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Detection and Classification of Material Attributes -
A Practical Application of Wavelet Analysis
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Abstract— In this paper we describe a method for
classifying material properties from measurements of the
Barkhausen effect, which originates from a fast magnetiza-
tion of ferromagnetic materials using alternating currents.
We use wavelet analysis to develop a tool box for evalu-
ating Barkhausen measurements. The described wavelet
techniques allow to detect extremely weak signals in the
Barkhausen noise voltage. By using a statistical classifica-
tion rule we show that the detected structures are directly
related to material properties.

Keywords— Material classification, Barkhausen effect,
Multiscale decomposition, Wavelet indicator functions, Re-
gression, Discrimination.

I. INTRODUCTION

The increasing automation of manufacturing processes
requires new and efficient measuring/testing techniques,
which allow to monitor informations about the production
process respectively the manufacturing product. Advanced
micro electronics, which allows to measure the Barkhausen
effect efficiently, combined with mathematical methods
from statistical signal analysis allows to evaluate physical
effects, which could not be utilized efficiently before.

In this paper we exploit the information contained in
measurements of the Barkhausen effect. This effect in-
cludes the movements of so-called Bloch-walls in ferromag-
netic and poly-crystalline materials. These movements in-
duce some kind of noise voltage. Basic investigations in [22]
conjecture and analyze the interdependence of noise voltage
and material structures. Hence analyzing measurements of
the Barkhausen noise voltage should allow to classify and
identify material properties. However using Fourier tech-
niques to analyze the frequency spectrum of Barkhausen
noise presents some difficulties. The frequencies are almost
uniformly distributed, so far no Fourier-based method al-
lowed to split the measured signal into noise and trend
function.

However, using a multiscale decomposition instead of
a frequency decomposition exhibits significant structures.
The aim of this paper is to justify the use of wavelet anal-
ysis for analyzing the Barkhausen effect. Introductory ma-
terial to the application of wavelet methods in signal pro-
cessing can be found e.g. in [6][9][13][16][18].

More precisely, we aim at classifying the drawing quality
of steel wires. The quality of steel wires depends on the
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hardening phase during the manufacturing process. The
wires may be either not sufficiently hardened (group G1),
properly hardened (group G>) or not hardened at all (group
G3). The Most important quality parameters are ”y,” (for-
mation of neck in %) and ”y;” (hardness in N/mm?). The
proposed classification scheme for a given piece of wire con-
sists of three steps:

1. The wire is subjected to a periodized magnetization cur-
rent, the resulting Barkhausen noise voltage upmn is mea-
sured. A typical measurement is displayed in Figure 2,

2. Estimates for y, and y; are obtained from the measure-
ments using wavelet methods and a linear regression model,
3. The quality of the wire is classified based on the esti-
mated values g, and gy.

The paper is organized as follows: First, for a better un-
derstanding, some physical foundations of the Barkhausen
noise and a short description of our measuring equipment
are given. The second section contains a brief introduction
to wavelet analysis. We describe a set of so-called wavelet
indicators for analyzing Barkhausen measurements. These
indicators are used to determine standard material param-
eters. Finally, a classification model is used to realize an
objective assignment to groups of different material quality.

II. PHYSICAL FOUNDATIONS AND MEASURING
TECHNIQUES FOR THE APPLICATION OF
BARKHAUSEN NOISE

A. Physical Foundations

The micro structure of ferromagnetic materials consists
of magnetic domains with uniform magnetization direction.
The direction of the magnetization vectors is statistically
distributed in the no-magnetized state. The boundaries be-
tween domains of different magnetization are built by thin
domain walls inverting the magnetizing direction. Sub-
jected to an external magnetic field these magnetizing vec-
tor turn more and more in the direction of this field. This
is accompanied by a movement of the domain walls. On
reaching magnetic saturation all magnetizing vectors have
the same direction and the domain walls disappear. The
fine structure of the hysteresis loop B = f(H) of a fer-
romagnetic sample shows irregular steps (Figure 1) initi-
ated by irreversible movements of the domain walls. The
movements cause sudden changes of the magnetic flux, de-
tectable by a sensor coil as induced voltage impulses, the so-
called Barkhausen jumps. These jumps can be induced by
an external magnetic field (magnetic Barkhausen effect), by
mechanical strain of the material (mechanical Barkhausen
effect) or by changing temperature. For physical research



the voltage impulses can be analyzed by nuclear counting
techniques. To avoid impulse overlaying very slow magne-
tization has to be applied.

