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Abstract

This paper describes procedures for solving each of the three types of
PDE (partial differential equations): hyperbolic, elliptic, and parabolic,
by means of an indefinite convolution procedure combined with Sinc ap-
proxzimation. The PDE is first transformed to an equivalent integral
equation, and then solved by means of “Sinc convolution”. Whereas
different numerical methods are used in practice for solving elliptic,
parabolic, and hyperbolic PDE, the present paper uses essentially the
same procedure for all three of these equations, over bounded or un-
bounded regions. The time complexity of computation to solve a d—
dimensional problem on a sequential machine (i.e., the amount of time
required to obtain a solution to within a uniform error of ) under
suitable assumptions of analyticity, allowing for possible singularities
in the coefficients on the boundaries of the regions is of the order of
(log(¢))24*+2. The method also lends itself readily to parallel computa-
tion, although we have not illistrated this feature in this paper. Several
examples are presented, and time comparisons are made with efficient
existing methods. We do not need to store the large matrices that cur-
rent methods require, enabling us to achieve high accuracy, whereas
this is not possible via current algorithms.

1 Introduction and Summary

Sinc methods offer a variety of approaches for solving PDE [14, 15, 5]. In
the present article we present a unified approach to solve the integral equa-
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tion formulation of solutions to each of the three classes of PDE, via use
of indefinite convolutions combined with Sinc approrimation, a procedure
described in [15] and [14], §4.6, and henceforth in this paper to be referred
to as Sinc convolution. This Sinc convolution procedure is derived in [15] for
approximating one—dimensional indefinite convolution integrals. It is read-
ily extended to the approximation of definite convolution integrals, and to
the approximation of multidimensional definite and indefinite integrals. The
procedure has some remarkable features:

1. Only the Laplace transform (or its accurate approximation) of f is
required to get an accurate approximation of convolution integrals of
the form

T b
/a flz—1)g(t)dt /x Flo—1)g(t) dt. (1.1)

The accurate approximation of such integrals, including e.g., Abel-
type integrals, was hitherto difficult, especially in important cases of
when f(¢) has an integrable singularity at ¢ = 0. Moreover, being able
to accurately approximate each of the integrals in (1.1) enables us to
accurately approximate definite integral convolutions of the form

/abf(a: _g(t)dt. (1.2)

2. Whereas Fourier transforms (FFT) can also be used to approximate
the integrals (1.1), FFT can converge very slowly in cases of when
f(t) has an integrable singularity at ¢ = 0, or when (a,b) is finite or
semi-infinite, and/or when g has isolated singularities on (a,b). For
example, the Sinc convolution procedure offers a remarkably simple
method of solving Wiener—Hopf integral equations.

3. The Sinc convolution procedure enables a surprising “separation of
variables” procedure analogous to that used to solve multidimensional
problems in e.g., PDE. This makes it possible to accurately approxi-
mate the multidimensional convolution integrals via use of one—-dimensional
matrix multiplications. It is applicable in all dimensions.

4. This separation of variables feature of the method enables solution of
the PDE via parallel computation, although we have not used parallel
computation in our illustrative examples.

5. A bi-product of using one-dimensional matrix multiplications is that
we need not set up the analogous “big matrices” that are required for
the solution of PDE via finite difference and finite element methods.
This is one of the reasons why it is not possible to achieve high accuracy
in solving PDE via these classical methods. Another reason is that the
rate of convergence of the Sinc convolution technique is much more
rapid. Indeed, these facts are illustrated in our comparison tests.



6. Finally, we add that the procedure can also be applied to convolution
integrals over curvilinear regions in two or more dimensions, such as,
e.g., in two dimensions, regions of the form

B ={(z,y) a1 <z < by, az(z) <y < ba(z)} (1.3)

and, of course, to translations and rotations of such regions. That is,
it is applicable to the solution of most PDE problems over curvilinear
regions arising in science and engineering.

The present paper is not a complete illustrations of solution of PDE via
Sinc methods, i.e., we have not illustrated handling initial and/or boundary
conditions. However, what we have omitted can, in fact be easily dealt with
via Sinc methods, as has already been illustrated. That initial value ordinary
differential equation problems can be easily dealt with via Sinc methods has
been illustrated in the program package [7]. The present paper illustrates
the construction of an approximate solution to a non-homogeneous PDE via
use of Green’s functions. Given a PDE along with initial and or boundary
conditions, this same Green’s function can be used to set up a boundary
integral equation for determination of a solution of the homogeneous PDE,
yielding a solution to the original PDE with the correct boundary condi-
tions. That such boundary integral equations can in fact be efficiently and
accurately solved via Sinc methods has already been illustrated in [14], §6.5,
and [13, 3, 8, 4, 2, 6, 16, 17, 12]. Furthermore, the Sinc convolution pro-
cedure can also be used to solve integral equations, as we illustrate in this
paper via a simply example, and as was illustrated in [11] on the solution of
a five— dimensional convolution type integral equation.

We shall use Sinc terminology in the present paper. An excellent pre-
sentation of this terminology is given in [9]. For sake of completeness, we
shall include the essence of this terminology in §3 of the present paper. We
also present the Sinc convolution algorithm in this section.

In what follows, in §2 we illustrate the Sinc convolution procedure to ob-
tain approximate solutions of several PDE, and we make time comparisons
with other existing methods for solving such problems. In order to achieve
accuracies that are possible via Sinc convolution, the matrices required by
classical methods to achieve such accuracies in more than three and 4 dimen-
sions very quickly reached the capacity of our computer, making it difficult
to make complexity comparisons.

The Sinc terminology, including the Sinc convolution technique is given
in §3, while §4 contains explicit derivations of the multidimensional Laplace
transforms of standard Green’s functions, based on a technique developed,
essentially, in [11].



2 Applications

In this section we illustrate the application of the Sinc convolution proce-
dures to obtain approximate solutions of elliptic, parabolic, and hyperbolic
differential equations. We also illustrate the solution of an integral equation
problem, as well as the solution of a PDE problem over a curvilinear region.

For all our numerical computations a two processor PC with Intel Pen-
tium IT (400 MHz), Linux operating system and 512MB main memory was
used. The code for our algorithms was written in Matlab. To compare the
results of the Sinc convolution computations with results obtained by FEM-
methods, we used for the Poisson equation and Heat equation the program
package KASKADE, developed at the Konrad-Zuse-Zentrum Berlin (ZIB),
Germany (for a description of the used algorithm, program code and manual
see ftp://elib.zib.de/pub/kaskade). For the two dimensional Wave equation
the PDE-Toolbox of Matlab was used.

2.1 Sinc Convolution Solution of Poisson Problems

1. Our first illustration is that for the Poisson equation
AT(F) = —g(F),, FTeEV=R?, (2.1)

Our Sinc convolution computations were based on the formula

A A 9(&;n,6)
R N B e e o L
(2.2)

for (z,y,z) € V. This multidimensional convolution integral can be
readily split into 8 indefinite convolution integrals, such as, e.g.,

5 dC dn d€.

(2.3)
To evaluate the 8 integrals of the form ¥(!) at all of the Sinc points
{(Zhajhakh) 1= _Na"'aNaj = _Na"'aNak = _Na""N}a we
require 3 transformations ¢; : (a;,b;) = R — R,i = 1,2,3, but this
is trivial, since each of the transformations is the same identity map.
We thus determine h; = h and we form the matrices

¥O(o,y,2) = [

al

C”/”Q z 9(&,1,¢)
y Jas dm/(z =2+ (y—n)? + (2 — ()

Ai=A = RICY =X;8, X', i=1,3

(2.4)
Ay =AT = h(IEDNT =X, 8 X, !,
where each S; = diag[s@Mi, e ,35\2] is a diagonal matrix of eigenvalues

of the matrix A;, and X; is the corresponding matrix of eigenvectors.



We then evaluate the array [g;x] = [g(ih, jh, kh)], and we use the Sinc
convolution algorithm (an explicit 3—dimensional version is given in

(1)
ijk
“Laplace transform” of the Greens function 1/(4 7 r) given in Lemma
4.3 of this paper. We then repeat this computation to get accurate
approximations at the Sinc points for all of the remaining 7 Sinc con-

volutions ¥, £ =23 ... 8. We then have

[16]) to transform this array into an array [\IJ ] , by means of the

[©(ih, jh, kh)] = li ¥ (i, jh,kh)] . (2.5)
/=1

Using Sinc interpolation, we can then get an almost equally accurate
approximation to the function ¥ at all points of V. It may moreover
be shown, assuming that the function g(-, y, z), and, additionally, mak-
ing similar assumptions about the functions g(z,-, z) and g(z,y,)) is
analytic on (a1, by), for all (y, z) € [ag, ba2] X [a3, b3] (which is, in fact so,
for the case of this example) then the uniform error of approximation
is of the order of exp(—c N 1 2), with c a constant that is independent
of N. In particular, for the case of the present problem we can take
c=.

Let us also give a more explicit picture of the (unstored) matrix that
is involved in the above computation. Let us form a vector g from the
array [gijx], in which the subscripts appear in the order (call it lexico-
graphic) dictated by the order of appearance of the subscripts in the
Fortran do loop, “DO k = —Mj3, N3”, followed by “DO j = —Msy, Ny”,
followed by “DO i = —M;,N;”. We then also form the diagonal ma-

trix G in which the entries are the values éijk = G‘(sgl),sgg), 1(93))’
(%)

A J
where we also list the values Gj;; in the same lexicographic order as

(1)
ijk

with the function G and the eigenvalues s;’ defined as above, and

for g;jx. Then, similarly from the array ¥ .., we can define a vector

¥, by listing the elements \II'S]IIZ: in lexicographic order. It can then be
shown that ¥ is defined by the matrix (Kronecker) product

¥, = alg
(2.6)
30 = X;30X,0X1GX5leX; e X,

and moreover, the analogous vector ¥ approximating the function ¥
defined in (2.2) above at the Sinc points is then given by

U= (zsj \W)) g. (2.7)
/=1

We emphasize that the matrices () and ¥ need never be computed,
since our algorithm involves performing a sequence of one-dimensional



matrix multiplications. For example, with N = 20 we get at least
6 places of accuracy, and the size of the corresponding matrix ¥ is
413 x 413, or 68,921 x 68,921. Such a matrix, which is full, contains
more than 4.75 x 10° elements. If such a matrix were to be obtained
by a Galerkin scheme, with each entry requiring the evaluation of a
three dimensional integral, and with each integral requiring 412 eval-
uation points, then more than 3.27 x 10'* function evaluations would
be required, an ominous task indeed! On the other hand, our method
accurately gives us all of these values for relatively little work.

