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Abstract

The generalized spectral radius, also known under the name of
joint spectral radius, or (after taking logarithms) maximal Lyapunov
exponent of a discrete inclusion is examined. We present a new proof
for a result of Barabanov, which states that for irreducible sets of
matrices an extremal norm always exists. This approach lends itself
easily to the analysis of further properties of the generalized spectral
radius. We prove that the generalized spectral radius is locally Lip-
schitz continuous on the space of compact irreducible sets of matrices
and show a strict monotonicity property of the generalized spectral
radius. Sufficient conditions for the existence of extremal norms are
obtained.

1 Introduction

In recent years discrete inclusions have attracted the interest of researchers
from quite distinct fields. They occur in the theory of wavelets, where discrete
inclusions can be used to determine Hoelder exponents of compactly sup-
ported wavelets, see Daubechies and Lagarias [7], Heil and Strang [15], and
references therein. For discussions of applications in the theory of Markov
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chains, iterated function systems, hysteresis nonlinearities we refer to ref-
erences given in the papers [2, 14, 26]. For stability analysis of numerical
algorithms using this framework we refer to Guglielmi and Zennaro [13].
And this list is, of course, far from complete.

Given a set of matrices M C K**"  where K = R, C, we are interested in
the asymptotic behavior of solutions of the discrete inclusion

z(t+1) € {Az(t)|Ae M}, teN (1)
z(0) = =z €K".

This problem has been studied from an abstract point of view in [23, 1, 16,
2,17, 14, 9, 10, 20, 24, 26, 12]. Infinite dimensional versions of this problem
have been studied in [14, 28]. A more general spectral theory for a wide class
of discrete inclusions can be found in [27], see also [6] for continuous time
analogues.

This author was first interested in stability of discrete inclusions from a
control theory point of view. A discrete inclusion of the form (1) may be
interpreted as a model for time-varying uncertainty for a nominal system
z(t+1) = Az(t). One problem area in this direction consists in the calcula-
tion of stability radii. Given an increasing family of sets U := {M,, | v > 0}
the problem is to determine the smallest v > 0 such that (1) defined by M,
is not exponentially stable, see also [29].

A recurrent problem is the question whether M has left convergent prod-
ucts or is product bounded. The first of these properties means that for any

sequence {A(k)}ren € MY it holds that
A(R)A(k —1) -+ A(0)

is convergent for £ — oco. Product boundedness means that there is a con-
stant C' > 0 such that ||A(k)A(k —1)--- A(0)|| < C for all possible products
of matrices in M. This property is also called absolute stability in [16] and
nondefectiveness in [13].

The property of left convergent products has been studied in [7, 9, 10].
In particular, this property is characterized in a number of ways for finite
sets of matrices by Vladimirov et al. [26], where also results on general sets
of matrices are obtained, which are not quite as far-reaching.

One of the main tools in the study of discrete inclusions consists of the
generalized (or joint) spectral radius. This approach originates with Rota
and Strang [23], who defined the joint spectral radius and Daubechies and
Lagarias [7], who did the same for the generalized spectral radius. We now
define these two numbers. Associated to the set M we can consider the sets



of products of length ¢
Si={At-1)...A0) | A(s) e M,s=0,...,t—1},

and the semigroup given by

o

S = U St .
t=1
Let || - || be some operator norm on K**" and define for t € N

p(M) :=sup{r(S)"" [ Sy € &}, A(M) = sup{[|S,[|'”* | S, € S} .
(2)

The joint spectral radius, respectively the generalized spectral radius are now
defined as

PM) = limsupp, (M), (M) = lim p(M).

t—o0 —+00
However, there is no need to insist on different notation as Theorem 4 in
Berger and Wang (2] states that for bounded M we have p(M) = p(M), so

that we will simply use the notation p(M). Different proofs for this equality
can be found in [8, 24]. Note also that for all t > 1

(M) < p(M) < pr(M). (3)

In a paper by Lagarias and Wang [17] the by now famous “finiteness
conjecture” was formulated, which states that for a finite set of matrices M
there always exists a ¢ > 1 such that

p(M) =1, (M)

It has recently be shown by Bousch and Mairesse [4], that this conjecture is
false. But in special cases it can be shown to hold, see [14, 17].

The calculation of the generalized spectral radius has been treated using
different approaches. While Gripenberg [11] and Maesumi [19] reduce the
number of matrix products that have to be evaluated to obtain upper, re-
spectively lower bounds given by p;, p;, an optimal control approach is used
in [29]. Nice computational results cannot be really expected as Kozyakin
[16] has shown that p is not an algebraic function on the vector space of
k-tuples of n X n matrices and the determination of p is NP-hard by a result
of Tsitsiklis and Blondel [25].