In contrast to that, fast magnetization with alternating
current, e.g. with 50 Hz, produces a noise voltage by a
random overlay of all impulses. The continuous frequency
spectrum of this measurement ranges from extremely low
to high frequencies over 100 kHz. The typical time function
of a Barkhausen noise voltage and the magnetizing current
is shown in Figure 2. The noise impulse maximum is lo-
cated close to the zero-magnetic moment of the magnetic
field.

B. Influence of Material Properties on the Barkhausen Ef-
fect

The fundamental investigations in [22] demonstrated
that material properties are reflected in characteristic
changes of the noise voltage. The reason is the depen-
dence of domain wall movements in the ferromagnetic ma-
terials on features like conductivity, structure (see [21],[7]),
fatigue (see [4]), hardness (see [7]), internal and external
strain (see [3]), inclusions and so on. This allows to use
the Barkhausen effect for non-destructive testing.

With current measurement techniques it is possible to
get informations about some material properties by ana-
lyzing root-mean-square techniques, envelope curves (see
[22],[21]), Fourier spectra (see [3]) or density of amplitudes
(see [3]). The problem is, that these results have a rather
limited range of applicability: the dependence of mate-
rial characteristics on the computed indicators can only be
shown in some very special cases. Current research aims
are finding general relations between material characteris-
tics and the parameters of the Barkhausen voltage.

C. Measuring Equipment

Figure 3 shows the equipment used to measure the
Barkhausen noise, including the sensor coil and the magne-
tization coil enclosing the sample. The magnetization cur-
rent is produced by a generator with a subsequent power
amplifier. The current ranges between 1 mA and 250
mA, the frequency ranges between 1 Hz and 120 Hz. The
Barkhausen noise voltage induced in the sensor coil is am-
plified, filtered and digitized. The frequency characteristic
of the amplifier ranges between 10 kHz and 100 kHz. The
noise voltage is sampled at 200 kHz and digitized by a
12-bit analogue-to-digital converter. A personal computer
controls the measuring process, records the data and syn-
chronizes the magnetizing current with the A/D converter
for the noise voltage. The analysis of the noise voltage is
realized by a PC or by any other computer equipment.

III. WAVELET ANALYSIS

Over the last decade wavelet methods have developed
into powerful tools for a wide range of applications in sig-
nal and image processing. The diversity of wavelet meth-
ods, however, requires a detailed mathematical analysis of
the underlying physical or technical problem in order to
take full advantage of this new tool box. This section aims

at developing a guideline on how to select an appropri-
ate wavelet and how to interpretate the resulting wavelet
transform data for our specific application.

A. Theory

The continuous wavelet transform was introduced in or-
der to overcome the limited time-frequency localization
properties of Fourier methods for non—stationary signals.
Many papers have been written on the differences and sim-
ilarities between Fourier and wavelet transform, for de-
tailed information on this topic see e.g. [9],[6] and [16].The
wavelet transform correlates the signal f with a shifted and
translated test function ¢, (a,b € R,a # 0):

Wof(@h) = lal /2 R/ s () a .

The parameter a determines the scale (or size of details)
which is examined, the scale becomes finer and finer as a
approaches 0. This property has lead to the interpretation
of the wavelet transform as a mathematical microscope. It
makes sense to consider the transform (1) only if ¢ satisfies
the following admissibility condition

0<ey ::277/%@:<00. (2)
R

In this case ¢ is called a wavelet and the transform (1) is
invertible. Some standard examples for wavelets are:

0 for t<Qort>1
o Haar wavelet ¢(t) = 1 for 0<t<1/2

—1  for 1/2<t<1

o Mexican hat wavelet ¢(t) = _%642/2 =(1-12)e t'/2,
« Morlet wavelet 9(t) = 7= 1/4 (e=it — e=¢*/2) ¢=t*/2 this
wavelet is parameterized by £ whose optimal choice depends
on the application.