For a test computation, we used as right hand side g(7) = exp(—r?)(6—
4r?). The exact solution is then given by U (7) = exp(—r?), r = |7|.

The computational domain for FEM (finite element method) with
which we compared our results was [—6, 6] with zero boundary condi-
tions. This restriction caused no problems because u and f are rapidly
decreasing functions.

We computed the Sinc based solution with m = 2N + 1 Sinc points.
The corresponding values of h were computed by h = 7/ V/N. The
CPU time is listed in Table 1. The FEM solution was computed af-
terwards using more and more knots until the accuracy of the Sinc
solutions was achieved. We compared the accuracy of the Sinc with
the FEM solution based on the maximum difference of exact and ap-
proximate solution at the FEM knots. The table shows that to achieve
one point of accuracy (i.e.107!) FEM is faster than our Sinc method.
But even for two places of accuracy our Sinc procedure is three times
as fast whereas three points cause problems with FEM methods con-
cerning time and storage of the matrix. For Sinc, we were even able
to compute an example with 161 Sinc points and an accuracy of 106
on the region [—6, 6]3.

. Next, we illustrate the solution via Sinc convolution of an elliptic prob-
lem over a two dimensional curvilinear region.

The region is B = By U Be, with

3 3
Blz{(w,y):—§<x<0, O<y<x2+§}

3 1\2
By = (a:,y):0<z<§,0<y< 1—(:c—§) .

We are given functions g; and g» defined by the equations

(2.8)



FEM SINC
accuracy | # of knots | CPU time || accuracy CPU time | N
(Il [loo) (sec) (- lloo) (sec)
0.2829 158 0.85 0.171 5.3 10
0.1437 247 1.79 0.171
0.0652 1003 6.16
0.0244 4365 26.25 0.0166 21.54 15
0.0125 15373 98.71
0.0125 15373 98.71
0.0072 28140 229.47 0.0040 57 20
0.0062 53706 482.68
0.0026 143497 1164.63
*okk ok *okk 1.1672e-05 | 2977 60
*xx kxx *xx 1.0734e-06 | 11611 80

Table 1: FEM and SINC costs for solution of Laplace equation. *** indicates
that FEM was not able to achieve a similar accuracy.

g1(2,y) = ¢ (~2)V7 (—

—-1/3
L1 g3 n?2 /
gz, y) =coxv3® "y 1-{z-5) vy ,

3
2

2

where the constants ¢; and ¢y are selected so that

// gl(w,y)d:vdyz—// g2(z,y)dzdy =1,
B1 BZ

ie.,

Let us use the notation p = (z,y),

C1 =

—sin(7w/7)/(

/(V/(2) 7

), e =1/ ((3/2)V%r).
= /z? + y2. The partial differ-

ential equation which we propose to solve is

VU (p) = g(p) peR’
Jim U(p) =0,

—6/7 —3/4
—z) y_l/4 <£+x2—y>

(2.9)

(2.10)

with ¢ = g; in B; (j = 1,2), and with ¢ = 0 on R? \ {B; U By},
although we shall be interested in values of the solution only on B;UBs.



(Notice that g is unbounded on the boundary of B; U By .) Evidently,
the solution to this problem is given by

//Blﬁk)g{ P — m}gl(p)dp'
+//32%1°g{ } p)dp,

(2.11)

with p € B.

To solve this problem, we split each integral over B; into four indefinite
convolution integrals, i.e.,

[0 o )dydw—;@“,

with

T ry
:/ / - dy dx’
aj,1 Jaj2(z)
- T bj,2(x) L
pr— / / LRI dy dw
aj1 vy
bj1 ry
) = / ] / LR dy’ dwl
T a;j,2(x)
b fhia@)
0 :/ / -e-dy dx .
x y

Inspection of the functions g; shows that:

(a) Qgi) (z,y) € Lip, with respect to z, with a = a&l) = 6/7 near
z=-3/2,and a = ﬂa(gl) = 1/7 near z = 0;

(b) ng') (z,y) € Lip, with respect to y, with a = aél) = 3/4 near
y =0 and with a = ﬂ?sl) = 1/4 near y = 22 +/3/2;

(c) Qg) (z,y) € Lip, with respect to z, with a = ag) = 1/+/3 near
z =0 and with o = ﬂ?52) =1 near z = 1; and

(d) Q2 (z,y) € Lip, with respect to y, with a = aé = 2/3 near

y—O&ndWltha:ﬂy):1/3neary—\/1—(a:—1/2) .

Let us (at this point, somewhat arbitrarily) select

(2.12)



Given some € > 0, we select an integer N; so that

exp (—[33(61) Ny h) = exp (—ﬁg(cl) N11/2) =€

We can then expect to achieve the same accuracy in all the variables
by fixing M; by means of the equations (see e.g., [14] §3.1)

O N — o m® = o) pl) = g NP

_ 4@ N1(2) e M1(2) _ a§2) MZSQ) _ /61(12) N2(2)'

We then need the matrices

@ _ g 7(=1) ,

T
i -1
BJ(-) =h (Ir(n](.i))> Dm§i)

with 4, j = 1,2, with  defined as above, with m{” = M + N 41,
and with

ew

1+ew

D =D( ) w=khj, k=-M" _ ND.
J

We next approximate each of the integrals ng') via the above described

Sinc convolution algorithm. To this end, we first opt to simplify the

somewhat cumbersome notation that we have adopted above. In order
: (1)

to approximate @y, let us first set

plzy) = QP wy) = [ 2/2 [ 5o (m_l—ﬂ) 0:((p) di'.

We have to diagonalize the matrices Agl) and Bgl), i.e., we set

AV = x5 x71 XL = [2)

BV =y s, v
S; = diag [s%,...,s%] .

With reference to Algorithm 3.2, we have

3
a§1) =3 bgl) =0,

S

a$P(z) =0, §V(z) =22+ R



The Sinc points which we shall require for By are

o aV g k()
Tio T 1 ek Yidi T T 1 1 eih

The algorithm for approximating the first integral on the right hand
side of (2.11), with (z,y) € B; then is the following;:

a) Set up [gi,5] = [o1 (21", 07 +

b) Form h;. =Y lg; ;

(c) Use the “Laplace transform” G (u,v) given in (4.10);
(d) Form

(
(

’I‘i,j
N®
T (a0 [ (o)~ ()] ) s
k=—M"
(e) Form

1
q':j = XT',j ; pg,) — Yq’L, .
At this point we need to:

(a) Repeat the above steps to evaluate the 3 other indefinite convo-
lutions over Bi, to get the total convolution contribution p;; to
U from By;

(b) Repeat the above steps for the second integral in (2.11);

(c) We then need to do a Sinc quadrature over Bs, to determine the

contribution Is’i(jl) of the integral over By to the Sinc points in
B, and similarly, we also need to do a Sinc quadrature over By
to determine the contribution of this convolution integral to the
Sinc points in By. These Sinc quadratures are possible since the
Green’s function G(p,p') does not have any singularity on the
region of integration. The contribution P;; is then determines as

follows:

10



P

= / / G(pij — ') 92(P) dp’
B2
3/2 p/1—(x(D—1/2)?
=/0 /0 G (a4l ;2@,y®) -

-g (x(Q),y(Q)) dy? dz?
3/2
(x@ 2/1-(a® — 1/2)2) :

. \/1 — (2@ —1/2)2 dy® dz®

(2) (2)
N Ny (k+£)

LD

2 2
k=—M p=— M

6 (6l fsef? 1= (o - 172)7)

g (fb‘;(f) e \/1 ~ (s - 1/2)2> :
-\/1 — (= - 1/2)2

(d) This sum has to be done for all integers (i, j) € [—Ml(l), 1(1)

—MZ(I),NQ(I)] , and each of these contributions F;; then needs
to be added to p; ;. Then repeat, for approximating the integral
over By .

"gke
(1+ekh)® (1 4 ekh)?

2.2 Sinc Convolution Solution of a Heat Problem

Next, we consider the heat equation,

ou(r,t)
ot

with 4 =1, 7 = (z,y,2) € R® and r = |f|. For the numerical tests we chose
as right sides the functions

—72-0.5t

filz,y,z,t) =e (1+55-t—4-t-1%)

11



Table 2: Results for example 1. *** indicates that FEM was not able to
achieve this accuracy.

FEM SINC
accuracy | CPU time | # of time || accuracy | CPU time | N
(- lloo) | (sec) steps (- lloo) | (sec)
0.0619 10.28 sec | 10 0.0621 101 sec 8
0.0293 121.2 sec | 10 0.0297 238 sec 10
0.0123 3517 sec 100 0.0132 680 sec 12
0.0055 12994 sec | 100 0.0068 1614 sec 14
ok ok ok 0.0041 2306 sec 15

Table 3: Results for example 2.

achieve this accuracy.

*** indicates that FEM was

not able to

FEM SINC
accuracy | CPU time | # of time || accuracy | CPU N
(- floo) | (sec) steps (- lloo) | (sec)
0.1139 14 sec 10 0.1458 80 sec 6
0.0435 125 sec 10 0.0394 438 sec 9
0.0198 5309 sec 200 0.0186 1228 sec | 11
ok ok ok 0.0012 8238 sec | 20
ook ok oAk 0.0006 13592 sec | 30

(Table 2) and

—72_0.5:¢
f2(x7y7z7t):e (

i+5.5\/2—4\/5-r2

2Vt

(Table 3); the corresponding solutions are

and

U’?(Jjayazat) = \/i €

—r2_0.5:¢

’U,1(.T,y,z,t) =t-e

—r2-0.5¢

)

The FEM solution was computed on a cubic area with center the origin,
side length 12 and zero boundary conditions, the time interval was chosen
as t = [0,1]. In the time variable ¢, a constant step size was used.