In this paper we show two further properties of the generalized spectral
radius, namely local Lipschitz continuity on the set of irreducible compact
sets of matrices and a monotonicity property. Our approach is based on
a further important idea in the analysis of exponential stability of discrete
inclusions that was introduced by Barabanov [1]. Recall that M C K"*" is
called #rreducible if only the trivial subspaces {0} and K" are invariant under
all matrices A € M. Otherwise M is called reducible.

An immediate consequence of irreducibility of M is that p(M) > —oo,
because in this case the semigroup &S is irreducible and does therefore not
consist of nilpotent elements by the Levitzky theorem [18]. Note that this
implies in particular, that we can always normalize an irreducible set of
matrices M to p(M)'M which is a set with generalized spectral radius
equal to 1.

The fundamental contribution of Barabanov consists of the following re-
sult.

Theorem 1.1 If M is compact and irreducible, then there exists a norm v
on K" such that

(i) for all x € K*, A € M it holds that

v(Az) < p(M)v(z),

(i) for all x € K" there erists an A € M such that

v(Az) = p(M)v(z) .

We will in particular be interested in the existence of extremal norms,
that is norms with the property that ||A|| = p(M) for all A € M. Tt follows
from the result in Kozyakin that an extremal norm exists for M if and only if
p(M)~' M is product bounded, [16, Theorem 3]. A further characterization
is obtained in [12, Section 3]. As the question whether a pair of matrices is
product bounded is undecidable by a recent result of Blondel and Tsitsiklis [3]
we do not expect to obtain an easily checkable criterion and so our condition
is just sufficient but not necessary.

The paper is organized as follows. In Section 2 we present the class of
systems that is studied; as our methods work just as well for semigroups
generated by continuous time systems we briefly introduce the necessary
concepts. In Section 3 we introduce our main technical tool, which we call
the limit semigroup and which is obtained as the w-limit set of the semigroup
normalized to a generalized spectral radius equal to 1.



In Section 4 we use the result of the previous section to show that p is lo-
cally Lipschitz continuous on the set of compact irreducible sets of matrices.
In Section 5 we show that the generalized spectral radius is a strictly in-
creasing function under a natural growth condition on a function with values
in the compact sets of matrices. This result is motivated by the problem of
calculating time-varying stability radii and its consequences will be discussed
in a forthcoming paper.

Finally, in Section 6 we show the existence of extremal norms under a
nondefectiveness condition, which generalizes the corresponding result for
the spectral radius of a matrix. Note, that we found it useful to use a
slightly different sense of the word nondefective than found in the literature.
In [12] “nondefective” just means that an extremal norm exists.

2 Preliminaries
Let K =R, C. Given a set ) # M C K" " we consider the discrete inclusion

z(t+1) € {Az(t)|Ae M}, teN (4)
.’E(O) = Xy e K.

A sequence {z(t)}en is called a solution of (1) with initial condition zq if
x(0) = zo and for all ¢ € N there exists an A(t) € M such that z(t + 1) =
A(t)z(t). We continue to use the notation introduced in Section 1.

As all our arguments are also valid in continuous time, we will just con-
sider an irreducible semigroup & C K™ with an associated time scale
T = NJR; := [0,00). To be concrete, in the case T = R; we assume
that the semigroup is generated by a differential inclusion

i€ {Az(t) | A e M}, (5)

where M C K™*" is compact. In the latter case the elements of S;,t € R,
are the evolution operators ® 4(t,0) corresponding to measurable functions
A: Ry — M and the time-varying differential equation

For a semigroup defined by (5) the quantities p,(S), pt(S),t € Ry can be
defined analogously to (2) and make obviously sense.

We will denote the corresponding limit by p(S). We call this quantity
the maximal Lyapunov exponent if we consider differential inclusions (al-
though in the literature this name is normally reserved for log p(S)). There



is abundant literature on the theory of Lyapunov exponents of differential
inclusions, see e.g. [5, 6] and references therein.

If we fear that there is a chance of confusion we will denote the generalized
spectral radius given by a set M via the discrete inclusion (1) by p(M,N)
and the maximal Lyapunov exponent by p(M, R, ).

Note that given a semigroup (S, R, ) we can always associate a discrete
inclusion by defining M := &;. Under our assumptions it is an easy exercise
to check that p(S,Ry) = p(M,N). In the sequel, we will always tacitly
assume that for each ¢ € T the set S; is bounded, if we just speak of a
semigroup (S, T).