« a complex valued wavelet, which allows a subtle analy-
sis of the phase of the resulting wavelet transform, is the

Cauchy wavelet
Y(t) =T(n +1)(1 —it)~ "+ j2x,

where T is the usual Gamma function (see [2], [13] and
Figure 4).

Most applications in signal processing require more than
a visual inspection of the wavelet transform. Therefore we
need some additional tools for interpreting the computed
wavelet transform. Before we start with a list of wavelet
tools or wavelet indicators, which are suitable for the prob-
lem described above, let us make a more general remark.

Before beginning to analyze any signal with wavelet
methods one should answer three basic questions:
o Why should wavelet analysis help to solve this specific
problem?
e Which wavelet should be used?
o Which tools for interpretating the computed wavelet
transform will reveal the desired information?

The first question can be answered positively whenever
the signal has some multiscale structure or if the searched



for information lives on an a priori unknown scale. Our
problem of evaluating a signal with no apparent structure
falls in this second class of problems: the searched for in-
formation is contained in details/structures of yet unknown
size and shape. The wavelet transform allows, due to its
bandpass filtering property, to scan the signal on differ-
ent frequency bands or detail scales simultaneously. In the
case of Barkhausen noise we suppose that the scales be-
tween the noise and the background oscillation imposed by
the magnetization current contain the desired information.

The answer to the second question usually requires to
study the physical/mathematical background of the prob-
lem at hand. Since there does not exist a mathematical
model, which reflects the influence of the desired material
properties on the Barkhausen measurements, we choose a
?general purpose” wavelet which allows a detailed analysis
of amplitude and phase, i.e. a Cauchy wavelet.

This choice can be further justified by the following argu-
ment: Wavelets of high regularity and excellent time-scale
localization properties are preferable. First, we wish to
quantify the localization properties of wavelet transforms.
This is measured by the uncertainty principle of the affine
group, which is minimized by functions of the following
type (for details see [8]):

p(t) = c(t — A)%. 3)

Using A = —i, @ = =2 and ¢ = —+/2/7 we obtain the
set of normed Cauchy wavelets (Figure 4) as minimizers of
the affine uncertainty principle (see [20]). To establish a
analytical interpretation of the wavelet transform we have
to look how the Cauchy wavelets are constructed (see [13]).
They are derivatives of the Cauchy kernel

Yen(t) = d"/@dE")C) = 5-Tln+1)(1=it) D, (4

where the kernel C(t) is equal to (27(1 — it))~!. These
wavelets are of high regularity. This is obvious because
of the fast decrease of its Fourier transform. Further the
Fourier transform is real valued and progressive. In case of
having a real signal f (indeed the used Barkhausen mea-
surements are real) the analysis with a Cauchy wavelet
means consequently no a priori loss of informations (every
real function may be recovered from it’s progressive part).
Further, for analytical interpretation, we remark that the
wavelet transform with respect to Cauchy wavelets is re-
lated to the analysis of analytic functions over the complex
half-plane (see [5], [13], for detailed calculation [20] and
[23]). Since the Cauchy wavelets include both, excellent
analytical and localization attributes, our numerical real-
izations were computed with one of them (Figure 5, for
simplicity we prefer n = 1). A more detailed description
of complex valued wavelet transforms and their application
in signal processing can be found e.g. in [1], [12], [17] and
[20].

B. Choice of Wavelet Indicators

In this section we want to answer the last question, the
most difficult one. We list some interpretation tools or indi-
cators for our specific problem. Following the above theory,

a solution to our problem now consists in constructing an
adequate finite choice of indicators ¥,, which depend on
phase and/or modulus of the calculated complex wavelet
transforms (using Cauchy wavelets). Finally a relation be-
tween the material parameters (G, G2 and G3) and the
computed indicators has to be determined.

