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Abstract

Computing reduced-order models of controlled dynamical systems is of fundamental
importance in many analysis and synthesis methods in systems and control theory. Here
we address algorithmic aspects of model reduction methods based on balanced truncation
of linear discrete-time systems. We also consider singular perturbation approximation
methods. In contrast to the often used approach of applying methods for continuous-time
systems to discrete-time models employing a bilinear transformation, we devise special
algorithms for discrete-time systems that are more efficient. All methods require in an
initial stage the computation of the Gramians of the system. Using an accelerated fixed
point iteration for computing the full-rank factors of the Gramians yields some favorable
computational aspects, particularly for non-minimal systems. The computations only
require efficient implementations of basic linear algebra operations readily available on
modern computer architectures. We discuss aspects of the parallel implementation of these
methods and show the performance and scalability on distributed memory computers.
Our approach enables users to deal with very complex systems using relatively cheap
infrastructure, as, e.g., a local PC or workstation network.

1 Introduction

Consider the transfer function matrix (TFM) G(\) = C(AI — A)~'B + D, and the associ-
ated stable, but not necessarily minimal, realization of a discrete, linear time-invariant (LTT)
system,

Tgr1 = Azp+ Bug, yr = Cxg+ Duy, k=0,1,2,..., (1)

where 2o = 7 is given and A € R"*" B € R**™ (C € RP*" D € RP*™_. The number of
state variables n is said to be the order of the system. We assume that the spectrum of A,
denoted by A(A), is contained in the open unit disk, i.e., A is (Schur) stable or convergent.
This implies that all the poles of the TFM G(s) are contained in the open unit disk and hence
the stability of the system (1).

*Partially supported by the DAAD programme Acciones Integradas Hispano-Alemanas. Enrique S.
Quintana-Orti and Gregorio Quintana-Orti’s research is part of the project GV99-59-1-14 funded by the
Conselleria de Cultura y Educacion de la Generalidad Valenciana.

tZentrum fiir Technomathematik, Fachbereich 3/Mathematik und Informatik, Universitit Bremen,
28334 Bremen, Germany. E-mail: benner@math.uni-bremen.de

iDepartamento de Informética, Universidad Jaime I, 12.080-Castellén, Spain. E-mails:
{quintana,gquintan}@inf.uji.es



We are interested in finding a reduced-order LTI system,
Tpt1 = A.ﬁk-l-é’&k, Up = é.i‘k-l-f)’&k, k=0,1,2,..., (2)

of order £, £ < n, with ) = #, such that G(\) = C(\I — A)~'B + D approximates G()\).
This problem arises whenever a dynamic system of high complexity is to be analyzed or a
control system is to be synthesized. Often, models that are derived by interconnecting several
sub-models contain redundancies, in particular if automatic tools for generating physical
models such as DYMOLA or MODELICA [5, 6] are used. Usually, it is necessary to remove
such redundancies: even if they would not influence the systems dynamics in theory, this
may no longer be true if finite-precision arithmetic is used to simulate the behavior of the
system. When simulating flexible mechanical structures, high-order finite-element models are
necessary to obtain accurate models. Depending on the operation mode, high accuracy at
low frequencies is often sufficient. Usually, this can be achieved using low-order models; see,
e.g., [30]. In VLSI design, due to the ever increasing complexity, it is nowadays necessary to
replace circuit or network models by low-order models in order to keep simulation times small
enough; see, e.g., [7] and the references therein. In synthesis problems, often the complexity
of a controller is of the same order as that of the model, e.g., when a dynamic compensator
is used to control the system. As both the cost of hardware and the computation time grow
steeply while the reliability of the controller decreases when its order is increased, usually the
order has to be limited to O(10); see, e.g., [23] for some discussion of the competing demands
in controller hardware.

A large class of model reduction methods rely on similarity transformations of the state-
space model with a non-singular matrix Y. These lead to projection methods as follows: for
Y = [TlT, LZT]T € R™" and Y ! = [T, L,], with T} € R"*™ and T, € R™*", the reduced-order
model is defined as A = TjAT,, B = T;B, C = C'T,, and D = D. In this paper we will focus
on these methods.

