leads to matrizes A and B where the integrands of the elements have changed to

The main advantage of the latter approach in connection with a efficient eigenvalue
optimization is its adaptiveness: starting with a preliminary weight function one obtains
a temperature distribution, which might exhibit hot spots. This information can be used
to formulate an adapted weight function for a second optimization step.

3. Results

3.1. The steady state case

In the following we outline some results obtained with these different functionals.
The treatment plan ”sync” refers to a standard adjustment typically utilized if no
optimization is available. Here constant p with p; = p; for ¢,7=1, ..., N was used.
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Table 1. Results for optimizing the temperature distribution with different
functionals. Ty is the temperature achieved or exceeded by 90% of the target (near
the minimum temperature), Tmean is the averaged temperature and Vjo the percentage
of the target with 42°C or more.

antennas control patient 1 patient 2

Too Tean Vao Too Tean Vao
“sync” 39.09°C 40.33°C  3.48% 38.48°C 39.89°C  2.96%
“ARD — L?*» 39.15°C 41.08°C 30.13% 38.48°C 39.71°C  0.00%
“Thyp” 39.43°C  41.39°C  35.51% 38.28°C 39.43°C  0.00%
“ThypWs:” 39.52°C  41.62°C 41.71% 40.23°C  41.99°C  51.07"%
“Thypwadart” 39.78°C  41.43°C  34.94% 40.51°C  42.50°C 64.42%

”ARD — L?” is obtained with the method of (Bohm et al 1993) as described in section
2.2. The result "Tj,,” is obtained with the (unweighted) functional (9). The values
for "Thypws" are caused by a control computed through a one-step-computation, using
a weight function which can further differentiate between tissues or regions. Finally
? Thypw?23?P” stands for a control based on the adaptive strategy as described above.

Calculations have been done for two patients of the Charité Berlin, Campus
Virchow-Klinikum: at first a female patient with a cervical carcinoma recurrence
(patient 1), and secondly a male patient with a rectum carcinoma (patient 2). Initially,
patient data were obtained on finite element grids to calculate field and temperature.
For an efficient implementation of our techniques all these data have been interpolated
to regular grids.

Table 1 displays three different quality measures for each of the hyperthermia
treatment plans, normalized to a fixed total power. The index temperature Ty, (see
legend of table 1) is accepted as most powerful predictor of the heat treatments quality
among clinicians (which is derived from various clinical data, see e.g. (Rau et al 2000)).

Figures 1 and 2 display temperature distribution in a representative cross section
and longitudinal section of patient 1 and 2, respectively, for different optimization
strategies.

Figure 1. Temperature distributions on a cross section of patient 1 for the functionals
“sync” (left) and “ARD — L?” to illustrate small benefit obtained following the
approach of (B6hm et al 1993).
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Figure 2. Temperature distributions on a cross section and longitudinal section of
patient 2 for different functionals: “sync” (left), “Tiy,w2d®Pt” (center) and the result
obtained by global optimization according to (Lang et al 1997) (right).

3.2. Modelling time-dependency

So far the objective of our optimization is attributed to a single set of phases and
power amplitudes p in the steady state. However, this approach neglects the dynamic
process of how the temperature increases from its original temperature Ti,s(z) to the
steady state temperature T(x) = Thas(z) + Thyp(2). Modelling the time-dependency
opens new directions for optimizing hyperthermia treatment plans. By following the
time evolution of T'(x) and switching over the power deposition pattern before reaching
a critical temperature value we can originally select adjustments which exhibit hot spots
in their steady states. Lets assume a set of hyperthermia treatment plans, which in their
steady states exhibit hot spots in different locations. This allows to adjust higher power
amplitudes for these plans if we control the heating process in time and switch between
these plans accordingly.

In order to put this in a mathematical framework we need a model as well as
optimality criteria for the switching points.

Of course, a heuristic approach of this sort is used in clinical reality already. A
typical hyperthermia treatment session lasts approximately 75-90 min. and the medical
supervisor modifies the original p according to the patients reactions. Our aim is to
describe and implement some basic ideas for a strict mathematical optimization, which
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can be utilized in a systematic way during a heat treatment.
Therefore, we assume a reasonable temporal transition between two steady-state

temperature distributions from T to TP according to Newtons cooling law, which

hyp hyp
leads to

T(e,1) = Thusl@) + Tip(@) + (Tip(@) = Tip(@)) (1~ exp(~&(2)1)

(for further details see (Kohler 1999)). The exponent &(x) varies locally in reality,
especially in dependency on the tissue. However, in good approximation we can choose
a medium and constant value £(z) = 0.5 .

Figure 3 shows the temperature-time-curve at a fixed point z for a combination
of antennas controls p(!) and p®. On the left a combination of treatment plans were
p®) achieves a higher Ty, than p(), on the right the opposit, which leads to cooling in
position z after switching over, is shown.

45
Thas+Thgn Thas+ Ty
| 2 \
Tbas + T}Eyz) Tbas +T}Ey2)
= =
&~ &~
Thas Tvas
*y Aty 1 100 * t Aty 10

Figure 3. Heating/cooling profile in a certain point z for a combination of two
hyperthermia treatment plans.

In the following we describe the results obtained by combining two power deposition
patterns p") and p®. The weight function w used in the computation of p(® has been
defined adaptively in dependency on the temperature distribution achieved with p(*)
by choosing rather high weight factors in normal tissues, where high temperatures are
achieved in the steady state sense. Here, one important optimality strategy is to enforce
the controls to differ sufficiently with respect to the localization of arising hot spots.
Moreover, we have to specify the duration At; and At, for each treatment plan. Due to
our simple but realistic heating model, this low-dimensional optimization problem can
be solved by a direct method, for details and implementational issues see (Khler 1999).