Definition 2.1 Let K =R C, T = N,R, and let (S,T) be a semigroup in
K**™ . A norm v on K" is called Barabanov norm corresponding to S if

(i) v(Sz) < p(8)'w(z), forallz e K, teT,S €S,
(i7) for allz € K", t € T there is an S € clS; such that

v(Sz) = p(S)'v(x).

A norm v on K" is called extremal for S if for the corresponding operator
norm it holds that

v(S) < p(8), forallt€T,S €S;.

We will investigate further conditions guaranteeing the existence of ex-
tremal norms in Section 6.

We will also consider the behavior of the generalized spectral radius as a
function of the set M. As we only have to consider compact sets M C K"*",
we introduce

KK ™) :={M C K" | M compact, nonempty} .

The space IC(K™*™) becomes a complete metric space if it is endowed with
the usual Hausdorff metric defined by

H(M,N) := max{max dist (4, V), max dist (B, M)} .
AeM BeN
Note that with respect to this topology the set
I(K"™™) := {M e K(K"*") | M irreducible}

is open and dense in IC(K™*™).



3 The limit semigroup

In this section we present an alternative and we hope less intricate proof
of Barabanov’s result. We need the following property of irreducible semi-
groups.

Lemma 3.1 Let K = R,C, T = N,R; and let (S,T) be an irreducible
semigroup in K"*". Then there are ¢ > 0 and 7 € T such that for all
z € K", A e K™" there is an S € U<, St with

|AS2]| = el Alll|2]| -

Proof: Assume the assertion is false, so that there are ¢, — 0, 7, —
oo, €T,z € K*, A, € K" such that for all S € U1<t<Tk S; we have

[ArSzill < enll Aellllzell - (6)
Without loss of generality we may assume that ||zx|| = ||Ak|| = 1. Thus we
may assume zj — z, Ay — A with ||z|]| = ||A4|| = 1. Then irreducibility of S

implies that there exists an S* € S with
|AS™z|| =" > 0,

otherwise {Sz | S € S} is contained in the kernel of A. This, however,
contradicts irreducibility of S as K" # ker A due to ||A|| = 1. For all k£ large
enough we have S* € U, S; and

||AkS*Zk|| 2 8*/2 y

which contradicts (6). This concludes the proof. O
Given our irreducible semigroup (S, T) we define the limit semigroup Sy
by

Soo = {5 € K" | Ft), — 00, Sy, € S}, such that p(S)™*S, — S}. (7)
We note the following properties of Sy.

Proposition 3.2 Let K =R C, T =N R, and let (S,T) be an irreducible
semigroup in K"*". The set S, defined by (7) satisfies

(i) Swo is compact and nonempty,

(i1) Sy is a semigroup,



(iii) for T € S;, S € S we have

p(S)7'TS, p(S)7'ST € S,

(iv) for allt € T, S € Sy there exist T € Sy, A € clS; as well as

R € S, B € clS; such that

S=p(8)"'TA=p(S)"'BR,

(v) S is irreducible.

Proof: Without loss of generality we may assume p(S) = 1 in this proof.

(i)

(iii)

For A € S, it holds that r(A) < p(S)* = 1, hence {A'} is a bounded
sequence which has an accumulation point S. By definition S € S,.
To see that Sy is closed it suffices to use a standard argument from
the construction of w-limit sets.

It remains to show that S, is bounded. Assume this is not the case
and let ¢ > 0 and 7 € T be the constants given by Lemma 3.1. Un-
boundedness of S, implies that there exists some ¢t € T, S € S; with
|S]] > 2/e. Thus for zg, ||| = 1 arbitrary, there is a T' € |J, <, S
with

|STxo|| > 2

and applying this argument repeatedly we obtain a sequence {7} }ren C
Ui<i<, St such that

ST ... STyxo|| > 2%, k€N.
This implies pgiyr, (S) > 21/(t+7) where k < 7, < k7, a contradiction.

Let S,T € Sy and consider sequences sy, t — 00, Sk € Ss,,Sp — S
and 7}, € Stk, T, — T. Then

IST — SkTill < (1S = SelllITl + 1Sk lIT — Tl

which goes to zero as both terms go to zero for £ — oco. Hence ST €
Seo-

This is clear, as approximation of S by a sequence Sy implies approxi-
mation of 7'S and ST by TSy, respectively ST



(iv) Let t), — 00, Sk € S, be sequences such that S, — S. We can write
Sk = TR Ay with T, € S, 4, Ax, € ;. Without loss of generality A, —
A€eclS;and Ty, - T € S,. This implies S = T A, as required. The
argument for the left factorization is exactly the same.