For both problems, the accuracy of the computations was compared on the
mesh generated by the FEM method. The total number of Sinc points used
in each direction as well as in the time ¢ was 2N + 1. In order to get a
higher accuracy for the FEM method, we had to choose smaller time steps
in the second half of the computations. As indicated in the table, we failed
in our attempt to get higher accuracy for FEM due to memory problems.
On the other hand, we were able to achieve a higher accuracy via our Sinc
procedure. We may note that FEM failed for example 2 even earlier than

12



Table 4: Results for the Wave equation. *** indicates that FEM was not
able to achieve this accuracy.

FEM SINC
accuracy | CPU time | # of time | # of knots || accuracy | CPU N
(- lloo) | (sec) steps (- lloo) | (sec)
0.0614 7.52 10 181 0.066 1.3 8
0.0073 25.32 10 681 0.008 9.8 15
0.0021 100 20 2641 0.0023 25.83 20
0.0016 556.19 31 10401 0.0014 37.44 22
0.0015 3964 51 41218 0.0014 37.44 22
*Eok *Ek *Ek *Ek 26-06 717 sec 50
*okk *okk ok koK 2e-07 1421e sec | 60

for example 1 sue to a singularity of fo at ¢ = 0, which resulted in our
requirement of a finer mesh for FEM.

2.3 Wave Equation

For a numerical example for solving the 2d wave equation,

i82u(f,t)

2 o2 - VQU’('Fa t) = f(fa t) )

we took as right hand side the function

o iV (- at))

_ (—Ir|?2=0.51)

The corresponding solution is
'U/(a;" y, t) = t3/2 . e(7|7'|2*0.5-t) .

As usual, r = /22 + y?, and ¢ was set to 1. The results of both methods
were compared with the exact solution (with maximum-norm) only in the
knots of the FEM mesh. For the previous two examples, the program
KSAKADE was used to produce the FEM solution. This time, we used the
Matlab PDE-Toolbox. Matlab does not have an adaptive refinement of the
mesh. To get different degrees of accuracy, the mesh for FEM was refined
by hand; for SINC a larger number of Sinc points was used (number of
Sinc points=2N+1). The time was measured by using the Matlab command
cputime.

It is obvious from Table 4 that the computing time for FEM increases
rapidly with a finer mesh without a substantial improvement of the accu-
racy. Again, trying to use a finer mesh caused some memory problems for
FEM. This is not the problem with SINC, a substantial improvement of
the accuracy is still possible as is shown in the table.

13



2.4 Solving Burgers’ Equation

[5]. Let IR denote the real line, and let uy denote a given function defined
on IR. We shall illustrate an integral equation procedure for solving the
Burgers’ equation problem

u(z,0) = wuo(z).

We accomplish this by first transforming the problem (2.13) into the equiv-
alent integral equation problem

1 (z — &)
Ut = e /ReXp {_ det } uo(6) &

+ 7r/ / xp{—ﬂ} u?(&,7)dEdr
R {47r8 (t—r1) }3/2 de(t — 1) ’ ’
(2.14)
which we discretize via the Sinc collocation procedure of the previous ex-
ample, and then we solve the resulting discretized system via Neumann
iteration.
We take

uo(z) = a exp {—b(x — c)2} . (2.15)

This choice of uy enables an explicit expression for the first term on the
right-hand side of (2.14), so that we can now rewrite (2.14) in the form

u(z,t) = wv(z,t)

A (z—¢)
i 7T/o V_oo {dme(t —7)}13/2 eXP{ de(i 7)} u? (€, 7) dé

vt (z - &)
-, {@wu—rnWQ“p{‘Iiﬁfs}u%&ﬂd4dn
(2.16)

where
a b(z — c)?
vimt) = {1+ dbety 172 P {_ 14 4bet } ' (2.17)

Due to this explicit form of the function v(z,t), the form (2.15) for uy makes
it possible to approximate an arbitrary continuous function uy defined on R
by use of the function F5(f3, h) defined in [14], §5.8.

14



We now proceed to discretize Equation (2.16) as outlined in Example
2.2. To this end we may note that it is possible to explicitly evaluate the
“Laplace transform” of the convolution kernel in (2.16), i.e.,

F(s,0) = / / eXP{ }{47r;;}3/2 { Zi} dz dt

1 sol/?

4g1/2 5 + gl/2g1/2°

(2.18)

We now select e = 1/2, b =1, ¢ = 0, ¢4(t) = log(t), ¢z(z) = z, dy = /2,

=f =1/2,d, = 7/4, ay = B, = 1, and in this case it is convenient to
take M; = N; = M, = N, = N and h = 2/v/N. We thus form matrices

A = hy I(*l) X8 XY, AL =h,(ICNT = (X, )78, XTI,

= hIVD(1/4}) = XS X, (2.19)

where the superscript “I"” denotes the transpose, and where S, and S;
are diagonal matrices, and then proceed as in Example 2.2 above, and the
notation of Equation (4.6) to reduce the integral equation problem (2.16) to
the nonlinear matrix problem

[uij]) = F(As, By, [uf;]) — F(Ay, Br, [u]) + [vig], (2.20)
with e.g., if we list as a single vector the columns of a rectangular matrix
[¢i,5], (denote it by col{[c; ;]}) then similarly list the columns of F'(A,, By, [v; ],
and then form a diagonal matrix F by listing the numbers F(s;,0;) in the
same order, then

col{ F(Ag, By, [cij]} = X4 ® X, F X' @ Xt col{[c; 4]}, (2.21)

and where the function v;; may be evaluated a priori, via the formula v;; =
v(ihg, z;), with v(z,t) defined as in (2.17), and with
z; = elh
j .
The system (2.20) may be solved by Neumann iteration, for a (defined
as in (2.15)) sufficiently small. Neumann iteration takes the form

iy ™) = F(4q, By, [(u))?) — F(AL, By [(uf)?) + [oig],  (2:22)
for kK = 0,1,2,..., starting with [uz(;))] = [v45]. For example, with a =
1/2, and using the map ¢;(t) = log[sinh(¢)] we achieved convergence in 4
iterations, for all values of N (between 10 and 30) that we attempted. We
can also solve the above equation via Neumann iteration for larger values of
a, if we restrict the time ¢ to a finite interval, (0,7), via the map ¢ (t) =

log {t/(T —t)}.

Let us now also consider the convergence of the iteration procedure
(2.22). To this end, let us assume that we have determined the integers
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M, = N, = M; = N; = N, as well as h = 2/+/N and the time interval T' to
enable achievement of a certain accuracy in the approximate solution to the
problem (2.20). We wish to illustrate the existence of T' = Tp, such that if
the parameters are fixed in this manner, and the “time map” is selected by
w = ¢¢(t) = log(t/(T — t), then (2.20) is a contraction map for all T' < Tp.
To this end, we note from (2.19) above, that A, and Al are unchanged,
whereas

ew

_ -Dp(_¢
B,=hTI D((1+ew)2

) , w=kh;, k=—N,...,N,

that is, the eigenvalues of the diagonal matrix S; in (2.19) are proportional
to T', whereas the eigenvector matrix X; is independent of T. By (2.18) it
thus follows that e.g.,

[col{ F'(Az, B, [cij]}]

<Xl | X7 | 1l [ ) IR lleot eI

where, by (2.20), and the above expression for By,

IF|| =0 (T"?), T 0.

That is, the right hand side of (2.20) is a contraction map for all sufficiently
small T'.

Similar results obtain for the above cases of the wave and heat equations, as
well as for the case of the electric field integral equation which is considered
below, in the cases when the Green’s function approach is used to reduce a
PDE to an equivalent integral equation formulation.

2.5 Solving the Electric Field Integral Equation

[11].
Our final example involves the electric field integral equation, which takes
the form

. t t!
e(r,t) =e(r,)- [ [ ( RERE f)e(r',s)df) ol = x' | t-t)d s
(2.23)

where the time-domain Green’s function is given in terms of r = |r|, i.e.,

1
1 r ale ot 2\2
= e (2o e 2) )
4r (t2 — Z—i) ?

(2.24)
where u is the Heaviside function and I is the modified Bessel function of

the first kind of order one, with a = 2%. The constant ¢ = 1/,/uoeq is the
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velocity of the wave in V. Furthermore, y(r, t) is the time-domain scattering
potential, which is given as the product of two functions for £ > 0, one with
space variables and the other with time variable, i.e.

(r,t) = 71(r)y2(r, 1), (2.25)

where
1(r) = zie T+ jZ§€7|r7(0’0’3)|2, (2.26)

and where the “Laplace transform” of «»(r,¢) taken with respect to ¢ is

(o(r) —a0)7 + (&(r) — €0)
ooT + €o

o
Ta(r,7) = [ exp(—t/7) 2a(r, 1) dt = . 22
We shall obtain an approximate solution to this integral equation for {(r,t) €
V x (0,T)}, where

V:{r:(w,y,z) € R?: (z,y) E]R2,Z>O}. (2.28)

The Sinc-convolution method of solution requires the “Laplace transform”
G(u,v,w, ) of the kernel of the integral equation (2.23), which is the prod-
uct not only the “Laplace transform” of yo(r,t) with respect to ¢, and the
four dimensional “Laplace transform” of the time domain free space Green’s
function g(z,y, z,t) with respect to all variables

G(u,v,w,7) =To(r,7) G(u,v,w, 7). (2.29)

These “Laplace transforms” may in fact be explicitly expressed in terms
of the results given in §4 of this paper. Moreover, the resulting Sinc con-
volution layout can be solved via Neumann iteration, analogous to that of
Burgers’ equation above. Furthermore, this iteration scheme may be shown
to converge provided the time interval (0,7") is sufficiently small, via an ar-
gument similar to that used at the end of the Burgers equation example.
However, we omit the lengthy details, which will be published elsewhere. It
is, nevertheless interesting to compare the performance the Sinc convolution
method with that of Ye’s [18] finite difference solution method. For these
comparisons, see Table 5. In this table, all entries except those with a “*”
are actual computation times. The entries marked with a “*” are computed
times based on the convergence rates obtained by Monk & Siili in [10].