There is no general technique for model reduction that can be considered as optimal in
a general sense since the reliability, performance, and adequacy of the reduced-order system
strongly depend on the system characteristics. Model reduction methods usually differ in
the measure they attempt to minimize. The methods considered here are based on balanced
truncation (BT) methods [17, 25]. Additionally, we consider singular perturbation approxi-
mation (SPA) methods [16] based on a minimal realization of the system computed with a
BT method. They all belong to the family of absolute error methods, which try to minimize
|Aalloo = |G — G|loo- Here, ||G|loo denotes the Loo- or Heo-norm of a stable, rational matrix
function which is defined as

|Glloc = ess sup omax(G(e™)), (3)

wE[—m,m)

where 7 := v/—1 and omax(M) is the largest singular value of the matrix M [11].

BT model reduction methods are based on information retrieved from the controllability
and observability Gramians W, and W,, respectively, of the system (1). These are given by
the solutions of two “coupled” (as they share the same coefficient matrix A) Stein equations
(or discrete Lyapunov equations)

AW AT —w,+ BBT =0, AT"w,A-w,+CTC =o. (4)



It should be noted here that the above linear matrix equations re-present systems of linear
equations with n(n + 1)/2 (exploiting symmetry) unknowns. For many applications where
discrete or discretized LTI systems of the form (1) occur, n can be anywhere from a few
hundreds to a couple of thousands. Problems of size larger than n = 1000 can often no
longer be handled on desktop computers. One possibility to deal with such problems is
to use advanced computer architectures like distributed memory parallel computers (e.g.,
workstation or PC clusters) in order to compute a reduced-order model that can be dealt with
on a single processor machine. This will be the approach pursued in this paper. Note that
such an approach is in principle feasible whenever several desktop computers are connected
in a (local) network.

As A is assumed to be stable, W, and W, in (4) are positive semidefinite and therefore
can be factored as W, = STS and W, = RTR. The factors S and R are often called the
Cholesky factors of the Gramians, even if they are not (upper or lower) triangular. These
factors are usually computed using Hammarling’s method [13, 14, 27|, yielding S, R € R**"
upper triangular. Numerically reliable model reduction methods use these Cholesky factors
rather than the Gramians themselves; see, e.g., [25, 28, 29]. The condition number of the
solution matrix can be up to the square of that of its Cholesky factor. Hence, a significant
increase in accuracy can often be observed working with the factor if the solution matrix is
ill-conditioned.

However, if the system is not minimal, then W, and/or W, are singular and the Cholesky
factors computed by Hammarling’s method are not full-rank matrices. In particular, for large
systems, it can often be observed that the numerical rank of the Cholesky factors is much
less than n.

We therefore investigate in Section 2 a method based on an accelerated fixed point iteration
that computes full-rank factorizations W, = 878 and W, = RTR, ie., § € Rank(We)xn
R € Rank(Wo)xn - Thig can save a significant amount of computational cost and workspace
solving the Stein equations and particularly in the subsequent computations for obtaining the
reduced-order model. This approach also has some advantages regarding numerical robustness
when determining the McMillan degree and a minimal realization of an LTT system.

We then describe in Section 3 model reduction methods that use these full-rank factors.
The methods can be regarded as efficient variants of square-root and balancing-free square-
root truncation methods. Using any of these methods to compute a minimal realization of
the system, the singular perturbation approximation formulae can be applied to obtain a
reduced-order model with zero steady-state error.

The parallel implementation of these model reduction methods is described in Section 4.
Moreover, numerical examples reporting the accuracy and performance of the resulting rou-
tines on serial and parallel computers are provided. Using parallel computers with distributed
memory such as Linux-PC or workstation clusters allows the application of our methods to
systems of order up to n = O(10°).

2 Computing the Gramians

Consider the Stein equations in (4). Both can be formulated in a fixed point form X =
FXFT + @G, from which it is straightforward to derive the fixed point iteration

Xy :=G, Xk—|—1::FXkFT+Ga k=0,1,2,....