(v) By (ii) and (iii) we know that
S=8.ulJn(s)'s,
teT

is an irreducible semigroup of which &y is a closed irreducible semi-
group ideal. Now S, is irreducible by [22, Lemma 1].

O
We give an easy example for the above construction, that will turn out
to be of use in the remainder of the article.

Example 3.3 Consider the set

= {[8 310
e o212}

whereas Sor 1 = M U{0}. Hence Sopo = MU Ss.

It is easy to see that

Given our irreducible semigroup (S, T) and the associated limit semigroup
S+ we now define the function

v(z) := max || Sz (8)
and note that this defines the norm we are looking for.

Lemma 3.4 Let K = R,C, T = N,R; and let (S,T) be an irreducible
semigroup in K**™. Then v is a Barabanov norm for S.

Proof:

(i) We first show that v is a norm. The properties v(0) = 0,v(\z) =
|A|v(z) are clear. If z # 0 then v(z) # 0 as otherwise span {z} would
be in the kernel of all §' € S, contradicting irreducibility. The function
v(x) is finite as Sy, is compact and finally

< < .
vz +y) < max [|Sz]| +[|Syll < max ||Sz|| + max |[Syl|



(i1) Without loss of generality let p(S) = 1. Let z € K", S € S be arbitrary,
then

v(Sz) = max | TSz]| < max [|Tz]| = v(z), 9)

as TS € Sy for all T € S,. To prove the second statement assume
that S, € Sy is such that v(x) = ||S;z||, then by Proposition 3.2 (iv)
Sy factors into S, = TA with T € Sy, A € clS;. Hence

= > =
v(Az) = max ||SAz] 2 [|T Az = v(z),

and so by (9) we have v(Ax) = v(z).

O
The existence of a Barabanov norm has many consequences as already
noted in [1]. For instance, it is immediate that p(M) = p(cl M) and p(M) =
p(conv M). In particular, we cite the following continuity result from [1]
which will be of use for us in the sequel. Alternatively, it has been noted by
Heil and Strang [15] that the continuity of the generalized spectral radius is a
direct consequence of the equality p(M) = p(M) = p(M). (The argument is
given for the case of pairs of matrices, but is easily seen to extend to general

bounded sets of matrices.)

Lemma 3.5 The map M — p(M) is continuous from K(K"*") to R, .

4 Lipschitz continuity of the generalized
spectral radius

In this section we intend to show that the generalized spectral radius is locally
Lipschitz continuous on the set of irreducible compact sets of matrices.

To this end we begin by an investigation of the variation of Barabanov
norms under changes of M. For irreducible M we will need to know how
much the original norm is deformed under the definition (8). Therefore we
introduce the quantities

¢ (M) = min{uv(z) | [[z]] =1}, (10)
ct(M) = max{v(z) | ||z]| = 1}. (11)
Of course, these constant also depend on the choice T=Nor T =R,, but

we suppress this dependence. Note that for any A € K®™*" we have for the
induced operator norm that

¢ (M)

o 141l < () <

~ (M)

1Al

10



Theorem 4.1 Let P C I(K"™™) be compact and let T = N or T = R,.
Then there is a constant C > 0 such that

ct (M)

Yy

<C, forall MeP.

Proof: Fix a timeset T € {N,R, } and consider the corresponding semi-
groups generated by the sets M € P. Assume to the contrary that there
exists a sequence {M;} C P such that

¢t (My)
¢ (My)

— 0.

Without loss of generality we may assume that M, — M € P.
For every k choose a Sy € Soo (the limit semigroup corresponding to
(M, T)) such that ||Sk|| = ¢t(My,) and denote

_ S,
Si 1= .
ISl

Then we may assume that S, — S with ||S]| = 1.

Now let zp € K7, ||zg]| = 1 be arbitrary. We will show that
¢t (M) /vk(xo) is bounded by a constant independent of o, which proves
the assertion.

Let ¢ > 0,7 € T be the constants for S (the semigroup generated by
(M, T) guaranteed by Lemma 3.1. Then by convergence of the sets My, there
exists a ky € N such that for every £ > ko and some Ry, € S, 4,1 <t <7
we have

IS Ryol| >

€

5

Note, that kg is chosen independently of xy. For all £ > ky we now define
Tr = p(Sk) " Sk Ry € Sook s

and obtain for the norm vj defined through S  that

¢t (My)

k(o) > || Thzol| = p(Sk) || Sk Rio|| = —r || Sk Rt
k(@0) 2 [[Thzoll = p(Sk) ™ || Sk Riol| S || Sk Reo|
ct (M) (5 - M) 6 A -
> — — > M (I _ .
> S (18 Reoll ~ 18 = Sell Bucoll) > o0 ERIEREATIN)

11



The last term converges to zero be the definition of S and as the set of all
products of length at most 7 is uniformly bounded over P. Furthermore, by
continuity of p we have that p(S;) < p(S) + ¢ for k > k1 > ko, k; sufficiently
large. This implies that for all £ large enough we have

" (My)

vk (o)

< g max{1, p(S) +}".