3 Sinc Terminology

This appendix is a summary of the Sinc notation which we require for the
presentation of the results of the paper. Most of the results are proved
elsewhere, i.e., in [9, 14, 15]. The new results, such as the extension of Sinc
convolution to curvilinear regions are presented with proofs. Our manner
of description of the methods is in symbolic form. We include methods
for collocation, function interpolation and approximation, for approximate
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Table 5: The IBM RISC/560 workstation run-times Computation time re-
quired by Ye’s Finite Difference and Sinc-convolution methods vs. desired
precision. Computer run—time is shown as Days: Hours: Minutes: Seconds

Precision | Finite Difference Run-Time | Sinc-Convolution Run-Time
101 < 1 second < 1 second
102 000:00:00:27 000:00:00:06
10-3 003:00:41:40* 000:00:02:26
1074 > 82 years* 000:00:43:12
10~° > 800,000 years* 000:06:42:20
106 > 8.2 billion years* 001:17:31:11

definite and indefinite integration, for the approximation of definite and
indefinite convolutions, including multidimensional extensions of these for
the approximate solution of partial differential and integral equations.

3.1 One Dimensional Sinc Spaces

Let D denote a simply—connected domain in the complex planeC, let 1 <
p < 00, and let HP(D) denote the family of all functions f that are analytic
in D, such that

1/p
(/aD\f<z>|p|dz|) <oo if 1<p<oo
Np(f.D) = (3.1)

sup |f(z)| < o0 if p = o0.
z€D

In essence, we consider two spaces of functions M, g(I") and L, g(T')
for purposes of Sinc approximation on an interval or contour. Consider
first the case of a finite interval, (a,b). Perhaps the simplest concept of
the space of functions M, g(a,b), with 0 < @ < 1, 0 < g < 1, is that
consisting of all functions that are analytic on the open interval (a,b), of
class Lip,, in a neighborhood of a, and of class Lipg in a neighborhood of
b. The corresponding space L, g(a,b) consists of the set of all functions
f € Mg g(a,b) for which f(a) = f(b) = 0.

More generally, if (a,b) is a contour I', such as, e.g., the interval (0, 00), or
the real line IR, (or even an analytic arc in the complex plane), the mapping
¢ is selected to be a conformal mapping of a domain D onto Dy, with Dy
defined as above, such that ¢ is also a one-to-one map of I' onto R. We

18



define p by p = e?. Note that p(z) increases from 0 to oo as z traverses T’
from a to b.

Let «, B and d denote arbitrary, fixed positive numbers. We denote by
L, g(T") the family of all functions that are analytic and uniformly bounded
in D, such that

() = { O(|p(2)|*), uniformly as z — a from within f_, (3.2)
O(lp(2)|7?), uniformly as z — b from within D. ’
We next define the class of functions M, g(I'), but this time restricting
a, B and d such that « € (0,1], 8 € (0,1] and d € (0, 7). This class consists
of all those functions g € Hol(D), that have finite limits at ¢ and b, so that
the function Lf is well defined, where

_ fla) +p(z) f(b) _ &
and such that if f is defined by
f=9-Lg (34)

then f € L g(T).

Note that if 0 < d < =, then £(g) is uniformly bounded in D, the
closure of D, and moreover, L(g)(z) — f(a) = O(|p(2)|) as z — a, and
L(g)(z) — f(b) = O(1/|p(2)|) as z — b, i.e., L(g) € M1,1(T). Furthermore,
M (') € Myp(T") for any o € (0,1], 8 € (0,1}, and d € (0,7), and
moreover for these restrictions on «, 3, and d, the class L, g(I') is contained
in the class M, g(T').

The spaces Lq g(I') and M, g(I") are motivated by the premise that
most scientists and engineers use calculus to model differential and integral
equation problems, and under this premise the solution to these problems
are (at least piecewise) analytic. The spaces Ly g(I') and M, g(I") house
nearly all solutions to such problems, including solutions with singularities
at end points of (finite or infinite) intervals (or at boundaries of finite or
infinite domains in more than one dimension). Although these spaces also
house singularities, they are not as large as Sobolev spaces which assume
the existence of only a finite number of derivatives in a solution, and conse-
quently (see below) when Sinc methods are used to approximate solutions of
differential or integral equations, they are usually more efficient than finite
difference or finite element methods. In addition, Sinc methods are replete
with interconnecting simple identities, including DFT (which is one of the
Sinc methods, enabling the use of FFT), making it possible to use a Sinc
approximation for nearly every type of operation arising in the solution of
differential and integral equations.

Let us describe some specific spaces for one dimensional Sinc approxi-
mation.

Example 3.1: If I' = (0, 1), and if D is the “eye-shaped” region, D =
{z € C : |arg[z/(1 — 2)]| < d}, then ¢(z) = log[z/(1 — z)], the relation
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(3.3) reduces to f = g — (1 — z)g(0) — zg(1), and L, g(T') is the class of all
functions f € Hol(D), such that for all z € D, |f(2)| < c|z|%|1 — z|®. In this
case, if e.g. 0 = max{a, 8}, and a function w is such that w € Hol(D), and
w € Lip;(D), then w € My 4(T'). The Sinc points z; are z; = e/*/(1 + e/h),
and 1/¢'(z;) = e/ /(1 + €/h)2.

Example 3.2: If I' = (0,00), and if D is the “sector” D = {z €C :
|arg(z)| < d}, then ¢(z) = log(z), the relation (3.3) reduces to f(z) =
9(2)—[g(0)+z g(o0)]/(142), and the class L, g(I') is the class of all functions
f € Hol(D) such that if z € D and |z| < 1 then |f(2)| < ¢|2|*, whileif z € D
and |z| > 1, then |f(2)| < ¢|z|™#. This map thus allows for algebraic decay
at both z = 0 and z = co. The Sinc points z; are defined by z; = €/", and

1/¢/(z) = &

Example 3.3: If I' = (0,00), and if D is the “bullet-shaped” region
D = {z €C : |arg(sinh(z))| < d}, then ¢(z) = log(sinh(z)). The relation
(3.3) then reduces to f(z) = g(z) — [g(0) + sinh(z) g(00)]/(1 + sinh(z)), and
L, g(T') is the class of all functions f € Hol(D) such that if z € D and |2| < 1
then |f(2)| < ¢|z|®, while if z € D and |z| > 1, then |f(2)| < cexp{—p]z|}.
This map thus allows for algebraic decay at x = 0 and exponential decay at
z = 00. The Sinc points z; are defined by z; = log[e’® + (1 + ¢¥")1/?], and
1g(z) = (1+¢ 20) V2.

Example 3.4: If I' = R, and if D is the above defined “strip”, D = Dy,
take ¢(z) = z. The relation (3.3) then reduces to f(z) = g(z) — [g(—00) +
e” g(00)]/(14¢€%). The class Ly g(D) is the class of all functions f € Hol(D)
such that if z € D and Rz < 0 then |f(2)| < ce ®?l, while if z € D and
Rz > 0, then |f(2)| < ce P?l. Thus this map allows for exponential decay
at both £ = —oo and z = oo. The Sinc points z; are defined by z; = jh,
and 1/¢'(z;) = 1.

Example 3.5: If I' = R, and if D is the “hour glass-shaped” region,
D= {z €C: |arg[z+ (1+22)'/?])| < d}, take ¢(z) = log[z+ (1+22)/?]. The
relation (3.3) reduces to f(z) = g(z) — [g(—00) + (z + (1 +22)1/?) g(c0)]/[1 +
z+ (1+22)1/2], and the class Ly, g(T) is the class of all functions f € Hol(D)
such that if z € D and Rz < 0, then |f(2)| < ¢(1 + |z|)™%, while if z € D
and Rz > 0, then |f(2)| < ¢(1 + |z|)~#. This map thus allows for algebraic
decay at both £ = —oo and x = oo. The Sinc points z; are defined by
zj = sinh(jh), and 1/¢'(z;) = cosh(jh).

Example 3.6: If I' = R, and if D is the “funnel-shaped” region, D =
{z €Q : |arg{sinh[z + (1 + 22)Y/?]}| < d}, take ¢(z) = log{sinh[z + (1 +
22)'/2]}. The relation (3.3) then reduces to
f(2) = g(2) ~ [9(~00) +sinh(z + (1 +2%)"/?) g(00)]/[1 +sinh(z + (1 +2%)'/2)],
and L, g(I") is the class of all functions f € Hol(D) such that if z € D
and Rz < 0, then |f(2)] < ¢(1 + |z|)”¢, while if z € D and Rz > 0,
then |f(z)| < ce P?l. This map thus allows for algebraic decay at z =
—oo and exponential decay at x = oco. The Sinc points z; are defined by
zj = (1/2)[t; — 1/t;], where t; = log[e" + (1 4+ ¢%")'/?], and 1/¢'(2j) =
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(1/2)(1 + 1/£2)(1 4 e=2h)=1/2,

3.2 Multidimensional Sinc Spaces

Precise definitions of these spaces may be found in [14] §6.53, §6.6.2 & §7.3.2.
In essence, a function f defined on e.g., a bounded region V € R% belongs to
a proper Sinc space if given a point x = (z1,...,z4) in the closure of V, then
corresponding to each j = 1,...,d, let us fix all of the coordinates z;, 7 # 7,
and call the resulting function f;(z;). Denoting by I'; =€ V the interval of
longest length in the z; direction that contains the point x, we want f; to
be analytic in the interior of I'j, and to be of class Lip, on the closure of
I';. If all of these conditions are satisfied, then by taking h = ¢1/1/(IN), and
performing Sinc approximation with NV point evaluations in each dimension,
i.e., for a total of N¢ points, we are able to achieve an error of the order of

exp (—c’\/ﬁ) .