This iteration converges to X if p(F) < 1, where p(F') denotes the spectral radius of F. That
is, convergence is guaranteed under the given assumptions. The convergence rate of this
iteration is linear. A quadratically convergent version of the fixed point iteration is suggested
in [24]. Setting Xy := G, Fy := F, this iteration can be written as

Xpi1:= Fp Xy FE + Xy,  Fppq = FZ, k=0,1,2,.... (5)

The above iteration is referred to as the squared Smith iteration. As the two equations in (4)
share the same coefficient matrix A, we can derive a coupled iteration to solve both equations
simultaneously,

Xo := BBT, Y, :=0C7TC, Ay = A, (6)
Xk41 1= AkaAg + Xg, Yi41:= A{YkAk + Yk, Ak—i—l = A%, k=0,1,2,....

The most appealing feature of the squared Smith iteration regarding its implementation is that
all the computational cost comes from matrix products. These can be efficiently implemented
on modern serial and parallel computers [4].

The convergence theory of the Smith iteration (5) derived in [24] yields that for p(F) < 1
there exist real constants 0 < g and 0 < p < 1 such that | X — X||2 < p||G||2(1 — p)*pok.
This shows that the method converges for all equations with Schur stable coefficient matrices
F. Nevertheless, if the coefficient matrix F' is highly non-normal such that ||F||2 > 1, then
overflow may occur in the early stages of the iteration due to increasing ||Fjl||2 although
eventually, limy_,, F = 0. Easily computable overflow bounds are derived in [2]. In case
overflow occurs one can switch to a sign function based solution of the Stein equations that
allows a similar efficient implementation, see [3, 2].

In the case considered here, the “right-hand sides” of the Stein equations are positive
semidefinite and are given in factored form BBT and CTC. As A is stable, the Lyapunov
stability theory (see, e.g., [15]) shows that the solution matrices are positive semidefinite
and hence can be factored as W, = S7S, W, = RTR with § € R**" and R € R™*". If
s = r = n such that S, R are square, possibly singular, matrices, then these factors are called
the Cholesky factors of the solutions. Here we consider full-rank factors of the solution, i.e.,
rank(S) = rank(W,) = s < n, rank(R) = rank(W,) = r < n. In particular, if s,r < n, we
will show that significant savings in computational work are obtained by using the full-rank
factors rather than the square Cholesky factors for subsequent computations.

The coupled squared Smith iteration (6) can be modified to compute the full-rank factors
of W,, W, directly; see [2]. We focus here on the iteration for computing W,; the iteration for
W, can be treated analogously. Setting G = BB”, the X, iteration in (6) can be re-written
by setting Sy := B and

Sk

Sk1Sp41 <+ SeSE + Ar(SkSE)AL =[Sk, AxSk] [ STAT

], for k=0,1,2,.... (7)

In each step (7) the current iterate Sy is augmented by Ay Sy such that Siiq := [Sk, Sk Ak]-
The computational cost for the k-th iteration step of such a procedure is 2(2%¥m)n? flops
(floating-point arithmetic operations), where m is the number of columns of B. This compares
to 3n3 flops for each iteration step for the X in (6).

The above approach requires to double in each iteration step the workspace needed for
the iterates Lj. Two approaches are possible to limit the required workspace to a fixed size



[2]. We will focus here on one approach which is particularly appealing for the purpose of
model reduction.

In each iteration step, we can compute a rank-revealing LQ factorization (see, e.g., [10,
Chapter 5]) S’k+1 =[Sk, SpAr] = QS';CHH%H. In that case, the next iterate Sgi1 €

Rrxrank(Se+1) ig obtained as the left n x rank(S,1) part of the product of the permutation
matrix I and the lower triangular matrix Sk, i-e.,

(Mgg1)11 (Mgg1)12 ] [ (Sk)11 0

~ = S ’ 0 )
(Mgg1)21 (Mgg1)22 (Sk+1)21 0] S

starting from Sy obtained by a rank-revealing LQ factorization of B. It follows that Sk+1:§]z1+1 =

Sk+1SkT+1 and \/55 = (limk—)oo Sk)T.