This shows the assertion because again we have chosen k; independently of
Zo. O

As an application of Theorem 4.1 we can sharpen Lemma 3.5. We first
just treat the discrete time case.

Corollary 4.2 The generalized spectral radius is locally Lipschitz continuous
on I(K"*™).

Proof: Let P C I(K"*") be compact with respect to the Hausdorff
metric. Fix M, N € P arbitrary and let v denote the Barabanov norm with
respect to M. In the Hausdorff metric induced by our original norm || - || we
have

HM,N)=:a,
which implies the in the Hausdorff metric H, induced by v it holds that

ct(M)

H(M.N) < S

a<Ca,

where C' is a constant only depending on P which exists by Theorem 4.1.
Hence for all z € K", A € N it holds that there exists a B € M with
v(A — B) < Ca and thus

v(Az) < v(Bz) +v((A— B)z) < (p(M) + Ca) v(z) .
Hence p(N) < p(M) + Ca and by symmetry we obtain
[p(N) = p(M)| < CH(M,N),

as desired. O

We cannot expect that the generalized spectral radius p(-) is Lipschitz
continuous on K(K"*™") as already standard perturbation theory of eigenval-
ues tells us that generally if an eigenvalue splitting occurs at an eigenvalue



with modulus equal to the spectral radius then the spectral radius will be-
have like a Puiseux series, that is, not Lipschitzean at the splitting point.
An example for this phenomenon is given by

11
=[]

the spectral radius of which for € > 0 is given by r(A4.) = 1+ /e.
We note that the result translates immediately to continuous time.

Corollary 4.3 The mazrimal Lyapunov exponent is locally Lipschitz contin-
uous on I(K"*™).

Proof: The map
M= 81 (M, R—F)

is locally Lipschitz continuous on K"*"™. We have already noted that

p(M’RF) = p(SI(M)’N) :

Now the assertion is immediate from Corollary 4.2. O

5 Strict monotonicity of the generalized
spectral radius

In this section we will consider a further aspect of the generalized spectral
radius under variation of the generating set M. The methods we use here
are restricted to the discrete time case, so that all results in this section are
to understood with respect to the discrete inclusion (1). Whenever we treat
different set of matrices M1, My in this section, we denote the semigroups
and limit semigroups generated by M; and My by 81, 1, respectively
82,8 2. Correspondingly, the norms are denoted by vy, vs.
We need the following lemma.

Lemma 5.1 Let M1, My € I(K"™*") satisfy
M C My, (12)
then for every x € K" there exist S € Sy 1 such that

vi(z) = [|Sz]

13



and such that there ezists a factorization S = p(Mi) FA;--- ApSk, 4; €
My, j=1,...,k, Sk € Seo;1 such that

{Al . 'Ak_lBSk.T ‘ B e MQ}

contains more than one element.

Proof: Assume p(M;) = 1 and fix 2 € K". Choose S € Sy with
v1(z) = ||Sz||. By Proposition 3.2 (iv) we can choose a factorization S =
A151 with A1 c M, S, € 800’1. If there is a B € My with BSz ?é A151$ we
are done. Otherwise Sz = BS iz for all B € M, and then by irreducibility
of MQ

Siz ¢ span{A; Sz} .

Now factorize S7 = A3S,, A2 € M1,5; € Sy 1. If there is a By € M, such
that AsSsx # BSsx, then for some A € M; we have AA,S,x # ABSox,
as otherwise (Ay; — B)Syz is contained in the kernel of all A € M, in con-
tradiction with irreducibility. On the other hand, due to our construction
||AS1z|| = ||Sz|| and we are done. Otherwise, again due to irreducibility of
M, we obtain that

Sox ¢ span{A; 51z, AySox} . (13)

We continue this procedure inductively. The argument breaks down in the
n-th step as it is impossible that the corresponding version of (13) given by

Spx ¢ span {A1S1x, Ay Sox, ..., ApSpz}.

can be satisfied, as the set on the right is linear independent if we could
proceed up to this step. This shows that for some 1 < k < n the assertion
must be satisfied. O

The main result of this section is the following proposition which states
that the generalized spectral radius of a set of matrices M, is strictly greater
than that of a set of matrices M, if M; is contained in the interior of the
convex hull of My where the interior is taken relative to the affine subspace
generated by Ms. Note that this result is a bit surprising because a similar
statement for the maximum of the spectral radii is false, see for instance [21,
Example 12].