3.3 One Variable Sinc Approximation

1. Notation.

Sinc approximation in M, g(I') is defined as follows. Let N denote a
positive integer, and let integers M, and m, a diagonal matrix D(u)
and an operator V,,, be defined as follows

= positive integer

[BN/c]

M+ N+1 (3.5)
) diag[u(z_nr), - -, u(zn)]

Vin(u) = (u(z-m),.-. u(zn))",

IRz
[

where [-] denotes the greatest integer function, where u is an arbitrary
function defined on I', and where “I™ denotes the transpose.

We shall also define a norm by

IfIl = sup|f(z)],
€l

and throughout this section C' will denote a generic constant, indepen-
dent of N.

2. Sinc Basis.

Letting Z denote the set of all integers, set

21



sinc(z) = sin(mz) ,

rd \ /2
b= ()
zj = ¢ '(jh), jEZ
’YJ = SlIlC{[qZS—]h]/h}, j:_Ma"'aNa

w; = %, j:_M+1a-'-aN_la (36)
1 i& 1
w— - - . P ¢
M I+p S lt eih VI
N—-1 jh
N e
YN T4 ﬁ§@1+aﬂm
EN = N1/2e=(rdBN)Y?

We may thus define a row vector w of basis functions by

w = (waa"'awN)
with w; defined as in (3.6) and for given vector ¢ = (c_pr,...,cn)7,
we have
N
j=—M

. Sinc Interpolation and Approximation.

A proof of the following result may be found in [2, 3] (see e.g., [2, pp.
126-132).

Theorem 3.1 If f € M, g(T'), then

1f = Wi Vi fI| < Cen. (3.8)

The constants in the exponent in the definition of ¢y are the best
constants for approximation in M, g(I"). Hence accurate Sinc approx-
imation of f is based on our being able to make good estimates on «,
B, and d. If these constants cannot be accurately estimated, e.g., if
instead of as in (3.6) above, we define h by h = 7/N1/2, with v a con-
stant independent of N, then the right-hand side of (3.8) is replaced
by CeN 1/2, where C and § are some positive constants independent
of N. Henceforth we shall take h as defined in (3.6).

Remark: We remark, that if f € L, g(D), then it is convenient to
take w; = sinc{[¢ — jh]/h}, j = —M,..., N, instead of as defined in
(3.6), since the corresponding approximation of f as defined in (3.2)
then also vanishes at the end points of ', just as f then vanishes at
the end points of T'.
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4. Sinc Collocation.

The following result, guarantees an accurate final approximation of f
on I'; provided that we know a good approximation to f at the Sinc
points (for a proof, see [9], p. 132).

Theorem 3.2 Let f € My g(I"), and let the conditions of Theorem
3.1 be satisfied. Let ¢ = (c_pr,...,cn)T be a complex vector of order
m, such that

N 1/2
( > If(Zj)—Cj|2> <4, (3.9)

j=—M

where § is a positive number. If C and ey are defined as in (3.8), and
if wj is defined as in (3.6), then

If —wmell < Cen + 4. (3.10)

5. Sinc Quadrature.

We also record the standard Sinc quadrature formula, which belongs
to the family of tools for solving differential and integral equations (see
[14], §4.2).

Theorem 3.3 If f/¢' € Ly 5(T), then

[ 1@ o~ VY V)| < O 311)

6. Sinc Indefinite Integration.

A detailed derivation and proof of Sinc indefinite integration is given
in [14], §3.6 and 4.5.

Let us next describe Sinc indefinite integration or convolution over an
interval or a contour. At the outset, we define numbers o and ey, by

k
o = /sinc(:z:)dx, kelZ,

. (3.12)

e = 1/2 + 0k-
We use the notation of (3.6), and we define a Toeplitz matrix I(-1 of
order m by I = [e;_;], with e;_; denoting the (i,3)th element of
I=1). We then define operators J and J’, and matrices A, and B,
by
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(T = [Fft)dt, (T )(z) = [2F@)adt,
An = hICUD(1/¢), B, = h(IENTD(1/4"),
Wi Am Vin, Tm, = W Bn Vi,

$
Il

(3.13)

with ()T denoting the transpose of I(-1). We thus obtain the
following theorem [9],

Theorem 3.4 If f/¢' € Lo g(T'), then

|1Tf = Imfll < Cen,

\T*f = T5fll < Cen. (3.14)

. Sinc Indefinite Convolution.

Indefinite convolution integrals can also be effectively collocated via
Sinc methods. To this end, we begin with the model integrals,

pe) = [ fle-tg@a,
a, (3.15)
d@) = [ 1a-o)gd,

where = € T'. In presenting these convolution results, we shall assume
that ' = (a,b) C R, unless otherwise indicated. Note also, that
being able to collocate p and ¢ enables us to collocate both definite
convolutions

[ 1=

Ja (3.16)
| £l =t gty d.
Sinc collocation of p and ¢ is possible under the following
Assumption 3.5 We assume that the “Laplace transform”,
Fls) = / F(t)y et/ at (3.17)
E

with E any subset of R = (—o0, 00) such that E D (0,b—a), exists for
all s € QT = {s €C: Rs > 0}.

In this notation, one gets the rather “esoteric results” [15],

p=F(T)g, q¢=F(T")g- (3.18)

Howewver, the previous theorem suggests that the approzimations J g =
Img and J* g = T, g are accurate, at least for g in certain spaces of

24



functions, and this is indeed the case. In fact, with the above defini-
tion of Jm = Wy Am Vin, upon diagonalization of Ay, in the form
Am = X1 AXTY with A = diag[A\_ar,,---, ANy, and the esoteric
forms (8.18) become computationally feasible, as follows:

F(J)g F(Im) g

Q

= wnF(An) Vg (3.19)
= W X1 F(A) X[ Vg,

As to convergence, let P(r,z) be defined by

P(r,z) = / Stz —t)g(t) dt. (3.20)

We assume that
(i) P(r,-) € My g(T), uniformly for r € [0,b — al]; and that

(ii) P(-,z) is of bounded variation on (0,[b — al]), uniformly for x €
[a, b].

Under these assumptions, we have (see [14], §4.6, or [9] for a proof)

Theorem 3.6 If the above assumptions are satisfied, and if Ay, and
By, are defined as in (3.13), then [15]

P — Wi F(An)Vingll < Cen, (3.21)
lg — Wi F'(Bm)Vimgll < Cen. .
Remark: We remark here that it may be shown [14] that every eigen-
value of the matrices I(=1) lies in QF, where Q1 denotes the right half plane,
and also, we have shown by direct computation, that every eigenvalue of the
matrices (-1 lies in QF for m = 1,2,...,513. It thus follows, thus, at
least for the case when (a, b) is a subinterval of R, that the matrices F/(A,)
and F(B,,) are well defined, and may be evaluated in the usual way, via
diagonalization of A,, and B,,. (We have also tacitly assumed here that 4,,
and B,, can be diagonalized, which has so far always been the case for the
problems that we have attempted.)

3.4 Sinc Approximation of Multidimensional Convolutions

In this section we illustrate the extension of one dimensional convolution
to the approximation of multidimensional convolution integrals. The reader
should note that this algorithm actually yields a separation of variables,
enabling the approximation of multidimensional convolution integrals via a
sequence of one-dimensional matrix multiplications. Thus, the “big matrix”
that one requires for the solution of partial differential equations via classical
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finite difference and finite element techniques need never be stored, so that
problems that require matrix sizes of e.g. 107 x 107 can readily be dealt
with. At first we summarize the known results over rectangular regions,
leaving out some details which may be found in [15], [14], §4.6. We then
give a detailed derivation of indefinite convolution over curvilinear regions.
The combination of these two algorithms enables us to solve most PDE
problems stemming from applications whose solution can be expressed as
convolution integrals over curvilinear regions.

1. Convolutions over Rectangular Regions

We briefly illustrate in what follows, an algorithm for evaluating a
two dimensional convolution integral based on the Sinc convolution
Theorem 3.8 above.

We illustrate here, the approximation of a convolution integral of the
form

p(z,y) = /ay /b1 flx—&n—y)g(&mn)didn, (3.22)

2 JT

where the approximation is sought over the region B = ]_[12:1 ®(a;, b;),
and with (a;,b;) C R. We assume that the mappings ¢; : D; — Dg
have been determined. We furthermore assume that positive integers
Nj and M; as well as positive numbers h; (j = 1,2) have been selected,

we set m; = M; + N; + 1, and we define the Sinc points by zé]) =

¢ (¢h;), for £ = —Mj,...,N;;j = 1,2. Next, we determine matrices
Aj, X, Sj and Xj_l, such that

_ T
A= m (I5") DO/#) = Xi$iX,

s X585, X, L.

(3.23)
Ay = holin, " D(1/¢h)

In (3.23), L(n;.l) is defined as in (3.13) above, and the S; are diagonal
matrices,

S; = diagls¥), ..., sQ)]. (3.24)

We require the two dimensional “Laplace transform”

F(sW, s) :/ / f(z,y) e /s /s g dy, (3.25)
o Jo

which we assume to exist for all s(/) € QF, with QF denoting the right
half plane. It can then be shown (see [9], or [14], §4.6) that the values
pi ; which approximate p(zi(l),z(?)) can be computed via the following
succinct algorithm. In this algorithm the we use the notation, e.g.,
h;. = (him,,---,hin,)T- We again emphasize the obvious ease of
adaptation of this algorithm to parallel computation.
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Algorithm 3.1

(a) Form the arrays z( 7 , and d ¢(j (z) at z = z(j) for j = 1,2, and
i = —M .., Nj, and then form the block of numbers [gz]] =

9060, 0]

Determine 4, S;, X;, and Xj_1 for j = 1,2, as defined in (3.23).
Form h. ; = X7'g.j, j = —Ma, ..., No;

Form k;. = X, 'h;., i = —M,..., Ny;

(b)
)
)
e) Formr; ;= F(s$", s kij, i = —My,...,Ny, j = —My, ..., Ny;
)
)

C

(
d
(

(f

(g

Form q;. = Xor; .,
Form P.; = qu-,ja j = —Mg, .. ,NQ.