As rank(W,) may be up to n, this requires a work space of size up to 2n x n. On the other
hand, the (numerical) rank of the full-rank factors is often much less than n [19, 20]. Hence,
the computational cost of performing LQ factorizations is bounded by keeping the number
of columns of Si;1 small. If m < n and the numerical rank of rank(W,) is small, then the
computational cost of this approach is usually less than the cost of Hammarling’s method
[14]. This approach can also be used to compute low-rank approximations to the full-rank
factor by either increasing the tolerance threshold for determining the numerical rank or by
fixing the allowed number of columns in S.

In the next section we show how the full rank-factors computed in the way described
above can be used in model reduction algorithms for discrete-time systems.

3 Model Reduction using Full-Rank Factors

3.1 Model reduction methods based on balanced truncation

In [25] it is shown that BT model reduction can be achieved using SR instead of the product
of the Gramians themselves. Here, S and R denote the square, possibly singular Cholesky
factors of W, and W, respectively. The resulting square-root (SR) method avoids working
with the Gramians as their condition number can be up to the square of the condition number
of the Cholesky factors. The first step in the SR method is to compute the SVD

0 v
T _ 1 1
Here, the matrices are partitioned at a given dimension ¢ with ¥; = diag(o1,...,0¢) and

Yo = diag (0¢41, - ..,0n) such that
012092 ...00>0¢41 > 0pyo > ... > 0p > 0. 9)

If oy > 0 and ogy1 =0, i.e., ¥g = 0, then £ is the McMillan degree of the given discrete-time
LTI system. That is, £ is the state-space dimension of a minimal realization of the system,
i.e., a realization of G(A) in the form of an LTI system (1) of minimal order.

For model reduction, £ should be chosen in order to give a natural separation of the states,
i.e., one should look in the Hankel singular values o, kK = 1,...,n, for a large gap oy > o441
[25].



So far we have assumed that the Cholesky factors S and R of the Gramians are square nxXn
matrices. For non-minimal systems, we have rank(S) < n and/or rank(R) < n. Hence, rather
than working with the Cholesky factors, we may use the full-rank factors S, R of W,, W,
that are computed when using the method described in the last section. The SVD in (8) can
then be obtained from that of SR” as follows. Here we assume rank($) =: s > r := rank(R);
the case s < r can be treated analogously. Then we can compute the SVD

[ﬁ]f/T, 33 = diag (01,...,07), (10)

SR" = U
where U € R***, V € R'*". Now let £ < r be the order of the reduced-order (or minimal)
system. Partitioning U = [ Uy Uy ] such that U; € R*¢ Uy € R*s~t 1, € R*¥¢,
Vo e RF*r—t 35 = diag(oy,...,00), and 3y = diag (o41,...,0,), the SVD of SRT is given
by

" 110 0 IS T
SRT = 0|0z 0 013, o |-l 0 : (11)
00 In, o Lo o 0[]0 I,

We will see that all the subsequent computations can also be performed just working with
U'l, f]l, and V; rather than using the data from the full-size SVD in (11). This amounts
in significant savings of workspace and computational cost. For example, using the Golub—
Reinsch SVD (see, e.g., [10]), (8) requires 22n® flops and workspace for 2n? real numbers if
U, V are to be formed explicitly while (10) only requires 14sr2 + 8r® flops and workspace for
52 + 72 real numbers. In particular, for large-scale dynamical systems, the numerical rank
of W,, W, and S, R is often much less than n. Suppose that (numerically) s = r = n/10,
then the computation of (10) is 1000 times less expensive than that of (8) and only 1% of the
workspace is required for (10) as compared to (8).
Defining

T,=x,"*VIR=5"*VTR and T =5Tun;'? =570, (12
the reduced-order system (2) is given by
A=TAT., B=TB, C=CT,, and D=D. (13)