In the following statement we denote by aff M the affine subspace gener-
ated by M, that is, the smallest affine subspace containing M. The relative
interior with respect to aff M is denoted by int ,¢ 4.

14



Proposition 5.2 Let M, My € I(K"*") satisfy My # My and
M C int 4g pq,conv Moy, (14)
then
p(M1) < p(Mz).

Remark 5.3 Note that in the extremal case that M, is a singleton set,
our assumption (14) does not guarantee that M; # M., so that the extra
assumption is necessary. O

Proof: Assume the assertion is false, so that we may assume p(M;) =
p(Ms) = 1. Fix a strictly convex norm || - || on K*. We will show that under
our assumption for z # 0 we have

vi(z) = max [[Szf| < max Sz =:va(z). (15)
This implies for some ¢ > 1 that vy(z) > cvi(z),z # 0 by a compactness

argument. By definition of Sy o it follows in particular that for zo, v1(zo) =1
there exists an S; € Sy with

C
|| S]] > 3

and arguing inductively there are Sy, ..., S, € Sy with

1S5+~ Sizo|| > (g)k

Hence there exists an unbounded trajectory for the discrete inclusion gener-
ated by M. This implies that p(Ms) > 1 as M, is irreducible, a contradic-
tion.

Thus it remains to show that (15) holds under the assumption p(M;) =
p(Mz) = 1. Note that this assumption implies in particular, that Se1 C
Swo2- Also due to (14) it holds that whenever we have a set of the form

D :={ABz | B € M>},
then
max{||ABz|| | B € My} > max{||ABz| | B € M},

unless D is a singleton set. The reason for this is the linearity of the map
B — ABx and the strict convexity of our norm.

15



Fix 0 # x € K" and let S € Sw,1 be such that
[Sz]| = vi() .

By Proposition 3.2 (iv) and Lemma 5.1 we can factorize S = Aj--- AxSk
with A; € My,7=1,...,k, Si € Sxo,1 such that the set

{A1 - Ap_1BSix ‘ B e M2} (16)
consists of more than one element. Then it follows

vo(z) > max{||A; --- Ay 1 BSiz| | B € My}

> max{||A; --- A1 BSiz|| | B € M1} =vi(x).
This completes the proof. O

Remark 5.4 It is worth pointing out, that the proof of the above result
would be much simplified if we knew, that there exists a strictly convex
Barabanov norm v; for Mj. In this case (assuming p(M;) = 1) we would
conclude immediately from (14) and strict convexity that for each z # 0 there
is some A € M, such that v;(Az) > v;(x), which implies p(M;) < p(My).
To show that such an approach is not possible, let us demonstrate that for
some irreducible sets of matrices no Barabanov norm is strictly convex.

In fact, we return to the set M introduced in Example 3.3. As we have
already calculated S, we see immediately, that for any norm w the corre-
sponding Barabanov norm is given by

(L)) =[5 ) o (2]}

This norm is not strictly convex. O

Before we note a consequence for strictly increasing function with values
in IC(K™*™) we need the following remark. If a bounded set M C K"*" is
reducible, then after a suitable change of coordinates all matrices A € M
are of the form

[ All A12 “ .. P Ald ]
0 A22 A23 . Agd
| 0 0 Ag
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where each of the sets M;; := {A;; A € M},i = 1...d is irreducible. By
Lemma 2 (c) in [2] it holds that

pM) = max_p(M;;). (18)
Corollary 5.5 Let f : R, — K(K™ ™) be a function such that f(61) C f(6s)
satisfy (14) for all 0; < 6, € Ry. Then

(i) there exists a 6y € Ry such that p o f is constant on [0,6y) and
strictly increasing on [0y, 00),

(i1) if f(0) € I(K"*™) for some 6 > 0, then 6y < 0,
(111) if f is continuous then po f is continuous,

(iv) if f is locally Lipschitz continuous then p o f is locally Lipschitz
continuous on [0,00) \ F', where F contains at most n — 1 points.