Remark: Tt is unnecessary to compute the matrices X; ' and X, ! in
steps ¢ and d of this algorithm, since the vectors h. ; and k;. can be
found via the L U factorization of the matrices X; and Xos.

Thus starting with the rectangular array [g; ;|, Algorithm 3.1 trans-
forms this into the rectangular array [p; ;].

Suppose, for example, that we form a vector g in which the subscripts
appear in the order (call it lexicographic) dictated by the order of ap-
pearance of the subscripts in the Fortran do loop, “DO j = —Ms, Ny”,
followed by “DO i = —M;j,N;”. We then also form the diagonal ma-
trix F in which the entries are the values Fj; = F(s (1),352)), with
the function F' and the eigenvalues sg) defined as above, and where
we also list the values Fj; in the same lexicographic order as for g;;.
Then, similarly for the array p; j, we can define a vector p by listing
the elements p;; in lexicographic order. It can then be shown that if

p1 is defined by the matrix (Kronecker) product

p = Cg
C = L0X FoX,'oX!

then the corresponding numbers p;; are accurate approximations of

(() ())‘

the values p(z

We emphasize here, due to the Kronecker product representation of
the matrix C the numerical determination of the vector p = Cg can
be carried out in parallel, without storage of of the huge matrix C in
this equation, which may be an asset, especially for problems in 3 or
more dimensions.

Once the numbers p; ; have been computed, we can then use these
numbers to approx1mate p on the region B via the use of a Sinc basis;
upon setting pl& = e , we can define the functions
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YO = sinc{[¢® —ih]/h}, £=1,2 i=—M,,...,Np,

w = 3O, €:1,2;Ni:—Mg+1,...,Ng—1,
I4
© 1 L
YoM 14 p® j:—ZMrI—l I e
Ny—1 :
W0 = P9~ e
Ne T+p0 & Tteh

(3.26)
We then get the approximation

Ny N»

= S Y piyu) @l (y). (3.27)

i=—M; j=—M>

To get an idea of the complexity of the above procedure, we make the
simplifying assumption that M; = N; = N, for j = 1,2. We may
readily deduce that if the above two dimensional “Laplace transform”
F is either known explicitly, or if the evaluation of this transform
can be reduced to the evaluation of a one—dimensional integral, then
the complexity, i.e., the total amount of work required to achieve an
error ¢ when carrying out the computations of the above algorithm (to
approximate p(z,y) at (2N + 1)? points) on a sequential machine, is

O([log(e)1°).

The above algorithm extends readily to v dimensions, in which case
the complexity for evaluating a v—dimensional convolution integral (at
(2N + 1)” points) by the above algorithm to within an error of ¢ is of
the order of [log(e)]? 2.

The above results extend readily to “product regions” over more than
one dimension.

. Conwolutions over Curvilinear Regions

Curvilinear regions can also be dealt with relatively easily via Sinc
methods. We now illustrate this, by deriving in detail a Sinc convo-
lution algorithm over a two dimensional region, and then stating the
algorithmic form of the three dimensional version (which is obvious at
this point, once the derivation of the two dimensional algorithm has
been carried out).

Sinc Conwvolution over a Two Dimensional Curvilinear Region. Sup-
pose that we are given a convolution integral over the region

B:{(t,T) tap <t<by, ag(t) <T<b2(t)} (328)
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where for purposes of this illustration a; and by are finite and as and by
are finite valued functions belonging to M, g(I') can be readily dealt
with by the following initial transformation of the differential equation:

t = a1+(b1—a1)§

v o= ag(t) + (balt) — ax(t)) m, (3.29)

which transforms the square {(z,y) : 0 < ¢ <1, 0 < n < 1} onto
the region B. Here we have not excluded the possibility that az(a;) =
ba(a1) or that az(b1) = ba(b1). The resulting differential equation
problem over the square can now be easily dealt with, starting with a
product—type approximation, using a double sum, based on (3.3) (see
(4.8) below).

We next extend the above two dimensional Sinc convolution algorithm
to such a region B defined in (3.28) above.

Consider the integral

r(z,y)://Bf(z—t,y—T)g(t,T)dth, (3.30)

where B is given in (3.28) above.

We decompose r into a sum of 4 integrals:

r=ri+ro+r3+rs (3.31)

with

T ry
n=[ [ fe-ty-ngtrdra,
a1 ag(t)

b Yy
n= [ [ fe=ty=ngtr)dra,
T as(t
(3.32)
x bQ(t)
n=[ [ fe-ty-netrdra,
al Yy

b1 bz(t)
7‘42/ / flx—t,y—1)g(t,7)dr dt.
z Jy

Each of these integrals can be handled in exactly the same way. We
thus illustrate here, an explicit procedure for approximating the first
of the above integrals, i.e.,

p(z,y)) = /: /ay(t) fle —t,y—7)g(t,7)dr dt (3.33)

over the region B defined above.
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It is again essential to illustrate in detail the steps of the reduction.
To this end, we shall require the use of the “Laplace transforms”,

F(z,0) = /E2 exp (—%) flz,y)dy, E2D (O,m%x(bQ(:v) —az(x)),
G(s,0) = /El exp (—f) F(z,0)dz. E; D (O,mgx(bg —as),
(3.34)

where we assume that both integrals exist whenever both variables are
on their respective open right half planes.

We first apply the Sinc convolution procedure to the inner integral.
To this end, we set

=9 (w) = GQ(t)ﬁ_b;(ut) “ e w-= o(1) = log (722&; 2_“2)
e’ a e jha

@'17') - [b2(t) - GQ(t)] (1 n 6“’)2’ TP = Tj(t) = Z(t)l—:_b;.(’fz ’ .
(3.35)

In order to carry out indefinite convolution with respect to 7, we shall
require the indefinite integration matriz [ba(t) — az(t)] Ag, with Ay =
ho I D (€¥(1 + €®)~2), and in which the variable w is evaluated at
the points j hy, j = —Mas,..., No. We then set mo = M — 2+ Ny + 1,
A =X5S, Xz_l, with S a diagonal matrix with entries s(_23\/[2, ceey 35\2
We thus obtain

T

ple,y) = [ waly) X F (o —t,[ba(t) — az(t)] So) X Ve glt, ") dt.
1 (3.36)

At this point Xo F (z — t, [b2(£) — aa(t)] S2) S5 'V, g(t,-) is a vector of
order mo which accurately approximates the vector

Y
Vy flz—t,y—7)dr
az(t)

at the points 7; defined in (3.35) above.

We emphasize here that the operator V,, transforms g(t, 7) into a vector
with entries obtained by replacing 7 with the numbers 7; defined in
(3.35) above. That is, the points 7; also depend upon t. The vector
wy(y) of basis functions interpolates at the points 7;. Removal of the
basis w in (3.36) therefore defines this vector p(z); setting q(z) =
X5 p(z), h(t) = X5V, g(t,-), and then taking the j* component,
g;j(z) of q(z) and h;(t) of h(t), we get
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¢(z) = / P (o = 1 [a(t) - ax(0] 52) hy(t)dt. (3.37)

1

We now again apply Sinc convolution, in the variable ¢ to this integral,
to get in the notation of (5.13), and with m; = My + Ny + 1,

65 % G (T, [b2() — a2()] 77 ) by, (3:38)

where, corresponding to any function u,

(jml U) (ZE) = Wl(JI) [bl — al] A1 VI u

Jhi
A =h 1Y p (‘37) ’

(1 + edh1)? (3.39)
A =X, 8 X7,

X = [xsj)] , X l= [xi’j] .

If one of the variables s() in the function G(s(%),s®) is fixed, then
G(s,0) is assumed to be analytic with respect to the other variable,
on the whole right half plane. Hence, denoting the right hand side
of (3.37) by q;, we have, formally, upon performing a power series
expansion of G with respect to the first variable,

g} = G (Tomy s [02() = a2()] 55) hs(2)

=3 Fky Ge([bo() — a2 ()] s) By()

>0

= w1 X1 3o - ar)’ (D) X, 1V Ge ([ba() — a2()] s§) hy().
>
= (3.40)

Now, by applying the operator V,, to each side (or equivalently, drop-
ping the vector wy), then multiplying each side of this equation by

X!, setting X'V, q; = rj, and denoting t; = [al +b; ekhl] /(1 +

e*M), we find that the i component of r; is just
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N1 )
g = bi-al () 2 o Gellal) - aa0] i) hy()

£>0 k=—DM
ik ¢ (! @

= > ay o —alt (1Y) G ([ba(t) — aslti)] s57) hy(te)
k=—M; £>0

N1 .
= > w6 (b —a] s [bate) — as(tr)] 51 hyta).-
e (3.41)

Now, having gotten r; ;, we get g; j and p; ; from the equations

a;=Xuir; pi.=Xa4,.. (3.42)

The final algorithm takes the form of Algorithm 3.2, which follows.

Algorithm 3.2

(a) Determine parameters My and Ny, set my = My+ Ny+1,4 = 1,2,
and form the matrices

w
A, = hIEYD (67) C W=
v he tev)) w=khy
= XS, X;!
Xl_l = [a:z’f)] , Sy =diag [3(_23\4[,...,35@] , £=1,2.