In case that ¥; > 0 and ¥ = 0, (13) is a minimal realization of the TFM G(X) [25, 31].
Hence, choosing ¢ in (8) maximal such that o, > 0 and o441 = 0, this procedure can be used
to compute minimal realizations if the decision “oy;1 = 0” is based on a numerically reliable
criterion. It can further be proved that for a stable LTI system, choosing any partitioning
in (8) such that o, > o441 yields a stable, minimal, and balanced reduced-order model.
The Gramians corresponding to the resulting TFM G (M) are both equal to X;. An important
feature of this model reduction technique is that it is endowed with a computable error bound.
It is shown in [9] that

n
IG—Glloo <2 ) op =4 (14)
k=0+1

The reduced-order model in (13) computed by the SR method is balanced. Hence the pro-
jection matrices in (12) tend to be ill-conditioned if the original system is highly unbalanced,



resulting in inaccurate reduced-order models. An alternative here are balancing-free (BF)
methods [22] for which the reduced-order model is not balanced. The balancing-free square-
root (BFSR) method combines the best characteristics of the SR and BF approaches [28, 29].
It shares the first two steps (solving the equations in (4) for the Cholesky factors and com-
puting the SVD in (8)) with the SR method described above. Then, two “skinny” QR
factorizations are computed,

STu, = §TU, = PTs, RV, = RTVy = QTr,

where P, Q € R"*¢ have orthonormal columns and Ty, Tr € R are upper triangular.
Taking into account that T;7, = I, the reduced-order system is then given as in (13) with
the projection matrices defined by 7; = (Q7P)~'Q" and T, = P. The reduced-order model
computed by the BFSR method shares the properties with the model obtained from the SR
method except that it is not balanced. In particular, the error bound (14) also holds here.

We have implemented only the SR and BFSR algorithms as the BF algorithm described
in [22] usually shows no advantage over BFSR algorithms with respect to model reduction
abilities. Moreover, the BF approach is potentially numerically unstable. For one, it uses
the product W.W, rather than SRT, leading to a squaring of the condition number of the
matrix product. Second, the projection matrices 1; and T, computed by the BFSR approach
are often significantly better conditioned than those computed by the BF approach [28, 29].
Furthermore, both SR and BFSR algorithms can be efficiently parallelized while the BF
method needs a parallelized version of the QR algorithm with re-ordering of eigenvalues.
This presents severe implementation difficulties; see, e.g., [2] for a discussion of this topic.
Implementation details as well as accuracy and performance details are reported in the next
sections.

3.2 Singular perturbation approximation

If for the reduced-order model, small steady-state error is required, then this can be achieved
by a singular perturbation approzimation (SPA) of the original system. That is, with SPA
it is possible to compute a reduced-order system such that its frequency response at w = 0
equals that of the original system. In other words,

G’ = G(1) = G(1) = G(9). (15)

The SPA reduced-order model can be computed as follows [16, 28]. For any nonsingular
matrix T, let

T-1AT —. [ A1 A ]
’ A21 A22 ’ (16)
_ By
TlB = |:B2:|, CT::[Ol CQ],

with A, € R, B, € R*™ and C; € RP*¢. In case the original system is minimal, a
singular perturbation approximation (SPA) is then given by

= A+ Ara(In_g — Ago) 7t Ao,
By + A1o(In—p — Ax) !By,
= C1+ Co(In—p — Ap) 1 A1,
= D+ Cg(In_[ — Azg)ilBQ.

5 Qe

7



If the original system is not minimal, we first have to compute a minimal realization and then
apply (17) to this realization. This can be achieved, e.g., by either the SR or BFSR method
choosing £ such that oy > 0411 = 0 in (9). The reduced-order model is then obtained from
applying (17) to the minimal realization. Note that if equal order of the reduced-order systems
is assumed, the computable upper bound (14) on ||A,|/« also holds for singular perturbation
approximation. The SPA model yields a good approximation at low frequencies, i.e., for
z = e with w small, from (15) we expect a good match of G(z) and G(z).

We have implemented the SPA method starting from a minimal realization computed by
either the SR or BFSR method using full-rank factors as described above. Suppose that the
McMillan degree of the system is ¢ and a minimal realization is given by (Au,Bl, C‘l,ﬁ).
For this purpose, the minimal realization is partitioned according to the desired size £ of the
reduced-order model, i.e.,

A A A ] A [ By ]
A =: By =:

All [ A21 AQQ ) Al B2 b
&G = [a O], D = D

Then the SPA formulae (17) are applied to the system as partitioned above.