Proof: (i) The interval (0, 00) can be partitioned into at most n intervals
on which the invariant subspaces of f(f) are constant. That is, there are
numbers 0 = ap < a1 < ax_1 < ax = 00, k < n such that on (a;,a,41),7 =
0,...,k — 1 all matrices A € Upe(q;,q;,,)f(0) are of a fixed block-diagonal
structure of the form (17), where for each 6 € (aj,a;41) andeachi=1,...,d
the set M;(0) := {As|A € f(0)} is irreducible. The assumptions do not
guarantee that the family U; := {M;(0) | 0 € (a;, a;+1)} is strictly increasing.
Nevertheless, we know that

conv M;(01) C int ag a4, (0,)c0nv M;(602)

for #; < 6, € (aj,a;4+1). This implies that the only possibility for &; not to
be increasing at 6y € (a;, a;4+1) is that U; is a singleton set.
Hence, for the map p; : 0 — p(M;(0)), 0 € (a;,a;+1) there are three
possibilities
(i) pi is constant on (a;, a;t1), if M;(0) = {Ae} on (a;,a;41),
(ii) p; is strictly increasing, if U; is strictly increasing,

(iii) there is a constant 6y € (a;,a;j41) such that p; is constant on (a;,6p)
and strictly increasing on (6g, a;11).

Due to (18) the same is true for po f on (a;,a;41). Now it follows that
if there are 0; < 6, € R, with po f(f;) < po f(f) then po f is strictly
increasing on [, 00), because in fy the maximum of the joint spectral radii
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p; is attained in a block, which necessarily contains two distinct matrices,
because otherwise the same value would be attained in 6;. In this ¢-th block
p; is thus strictly increasing and merging of blocks does not change this. As
the assumptions guarantee that po f is increasing the only possibility for this
function to be constant is on an interval of the form [0, 6y). This shows the
first assertion.

(ii) is an immediate consequence of Proposition 5.2, while (iii) follows
from Lemma 3.5.

(iv) If f is Lipschitz continuous then by Corollary 4.2 p; is locally Lipschitz
continuous on the intervals (a;, a;+1) and thus also the maximum of these
functions. Thus F' contains at most the points aq,...,ax_1, and of these
there are at most n — 1.

O

6 Extremal norms

We now investigate conditions for the existence of extremal norms. For this
we need a notion of “defectiveness” of the generalized spectral radius in
the case that M is reducible, which in some sense generalizes the notion
of a defective eigenvalue with a modulus equal to the spectral radius. We
intend to generalize the well known result that for a matrix A there exists
an operator norm v with

v(4) =r(4),

if and only if all eigenvalues A € o(A) with |A| = r(A) are nondefective.
Unfortunately we are not able to recover the “only if” part of this statement.

For a set M of matrices of the form (17) let J := {1 <i<d | p(My) =
p(M)} denote the set of indices for which the generalized spectral radius is
attained.

Definition 6.1 A compact set of matrices M C K"*" s said to have non-
defective generalized spectral radius if there is a basis of K" such that every
matric A € M is of the from (17) and for all i € J, i < j < maxJ and all
A € M it holds that

Note that instead of requiring “zero rows” to the right of A;,¢ € J we
could also have required “zero columns”, that is for i € J, i < 7 < max.J,
A € M we have A;; = 0. These two notions are equivalent, as one form is
always similar to the other.
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In particular, the above definition is satisfied if M is irreducible. Our
proof is based on the following lemma.

Lemma 6.2 Let K" = K" P KP and let M € K(K™") satisfy that every
A € M is of the form

| An A
=y ]

with A11 € Kmxm,Alz € KmXP,AQQ € KP*P, Denote
Mliz{All‘AEM}CKmxm, MQZ:{A22|AEM}CKPXP.

(1) If p(M1) < p(Ms) and there is an extremal norm ve on KP corre-
sponding to My then there exists an extremal norm w on K" corre-
sponding to M.

(i) If p(My) > p(Ms) and there is an extremal norm vy on K™ cor-
responding to My then there exists an extremal norm w on K* corre-
sponding to M.

Proof: (i) Fix a norm v; on K™ and € > 0 such that
v1(A11) < p(My) +e < p(My), forall A e M.

This is possible by Lemma II(b) in [2]. Let v;5 denote the operator norm
from (K?,v,) to (K™, v;) and denote

C = maX{Ulg(Alz) ‘ A€ M} . (19)
Fix a > 0 so that p(M;) + ¢ + ¢/a < p(My) and define the norm
w(z, Ta) := max{vi(z1), avs(x2)} .

We claim that w is an extremal norm for M on K". To this let A € M, x; €
K™, z, € KP be arbitrary, then

w(Ax) = max{m (Anl‘l + A12.7)2), GUQ(AQQ.Z'Q)}

< max{(p(M) +e)vi(x1) + cva(x2), ap(Maz)va(x2)}
If v1(z1) < ave(z2) this implies

w(Az) < max{(p(M1) + ¢ + c¢/a), p(Ma) }ave(xs) = p(M)w(x) .
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Conversely, if vy (z1) > ave(z2) then
w(Azr) < max{(p(My) + ¢ + ¢/a), p(Mz) }vi(21) = p(Mz)w(z) .
(ii) Again fix a norm vy and € > 0 such that
v9(Ag) < p(Ma) + e < p(My), forall A e M.