(3.43)

(b) Form the values u; = €¥/(14+€"¥), withw =4 hy, 1= —Mi,...,N;
as well as the values v; = e¥/(1 + e¥), with w = jhe, j =

—My, ..., Ny. Then use these to get the Sinc points ¢; = (a1 +
(b1 - al)ui, and Tij = ag(ti) + (bz(tz’) — az(tz')) Vj.
(c) Form the mi X mg array [g; ;] with

9ij =9 (ti,Tij) -
(d) Replace the array [g; ;] with [k ;], where

hi. =X ' g;..
(e) Obtain the “Laplace transform”

z Y
G(S(l),s(Z)) = él /E2 exp{—@ — @} f(x,y) dydz,

with the sets F; defined as above.
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(f) Replace the array [h; ;] with the array [r; ;], with

N
rig= 3 2 G (b —a] s, [bo(tx) — as ()] 5) by
k=—M;
(g) Set
q.j = X1 Tr.j-
(h) Set
pi, = X2.¢i,. .

Remark: Having computed the array {p; ;}, we can now approximate
p(z,y) at any point in B by means of the formula

p(z,y) = wi(x) [pij] (wa(z,9)" (3.44)
where w; = (wg\ff)i, .. ,wg\i,)i), are defined as in (3.6), but with
T —ay
=1
p1(z) = log (bl — x)
(3.45)

p2(z,y) = log (%)

Sinc Convolution over a Three Dimensional Curvilinear Region.

We now state an analogous algorithm for approximating indefinite
convolutions over the region

B=A{(z,y,2) : a1 <z < by, as(z) <y < ba(x), as(z,y) < z < b3(z,y)} .
(3.46)

We wish to approximate a convolution integral of the form
Re,2) = [ [ [ fa-gy=nz-0gen0dcdndc. (.47)

This definite convolution integral can be split up into 8 indefinite con-
volution integrals, the approximation of each of which is similar. We
now give an explicit algorithm for approximating one of these, namely,

p(z,y,2) =/:/:(m)/az(w,y)f(w—ﬁ,y—n,z—C)g(f,n,C)dCdndﬁ-
(3.48)
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Algorithm 3.3

(a) Determine parameters M, and Ny, set my = My + Ny + 1, £ =
1,2,3, and form the matrices

A, = hIYUD (L) c w==kh
L 4 (1 +ew)2 p W ¢
= X;S.X;!
le — [:I:Z(’g)] , Sezdia,g [3(_{3\44,...,85\2], €=1,2,3.

(3.49)
(b) Form the values u; = ¢“/(1+¢*), withw =4hy,i = —M;,..., Ny
the values v; = e¥/(14+€), withw = j hg, j = —M>, ..., Ny, and
wr, = e“/(1 +e¥), with w =khs, k= —Ms,...,N3. Then use
these to get the Sinc points & = (a1 + (b1 — a1)u;, 7ij = a2(&) +
[b2(&i) — a2(&)] vj, and G j x = a2(&i, n5)+[b3(&isny) — az(&ism)] Ck -
(c) Form the m; x my x mg array [g; j x| with

ijk = 9 (&is Mgy Gigike) -
(d) Replace the array [g; ;] with [h; ; x|, where

o= x1,
hl:]a' - X3 gZa]:"

(e) It is convenient to obtain the “Laplace transform” by first taking

Er D (0,[b1 —a1]),
Ey D (O’supxe[bl—al])’

By > (O’SuPy:(w,y)G{(ﬁ,n):al<§<b1,az(§)<n<bz(§)}) ;
and then setting

@ (s, 50, 5®)

= _r Y 2
_/E1/Ez/Esexp{ s 52 3(3)}f($,y,z)dzdyda:.

(f) Replace the array [h; ;] with the array [r; ; ], with

G ([br — a1] 5, b2 (€6) — a2 (&0)] 5, [b3 (Eesmm) — a3 (&6 mm)] )

'hl,m,k .
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(g) Form

T.’j,k = Xl U.,j’k

(h) Form

Qi k= XoTi. k-

(i) Form

Pij, = X3 i, -

Remark: Having computed the array {p;;;}, we can now approxi-
mate p(z,y, z) at any point B by means of the formula

N N3

N3
pay)~ Y Y Y Y (@) ol (@,y) wd (2,9, 2),

t=—M1 j=—Mz k=—Ms3

(3.50)
where w; = (wg\?i, . ,w%), are defined as in (3.6), but with
- r —ai
p1(x) = log (bl — x)
y— az(@)
z,y) =lo (7 3.51
p2(z,y) = log ba(2) — v (3.51)

4 Laplace Transforms of Green’s Functions

In this section we carry the derivation of the “Laplace transforms” of stan-
dard Green’s functions for solving Poisson problems in 2 and 3 space di-
mensions, wave equation problems in one, two and three space and one time
dimension, Helmholtz equation problems in two and three space dimensions,
and heat equation problems in one, two and three space and one time di-
mension. The procedure used to carry out these derivations is essentially
that developed first in [11].

Let us state and prove a general lemma which is applicable for evalu-
ation of the “Laplace transforms” of all three types of equations, elliptic,
hyperbolic, and parabolic. The lemma involves the correct evaluation of the
integral

Q) = [ = (4.1)

Z—a
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for given a €, with C = {z €C:z=¢", 0< 0 < 7/2}. As a convention,
we let In(a) denote the principal value of the logarithm, i.e., ifa = {+in €C,
then In(a) = In|a| + i arg(a), with arg(a) taking its principal value in the
range —7 < arg(a) < 7.

Lemma 4.1 Leta =& +in €C, set L(a) =& +n—1 and let A denote the
region

A={a=¢+in€C}:|a] <1, L(a) > 0}. (4.2)

Ifa €T\ A, then

Q(a) :1n<i_a) : (4.3)

1—a

If a =1 or a =1, then Q(a) is infinite.

If a € A, then

Q(a) =In

1—a ) 1—a
1_a‘+z<27r—arg<1_a>), (4.4)

If L(a) = 0 with |a| < 1, then

Q(a) =In - +im (4.5)
e If L(a) > 0, and |a| = 1, then
1—a .
Q(a) =In 1~ a +z§. (4.6)

Proof. The proof is straight forward, the main difficulty stemming from
the fact that if a € A, then the principal value of In (%) does not yield the

correct value of Q(a), since the principal value of In (%) does not yield
the correct value of Q(a) as defined by the integral definition of Q(a), since
in that case the imaginary part of Q(a) is larger than 7. Perhaps the most
difficult part of the proof is the verification of (4.6), which results from the
fact that if the conditions on a are satisfied, then the integral (4.3) defining
Q(a) is a principal value integral along the arc C, and this value of Q(a)
is thus the average of the two limiting values of Q(() as ( approaches the
point a on the circular arc from interior and from the exterior of A, which
is easily seen to be 7/2. m
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4.1 Transforms of Green’s Functions of Poisson Problems

1. The Case for Planar Regions. In this case, the Green’s function G(z, y)
for which the expression

‘P(w,y)=//BG(w—£,y—n)g(£,n)dfdn (4.7)

defines a function u that solves the problem

V(z,y) | 0°V(z,y)

=— €EB 4.8
(8.’E)2 (ay)2 g($7y)7 (‘/E7y) ( )
is given by the expression
Gla,y) = = log [ e (4.9)
,y) = 5 - log T .
Lemma 4.2 Ifu and v are both on the open right half complez plane,

then

Proof. Since

we have, using integration by parts,

/ €xp <_E) Gm(x,y) dz
0 u

o0 1 [e)

= Gy(z,y) exp (—£> + —/ exp (—E) Gz(z,y) dz
=0 u Jo u

(o]

U
1 [ T
+ —2/ exp (——) G(z,y) dz
=0 u 0 u
(4.12)

since G(0",y) = 0. Next, multiplying both sides of this equation by
exp(—y/v) , integrating with respect to y over (0, 00), we get

=0+ 1 exp (—E> G(z,y)
u u
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1 o0
—— / G(0,y) exp (_g) dy
u Jo v

_ L= y
=0 /0 In(y) exp (U> dy

= 2 (I'(1) + In(v))

2w

(4.13)

= 5 (=7 +n(v))

since I'(1) = —y = —0.577.. ..

Repeating the above steps, starting with G, instead of G, and not-
ing that the “Laplace transform” of 6(z) é(y) is 1/4, we thus arrive at
the statement of the lemma. m

. The “Laplace Transform” of G(x,y) = (z* +y2)71/2.

It is sometimes convenient to know this result for boundary integral
equations, as well as for two obtaining the transform of the Green’s
function in three dimensions. We want to evaluate the integral

é(u,v) = /OOO /Ooo exp (—% — %) G(z,y)dzdy. (4.14)

Setting
p=+\z2+y%, z+iy=pz, (z:ew)
_ — (4.15)
k:\/ﬁﬁ_v_za ¢= E_za
u v
we have ) ¢
x
12249
o ? (4.16)
u+iv=A(.

Substituting these results into (4.14) above, we get, after integrating
with respect to p,

A 2
Cz E_i__
¢ z

where C is defined as in (4.1) above. Hence, after rational simplifica-
tion, we get
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Glu,m) = SHQUC) — Q(-i0)) - (4.18)

where @ is defined as in (4.1) above.

3. The 3 —d Green’s function (4mwr)™", with r = /2% + y% + 22.
We shall here derive an explicit expression for

G(u,v,w) / / /oo expi{—y —y gy} dz dy dz. (4.19)

dm/z2 + 92 + 22

This result will enable us to obtain an accurate approximation for ¥,
with

o 9(&,1,¢)
U(z,y,z / / as 47r\/:1:— +(y_n)2+(z_o2d§d(7;d2i)-)

in V = (a1,b1) % (ag,b2) x (ag,bs3). The function ¥ defined in (4.20)
satisfies the equation W, + Uy + ¥, = —g in V.

Lemma 4.3 Let G(u,v,w) be defined as in (4.19) for arbitrary com-
plex u, v, and w located on the right half complex plane. Then

uz 0?2 w?