There are several options for the actual implementation of the SPA formulae. One way is
to compute an LU decomposition with partial pivoting of I — A9y and then solve the linear
systems

(I—Ax)Zs=An, (I—-Ax)Zp=DB

for Z4 and Zp, respectively, by forward and backward substitution. Then the reduced-order
system is obtained as

Ay = An+ ApZy, B, = Bi+ A2,
C, = C1+ CyZy, D, = D+ CyZp.

This implementation is matrix-multiplication rich and therefore good performance on parallel
computers can be expected.

4 Parallel Implementation and Numerical Examples

4.1 Implementation details

The numerical algorithms that we have described in the previous two sections are all composed
of basic matrix computations such as linear systems, matrix products, QR factorizations (with
column pivoting), etc. All these operations can be efficiently implemented on modern serial
and parallel computers. Although one could develop its own parallel routines for this purpose,
nowadays there exist libraries of parallel kernels for distributed memory computers [4, 26].
The use of these libraries enhances the reliability and improves portability of the model
reduction routines. The performance will depend on the efficiency of the underlying serial
and parallel libraries and the communication routines.

Here we will employ the ScaLAPACK parallel library [4]. This is a public domain library
that implements parallel versions of many of the kernels in LAPACK [1], using the message-
passing paradigm. The ScaLAPACK is based on PB-BLAS (the parallel version of the serial
BLAS) for computation and BLACS for communication. The BLACS can be ported to any



(serial and) parallel architecture with an implementation of the MPI (our case) or the PVM
communication libraries [12, 8].

In ScaLAPACK the computations are performed on a logical grid of n,, = p, X p. processes.
The processes are mapped onto the physical processors, depending on the available number
of these. All data (matrices) have to be distributed among the process grid prior to the
invocation of a ScaLAPACK routine. It is the user’s responsibility to perform this data
distribution. Specifically, in ScaLAPACK the matrices are partitioned into nb x nb square
blocks and these blocks are distributed (and stored) among the processes in column-major
order. See [4] for details.

Employing ScalLAPACK, we have implemented the following model reduction algorithms
for discrete-time LTT systems as Fortran 77 subroutines:

PDGEBTSR: the BT SR method for model reduction;
— PDGEBTBS: the BT BFSR method for model reduction;

— PDGESPSR: the SPA formulae based on the SR method;

PDGESPBS: the SPA formulae based on the BFSR method.

We compare these parallel routines with the analogous serial algorithms in SLICOT!. This
library includes the following Fortran 77 routines:

— ABO09AD: the BT SR or BFSR method for model reduction;

— ABO9BD: the SPA formulae based on the SR or BFSR methods.

All the experimental results described in the following two subsections were obtained
on Intel Pentium-IT machines using IEEE double-precision floating-point arithmetic (i.e., the
machine epsilon was € =~ 2.2204 x 10716).

4.2 Numerical accuracy

We evaluate the accuracy obtained by our model reduction algorithms using an LTT system
that comes from the simulation of a catalytic tubular reactor used in a gPROMS training
course [21]. A gas phase reaction (oxidation of o-xylene to phthalic anhydride) takes place
inside the reactor which is packed with catalyst particles. The reactor is cooled externally.
The mathematical model consists of a boundary control problem for a system of coupled
partial differential equations including conservation laws for mass and energy. A continuous-
time LTI system is obtained from a semi-discretization of the PDE system. The order of
the system is n = 1171, and the numbers of inputs and outputs are m = 6 and p = 4,
respectively. The continuous-time system was discretized using zero-order hold (i.e., zx =
z(kTs), k=0,1,2,...) with a sampling time T = 0.1 sec.

The ranks of the factors of the Gramians as computed using the algorithms described in
Section 2 are 92 and 81 for W, and W,, respectively. Note that the SR and BFSR approach
do not differ in this stage of the algorithm.