Let v15 denote the same operator norm as in (i) and let ¢ be defined as in
(19). Fix a > 0 such that p(Ms) + ¢+ c¢/a < p(M;). For the norm defined
by

w(z1,T2) = vi(z1) + ava(xs) , 21 € K™, 29 € KP

a calculation similar to the one in (i) shows that it is extremal for M. O
Now we are in a position to prove our main result on extremal norms.

Theorem 6.3 Let M C K*"*™ be compact with nondefective generalized spec-
tral radius. Then there exists an extremal norm for M on K".

Proof: Assume that we have chosen a basis such that all matrices A € M
are in the form (17), with A; € K**™ ¢ =1,... ,d. If d = 1 the result is
immediate from Theorem 1.1 so assume d > 1. Let J = {i; < ... < s} C
{1,...,d} be the set of indices satisfying p(M;;) = p(M). We will work
inductively backwards on the set J. In the first step consider the matrices

([ Aik—1+1,ik_1+1 * ... . x| )
0 * *
‘Mk = < 9 0 '.. *k : A E M > .
: o A
\ L 0 0 Aik,ik | )

Note that p(My) = p(M) and all blocks except for the one in the right lower
corner have a generalized spectral radius strictly smaller than p(M). Thus
Lemma 6.2 (i) applies and there is an extremal norm wy on

P =

1=tp—1+1

corresponding to My. Now on @* i, K" all matrices are of the form

Aiquikq 0
|: 0 Ak , Ak € Mk .
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Thus again applying Theorem 1.1 it is clear that there is an extremal norm
on P, K.

Nolgvlk\;vle may apply the same argument for the blocks corresponding to
@Z’; in_o11 K" to successively obtain extremal norms by repeatedly applying
Lemma 6.2 (i). As a result we obtain an extremal norm on @2 ;, K. Now
the result follows after a further application of Lemma 6.2 (i) and (ii) to the

remaining blocks with indices smaller than 7;, respectively larger than ;. O

Remark 6.4 Note that we cannot assume to be able to order the blocks in
an order such that the generalized spectral radii are increasing or decreasing
in (17) as this would imply properties of the invariant subspaces of M. For

instance for the set
14
M:={[2 1] aE[O,l]}

the only nontrivial invariant subspace is span [1, 0]" which is associated to the
eigenvalue 1/2. Hence no similarity transformation will transform M into a
set of matrices of the form

1

0 )

This somewhat explains the awkward proof of Theorem 6.3. O

N %

A further interesting feature of extremal norms is that they allow to make
the inequality in (3) more precise.
Lemma 6.5 Let K =R, C. Assume that M C K"*" is bounded.

(1) If there exists an extremal norm v for M, then there exists a constant
M > 0 such that for allt > 1

|log pr(M) —log p(M)| < Mt 1.

(ii) Otherwise there exists an M > 0 such that for allt > 1

1+logt

[log py(M) —log p(M)| < M——

Proof: Let v be the extremal norm for M. As all norms on finite dimen-
sional vector spaces are equivalent it follows with (3) that

1 1 1
0 < —log sup |[|Sy|| — log p(M) < =log sup cv(S;) — p(M) = =logc. (20)
t St€S; 3 StE€S: t

This proves the assertion.
(ii) This follows from Lemma 2.3 in [29]. O
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Remark 6.6 Note that we cannot expect a similar statement for the lower
bound p,. If we return to our Example 3.3 then we see that in this case
Por(M) = p(M) =1 and Py, =0 for all £ € N. O

We also note the following consequence of local uniform convergence of

p(M) to p(M).

Corollary 6.7 Let P C I(K"*") be compact then there is a constant M > 0
such that for all M € P and all t > 1 it holds that

B (M) = p(M)] < p(M)(MY* ~1),

i.e. py converges locally uniformly to p(M) on I(K"*™).

Proof: Just note that the constant ¢ in the proof of Lemma 6.5 (i) can
be chosen independently of M € P by Theorem 4.1. O

7 Conclusion

We have studied extremal norms for linear discrete and differential inclusions.
For the special case of irreducible inclusions we give a constructive procedure
for a special extremal norm. This approach yields Lipschitz continuity of the
generalized spectral radius and a monotonicity property as a byproduct. A
more general sufficient criterion guaranteeing the existence of an extremal
norm has also been presented. Furthermore, we have pointed out that the
convergence of p; to the generalized spectral radius is linear if an extremal
norm exists, in particular in the irreducible case.
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