In Table 2 for clearity we repeat some results starting from the method introduced in
(Bohm et al 1993), continued by the best steady state solution (which was “Thy,w?d2Pt)
for comparison with the descriptors of an average temperature distribution caused
by a combination of two suitable controls as described above (“comb”). Finally for
comparison we have listed the 7-descriptors achieved with the global optimization of
the functional (8).

Tables 1 and 2 demonstrate, that the temperatures in the target (tumor) can be
increased remarkably by stepwise utilization of our optimization methods. Combining
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Table 2. Some more optimization results, combined with two examples from Table 1
for comparison.

antennas control patient 1 patient 2

Ty Tmean Vaa Ty Tmean Vaa
“ARD — L?*» 39.15°C 41.08°C 30.13% 38.48°C  39.71°C 0.00%
“Thypwsardap“’ 39.78°C 41.43°C 34.94% 40.51°C  42.50°C 64.42%
“comb” 39.81°C  41.46°C 35.80% 40.57°C 42.63°C 65.85%
“global” 39.83°C 41.53°C  37.85% 40.66°C  42.74°C  69.79 %

just two antenna controls employing the efficient procedure sketched above, for both
examples we achieved the best improvement. We would like to state that - within the
accuracy of the used mathematical models - the latter method gives results, which are
comparable with those obtained by the comparatively expensive global optimization.

4. Discussion

The next generation of RF-applicators (Sigma-Eye applicator) will require hyperthermia
treatment planning, because the number of adjustable parameters (11 relative phases,
11 relative amplitudes) is much too high to find the ”best adjustment” by intuition
or trial and error (see (Wust et al 1996)). Treatment planning systems are now at a
stage of clinical practicability, and a preliminary verification has also been performed
(Gellermann et al 1999).

In particular, antenna models are available employing the FDTD-method or FE-
method to describe the FE-field in the water bolus quite accurate for the Sigma-60
applicator (Wust et al 1999a) and as well for the Sigma-Eye applicator (data to be
published). Even though, a quite pronounced sensitivity from the patient model for the
E-field (SAR-pattern) in the interior of the body is known (details of the segmentiation,
grid, numerical method) (Gellermann et al 1999, Wust et al 1999b), accumulation
of further experimental and clinical data will probably enable a valid patient-specific
prediction of the power deposition pattern. Therefore, the forward problem until the
level of F(z) appears manageable.

On a weaker basis stands the numerical calculation of the temperature distribution
(from the bioheat-transfer equation), mostly because of the variable tissue/tumour
perfusion that is considerably influencing the temperature. The basic problem is that
the perfusion under hyperthermia conditions is not well known, and furthermore can
vary during heat treatments (e.g. because of local and systemic thermoregulatory
process). Solutions of the inverse problem depend even more sensitively on numerous
parameters, including the objective function itself, and especially the assumed perfusions
and other details of the input. Clearly, all uncertainties of the prior planning process
(patient model, E-field calculation, temperature calculation), and in addition individual
variations such as positioning errors, shifts of organs and tissues thermoregulation,
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systemic influences, intolerances etc. are accumulating. Therefore, in clinical use a
continuous online adaptation of the optimization procedure according to the individual
situation, i.e. during the heat treatment, appears obligatory.

A hybrid system is designed to deliver online information in order to adjust the
optimization process:

e Registration of temperature distribution during heating-up after switch-on of power
(i.e. delivering information about the gradient of temperature rise) can characterize
the S AR-distribution in vivo.

e Registration of temperature distribution during steady state can characterize
perfusion, and furthermore localize hot spots (which might or might not be
predicted by the SAR-distribution prior determined). In addition, other methods
to measure perfusion patterns are available in the MRI, e.g. utilizing contrast media
bolus or other dedicated sequences.

e Individual intolerances might be found, reduced perfusion postsurgically or
temperature-dependent sensations of any kind.

The optimization method described in this paper, especially the strategy to maximize
the functional in (10), is in particular suitable to utilize the data from the hybrid system.
The following CPU times are given for a Silicon Graphics Indigo 2 with 250 MHz MIPS
and 192 MB RAM:

a) For a reclassified perfusion case (estimated form MRI) a computation of M(z);; to
determine Thyp(z) according to (9) needs 6.5s for 4 channels (7,7 =1, ...,4), and
consequently 58.8s for 12 channels (3,5 =1, ...,12) .

b) An adaptation of weighting factors needs 2s for 4 channels and 18s for 12 channels
to recompute the matrices like in (10) (multiplying the integrand with w(z)) for
solution of a generalized eigenvalue problem.

c¢) The solution of a generalized eigenvalue problem itself is performed very rapidly,
i.e. in 0.1s for 4 and less than 1s for 12 channels, respectively.

The result of such an optimization process is an improved set of control parameters p;
(j=1,...,4 or 1,...,12) of phases and amplitudes. Other functionals, like in (4),
are also useful, e.g. if a change of conductivity o(x) is registered and considered ex
posteriori.

The computation time for a completely updated optimization of the Sigma-Eye
applicator (12 channels) is clinically feasible (<< 805s), and further reduction is expected
with evolving computer technology (at least a factor 10). A considerable flexibility is
available to customize the control parameters to changes in conductivity, perfusions, and
individual intolerances of the patient. Therefore, the developed eigenvalue approach is
especially useful for online optimization in a hybrid RHT-system.
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