The accuracy of the reduced-order models can be judged on the basis of the magnitude
for the frequency response of the ith output to the jth input, i.e., |Gj;(z)| for z = ¢+ and

1 Available via anonymous ftp at ftp://wuw.esat.kuleuven.ac.be/pub/WGS/SLICOT.



frequencies w € [0,7/T5] (which is one part of the so-called discrete Bode plots; see, e.g.,
[18]). For BT methods, a good match of the reduced-order models with the original models
at high frequencies is expected while for SPA models, good approximation at low frequencies
should be observed. Note that this neither excludes good matching at low frequencies for BT
models nor good approximation at high frequencies for SPA models.

In Figure 1 we show the magnitude for the frequency response for several of the 24 input-
output (I/O) channels of the system and the reduced-order models of order r = 40. The
plots show the expected behavior from which it can be concluded that decreasing the system
order by a factor of roughly 30 does not change the frequency response significantly as visible
deviations only occur when the magnitude is already very low.
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Figure 1: Frequency response (magnitude) of original and reduced-order models

Figure 2 reports the absolute errors of the transfer functions for the original system and the
reduced-order models computed by the parallel algorithms. The absolute error is computed

10



as the maximum singular value of the error system at the frequency w, i.e.,
IG(e*77) = G|z = omax (G(e*77) = G(e™) |

where || . |l2 denotes the matrix 2-norm, and G(z), G(z) are the TFMs of the original and
the reduced-order model, respectively. From (3) we know that

|G = Gllso = ess sup [|G(e™) = G (e[

we[—m,m)

such that ||G(e™Ts) — G(e?T+)|y < & has to be satisfied where § is the computable upper
bound from (14). For the reduced-order model of order r = 40 computed here, we obtain
§ =1.5387 x 107°.
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Figure 2: Absolute errors for BT and SPA reduced-order models

Figure 2 shows that there is no visible difference between the SPA models computed by
the SLICOT routine AB09BD and our routine PDGESPSR. The BT models differ in that the
model computed by PDGEBTSR. almost matches the SPA reduced-order models while the
SLICOT AB09AD model shows the expected behaviour of larger errors at w = 0 and smaller
errors for increasing frequency—the differences to the other models are marginal, though.
As to be expected, all reduced-order systems satisfy the error bound (14). The slightly
unexpected behavior of the absolute errors can be explained as in this example, ||A;2| and
||A21]| are small such that SPA computes almost the same model as BT.

4.3 Parallel performance

In this subsection we analyze the performance of the parallel algorithms on a parallel dis-
tributed Beowulf cluster. Each node consists of an Intel Pentium-II processor at 300 MHz,
and 128 MBytes of RAM. We employ a BLAS library, specially tuned for the Pentium-II
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processor, that achieves around 180 Mflops (millions of flops per second) for the matrix prod-
uct (routine DGEMM). The nodes are connected by a Myrinet switch and the communication
library BLACS employs a tuned implementation of MPI. The performance of the intercon-
nection network for MPI was measured by a simple loopback message transfer an offered a
latency of 33 psec and a bandwidth around 200 Mbit/sec. We made extensive use of the
LAPACK, PB-BLAS, and ScalLAPACK libraries.

In order to measure the performance, we generate random LTI systems for the parallel
numerical experiments as follows. First, we generate a positive semidefinite diagonal Gramian
matrix, W, = diag (54,, Eg,, 043, 0g, ), where 3, € R1 %9 contains the desired Hankel singular
values for the system and ¥, € R®?*% js a random diagonal matrix. We next construct a
positive semidefinite diagonal Gramian matrix, W, = diag (X, 04y, X¢s,0q,), with X4, €
R#*493. Then, A is set to a random (Schur) stable diagonal matrix and we compute F =
—(AW AT —W,) and G = —(ATW,A — W,). Thus,

F = dia'g(flafZa"'afq1+q210q3+Q4)a
G = diag(QlaQ?a"'7gq1705"'aOagql-le-Fla"'7gql+Q2+q370q4)'

Matrices B € R*X(@1+a2) and ¢ € R@+96)%n gych that F = BBT and G = CC are then
generated as