. 11 1\ !
G(u,v,w) = (—-I——-i-—) :

.{—E—I—H(u,v,w) + H(v,w,u) +H(w,u,v)} )

8
(4.21)
where, setting
1 1
A= ) + ok
! (4.22)
C=y1T_%
we have from (4.14)-(4.18),
1
H(u,v,w) = = ~{Q(i() — Q(=i()} (4.23)

where Q(a) is defined as in Lemma 4.1.
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Proof. The Green’s function G(z,y, z) = (4nr) ™1, withr = /22 + y2 + 22
satisfies the equation

\% (L) = —8(F) (4.24)

drr

where 62(7) = §(z) §(y) 6(z) denotes the three dimensional delta func-
tion. Thus, integrating the expression

J(y, z,u) = /Ooo Gzz(z,y,2) exp(—z/u) dz (4.25)

by parts, we have, noting that G;(0",y,z) =0,

J(y, z,u)
©

= - /000 Gyz(z,y,2) exp(—z/u) dz

z=0 u

1 o0
+ —2/ G(z,y,z) exp (—E> dz
0o u”Jo U

x

= Gy(z,y,2) exp (—5)

o0

= l G(x,y,z) €xp (_E)
u u

r=

-1 1 + 1 /OOG( ) ( .’B) d
=t — z,y,z) exp | —— | dz.
u Am\/y2 + 22 u? Jo 4 P\

(4.26)

We now proceed as in (4.14)—(4.18) above, and then proceed similarly
for Gy, and G, as we did for G, above, and then note that the
three dimensional “Laplace transform” of §3(7) is 1/8, to arrive at the
statement of Lemma 4.3. m

4.2 Transforms of Green’s Functions of Wave Problems.

We consider here the transforms of Green’s functions for problems in d
space and one time dimension, for d = 1,2,3. The Sinc convolution tech-
nique has a considerable advantage over such problems, since for small time
intervals they enable uniformly (in space and time) accurate solution of the
corresponding integral equations via use of successive aproximations, should
therefore be useful for accurate and efficient solution of inverse problems
stemming from the novel integral equation formulations that they offer.

1. The d =1 Case. We want to evaluate the integral

where the Green’s function G(z,t) is defined by the equations
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2 (0t)? (0x)?
(4.28)
G(z,0") = 9G(z,1) =0, zekR.
Bt t=071+

It is readily seen that the “Laplace transform” G(z, ) of G(z,t) then
satisfies the differential equation

Gl 7) = <5 Gla,7) = ~6(a) (429)
and solving this, we find that
G(z,7) = 5T exp (_M) . (4.30)
2 ST

Taking the “Laplace transform” of this equation with respect to the
variable x, we now get

A CTU

G(u,7) =

] 4.31
cCT+u ( )

. The d =2 Case. We shall derive the “Laplace transform”

G‘(u,’u,'r) = /0 /0 G(z,y,t) exp (—% — % — ;) drdxdy, (4.32)

where G is defined for (z,y) € R? and ¢ € (0,T) by the equations

1 8G(z,y,t)  G(z,y,t) FC(z,yt)

2 (0t)2 (8z)2 (0y)2 6(t) 6() 6(y),
G(.Z‘,y,0+) = w ot =0, (zy9) € R?.
- (4.33)

Lemma 4.4 Let G(u,v,7) be defined as in (4.32)~(4.33) for all Ru >
0, ®v > 0, and R7 > 0. Then

é’(u,v,T) = (% — % — i>1 (1—f1(u,v,7) —I;T(v,u,T)) ,

2T U v2 4
(4.34)
where
N 1 4 _1
H(u,v,7) = — arctan , | — (4.35)
™ 6217'2 T)% cr + v



Proof. By first taking the “Laplace transform” of this equation with

respect to ¢, and denoting the result by G(z,y, ), we get the equation

2G(z,y,7) 02°G(z,y,T 1 -
o+ T Gl r) = 0@ ) ny € R,
(4.36)

whose solution is

G(z,y,7) = %K

. L %, <7\/$2+"JQ> , (4.37)

where K denotes the Bessel function.

Let us now again take the “Laplace transform” of the differential equa-
tion, this time with respect to z and y. Using integration by parts, we
find, e.g., that

A (_%) { [T e (_g) Gaal,y,7) dw} dy
= [T e (-) {Gutmy e (-2)]

e (2) Guteari) o o
[ () Lo

1 [ . T
+— / G(z,y,T) exp (——)} dy.
u? Jo u

The last term on the right is just u=2G(u,v,7). To evaluate the
integral of the second last term, we substitute the representation (see
[1], Eq. 9.6.23)

Ko (%) - /loo exp (-% g) G= 1)_1/2 de (4.39)

into this integral, and then interchange the order of integration, to get

z=0

~

/ / éxm(mayaT) exp (_E_g) dxdyz G(u’;)’T) +f{(u,v,7'),
0 0 u v u
(4.40)

where H(u,v,7) is given in (4.35) above. Furthermore, since the two
dimensional “Laplace transform” of §(z)d(y) is 1/4, and proceeding
similarly as above for Gy, we arrive at (4.34). m

42



3. Sinc Convolution Solution of a Wave Equation Problem The Green’s

function G(7,t) = G(=,y, z,t) for the wave equation satisfies the equa-
tions

2 _
lac;iit) ~V2G(r,t) = 6(t) *(r, TERS, te(0,T)
(4.41)
oG
_ 4+ — — -+ _

The four dimensional “Laplace transform” of the function G(7,t) is
defined by

~

G(u’ /U’ w’ T)

o o o o0
:/ / / / G(w,y,z,t)exp{—z—g—i—z} dx dy dz dt.
o Jo Jo Jo u v T

(4.42)

Lemma 4.5 Let G be defined for all Ru > 0, Rv > 0, Rw > 0 and
R >0 by (4.42). Then

1 1 1 1\!
T\ w2 w2 ' (4.43)

where

~

H(u’ ’U’ w’ T) =

where, with

S =
+

gl

N
Il
S

gl

(4.45)

>~
Il

3=
+

M?—"

g

we have
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Zlygz—g{ii L—/\2} . (4.46)

and where Q(C) is defined as in Lemma 4.1.

Proof. Setting

~ oo t
G(xay’Z’T) = / exXp (__> G(:I:,y,z,t) dt, (447)
0 T
it follows that

1

V2G(F, ) - G(F, 1) = —8(F), (4.48)

c2r

an equation for which the solution is well known, i.e.,

G = S (4.49)

Arr

Let us evaluate the “Laplace transform” of Gy, with respect to z as
above. Since G;(0,y, z,7) = 0 for (y, z) # 0, we have, upon integration
by parts,

00 -
/0 e~ %/u Gyz(z,y,27)dx

= 1G(O z,T) + . / e/ Q(z,y, 2,7) dz
u ’y’ 7 u2 0 ’y’ 7 -

Hence, setting

A

1 [ [o° A
H(u,v,w,7) = 5/ / e V=2 G0, y, 2, 7) dy dz (4.51)
0o Jo

we find, after converting to polar coordinates via use of the notation
(4.45) above as well as p = \/y?2 + 22, y + 12 = pw, that

- ¢ dw

H = 4.52

wown =g o 69)
where

C={zeC:z=¢"% 0<0<n/2}. (4.53)

Upon denoting the roots of the quadratic in the denominator of the
integrand by z; and 29, we find that
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¢ (1 1
S N LI A 4.54
1.2 A \er 272 A (4.54)

which, after substitution into (4.52) enables us to arrive at (4.43)-
(4.44). m

4. Helmholtz Equations. The Green’s functions for these equations are
simple replacements of the ones above, i.e., we have

G(p) = 4 Hy" (k p)
(4.55)
V2G(p) + k*G(p) = —6%(p)
(1)

in two dimensions, with H; ’ denoting the Hankel function, and

ezkr

G(r) = 5
mr (4.56)
V2G(r) + K*G(r) = —63(7)

in three dimensions. The “Laplace transforms” of these can be readily
obtained from the above by replacing 1/(ct) by —ik in Lemmas 4.4
and 4.5 above.

4.3 Transforms of Green’s Functions of Heat Problems.

We consider here, obtaining the d-dimensional “Laplace transforms” of the
Free space Green’s functions in R¢ x (0, 00), where

7"2
Gr,t) = m exp <_4—6t> . (4.57)

Suppose that we are interested in evaluating the integral

t
U(F 1) = /0 /V G(F — 7|, — ') f(7,¢) dF dt’, (4.58)

with V C R?% and ¢t € (0,T), for some (finite or infinite) value of 7. In
particular, let us assume the k' variable in this expression, i.e., ¥ — ¢*
ranges over some subset & of IR, where k = d + 1 corresponds to the time,
t — t/. Tt is then convenient to recall that in the integral expression of the
multidimensional “Laplace transform” it is necessary to only integrate over
a subset Ej, with respect to =¥ so long as Ej, contains &. Thus, e.g., the
particular “Laplace transform” obtained by integrating over IR with respect
to each space variable and over (0, 00) with respect to ¢ covers all situations.
It is then convenient to integrate first with respect to the space variables
over R% and then integrate with respect to the time variable ¢ over (0, co).
That is, we take
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d _k

A1 d Y t T _
Gu y..,u®,T) —/0 /]Rd exp (—; - Z—k G(r,t) dr dt, (4.59)

=1 ¢

where we use the notation 7 = (z,y,2), ¥ = (2/,y',2'), where r = |F| =
V% + y? + 22. The evaluations of the integrals are straight forward, and
we omit the details. The results are given in the lemma which follows.

Lemma 4.6 Let the d—dimensional Laplace transform G of the Green’s

function G(r,t) be defined as in (4.59), for all Ru* > 0. Then, with u* = u,

u? = v, and u® = w, we have

R 1,1 1\!
S it d=1
G(u,T) 6(87‘ u2> , if d
Glu,v,7) = l(i—i—i>1 if d=2 (4.60)
e - R 4 - ‘
& ) = 1<i—i—l—i)_l it d=3
LT = T\eg @ 2w ’ o

It is possible to get alternate explicit expressions of G for the cases of d = 1
and d = 3, by first doing the time integration which is explicitly possible in
these dimensions, thus reducing the problem to the case of the Helmholtz
equation, which was considered above. However, this alternative does not
appear to work for the case of d = 2.
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