B, 0
B ~[ci 0 0 0
B = 8%’ C_[OO(J?,O]’

where

B = dia‘g(\/ﬁa---a\/fm)a By, = diag(\/fQ1+17'--a\/fQ1+q2)7
Cr = diag(VI5,---1vq)> Cs = diag (\/Iatratis-- -+ v/Tqi+artas) -

The LTI system is finally transformed as A := UT AU, B := UT B, and C := CU by a random
orthogonal state transformation U € R**™. The system thus defined has a minimal realization
of order £ = ¢; and the Cholesky factors satisfy rank(S) = ¢; + ¢2 and rank(R) = ¢; + g3.
Our first experiment evaluates the reduction in the execution time achieved by the par-
allel (BT and SPA) SR algorithms. For this purpose we compare the execution time of
SLICOT routines ABO9AD/SR and ABO9BD/SR with those of our parallel routines PDGEBTSR
and PDGESPSR. (The results for the BFSR algorithms showed no significant difference with
respect to those reported here.) In the experiment, n is set to 1000, and we choose several
different values for m, p, q1, ¢ and ¢3. Figure 3 shows the execution times of the serial algo-
rithm, and those of the parallel algorithm for several number of nodes, n,. The figure reports
a remarkable reduction of the execution time achieved by the parallel algorithms on 2 nodes.
This reduction is basically due to a significant decrease of the computational cost as only low
rank approximations of the Cholesky factors need to be computed in our Stein solvers. This
is particularly evident for small m, p, and g1 + g2, g1 + ¢g3. For larger g1, ¢o, ¢3, this advantage
becomes less dramatic. But it should be noted that in most applications, m,p < n holds.
Comparison of the results on 2 and 4 nodes shows the parallel efficiency of our algorithms.
E.g., in the m = p = 200, g1 = g2 = g3 = 100 case, the execution time for routine PDGEBTSR is
reduced from 61.8 to 34.4 seconds. This is a speed-up of about 1.8, close to the maximum that
could be expected when the number of nodes is doubled. However, when further increasing
the number of processors to 6 and 8 the speed-up factor decreases as in this case the ratio

12
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Figure 3: Execution time vs. number of nodes of the serial and parallel BT /SR and SPA/SR
algorithms.

n/\/Np is too small for obtaining good parallel performance. There is no big difference in the
execution times of the BT and SPA algorithms as the main computational cost comes from
solving the Stein equations for the Gramians and the subsequent SVD.

We next evaluate the scalability of the parallel algorithms.

The scalability evaluates
whether a larger problem can be solved by increasing proportionally the number of nodes of
the parallel system. In the experiment we fix the problem size per node at n/ Vp = 800,
m/\/np = 400, p/,/n, = 400, and g/,/n, = 100 for ¢ = g1, g2 and g3. In Figure 4 we report

the Mflops per node for the parallel algorithms PDGEBTSR and PDGESPSR. (Similar results were
obtained for the corresponding BFSR routines.)

n = 4000).

The figure shows a high scalability of the algorithms as there is only a minor decrease
in the Mflop ratio per node as the number of nodes is increased up to 25 (a problem of size
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Figure 4: Scalability of the parallel algorithms with n/,/n, = 800, m/,/n, = 400, p//n, =

400, and ¢q/,/n, = 100 for ¢ = q1, g2 and g3.

5 Concluding Remarks

We have described efficient and reliable numerical algorithms for the realization of model
reduction methods based on the square-root version of balanced truncation and singular
perturbation approximation. Using the full-rank factors of the Gramians often enhances the
efficiency and accuracy of these methods significantly.

Implementations of the discussed methods are based on highly optimized software packages
for numerical linear algebra on serial and parallel computers. Our experiments report similar
numerical results for reliable serial model reduction algorithms from the SLICOT library and
our model reduction approach, based on the Smith iteration. The results on a cluster of Intel
Pentium-IT nodes show the performance of our model reduction approach and the scalability
of the parallel algorithms. Parallel computing thus allows to use these methods for systems of
state-space dimension up to order O(10%) or even higher, depending on the available memory.
It should be noted that our method can be employed using very cheap infrastructure. That
is, for any (local) network of PCs or workstations, the methods can be used as soon as a
communication library as MPI is installed in the computer network.
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