First we turn to the introduction of indicator functions
based on the computed wavelet transforms. The indica-
tors should allow to distinguish between different materi-
als. Since we do not have a mathematical model which
relates our data to the desired material properties we have
to search for and experiment with a general family of indi-
cators. These indicators are then used as input data for a
statistical classification process. The classification is based
on a regression model, see below.

Extensive test computations revealed no significance of
the computed phase representations. Hence the phase in-
formation is not used in the subsequent analysis, which is
entirely based on the modulus of the wavelet transform.
Let Wy, upan(a,b) denote the wavelet transform of the
Barkhausen data upgy with respect to a Cauchy wavelet
1., then its squared L?-norm with respect to the scale pa-
rameter is

lI»’(b) = /|W¢cuBHN(a,b)|2da . (5)

The function ¥ can also be interpreted as the second mo-

ment of |Wy_ upmn(a,b)| with respect to the left invariant

Haar measure %. The shapes of ¥ for different type of

steel wires are shown in Figure 6. By exploring the modu-

lus we can determine some so-called wavelet indicators as

follows:

o 91 = bg with ¥(bg) > ¥(b), V b # b, this indicates the

position of the maximum and

o 99 = U(¥) the value of maximum of .

e 93 = [ W(b)db and ¥4 = [ T(b)db reflect how the
b<bo b>bo

weight of the integral is distributed.

If we suppose that ¥ = W/(¥3 + 1) represents relative

frequencies (Figure 6) in a statistical sense, then ¥ can be

interpreted as a density function of any empirical distribu-

tion. Using this motivation one can fix the expectation of

L&

o 95 = [bU(b)db.

Next, we consider the kth empirical moment my of ¥,

which leads to the statistical values skewness and excess:

Using common definitions we define the indicators

o U = (m’:ﬁ (=skewness) and
o U7 =iz —3 (=excess).

These seven indicators were chosen empirically based on
extensive computations and general experience with similar
signal processing applications.

IV. CLASSIFICATION MODEL AND NUMERICAL RESULTS

In this section we establish a relation between the seven
wavelet indicators 14, .., 97 and the material parameters y.
and yy. Therefore we introduce a linear regression model.
Finally, a maximum likelihood classification rule is used in
order to classify the type of steel wires according to the
estimated values . and §;.



A. Regression

The linear regression model (see [14]) is based on fifteen
samples of noise voltage upg N, with known vectors Y, and
Y. The linear models for Y. and Y} are of the following
type:

Y. =08°+¢e, and Yf:®,3f+€f, (6)
where ® = (1,601,...,67) and 1 = (1,...,1)T, 8, =
(W1,...,01)T, 0, = (W},...,98%)T ) ... denote the indica-
tor values for the different test samples. The error terms &,
and ey are random variables with Ee, = 0, Vare, = oW,
and Ee; = 0, Varey = 03Wy, where W, and W; are posi-
tive definite.

We use the method of least squares, which yields best
linear unbiased estimators 3 for 8. Therefore we have to
minimize two sums ||Y, — ©4¢||%, _, and ||Y; — ©87|% _,.

e f

If the matrix © has full rank then ©7'0 is regular and the
estimations

B =(©"W,'e)'e" W, 'Y; and

Be — (@TWE—IQ)—IG)TWC—IY'G
are the unique minimizers (see [14]). The regularity of @70
has been checked numerically in our case. The resulting
estimates for 3¢ and 57 are shown in Table 1.

We may check the quality of this linear model by using
the estimated parameter vectors 3¢ and 8 to recover the
vectors Y and Y,. The norms ||Y, — ;|| = 7.340-10°7 and
|7 =Y7|| = 2.151-107% can be interpreted as the variances
of the errors in (6). The errors are small but in order
to have an objective group assignment of some unknown
samples we will introduce a simple model for classification
in the next section.

B. Discrimination

As exemplified above, the last step is to classify a sample
upgN as a member of Gy, G or G3. An elementary tool
for attaining this is the maximum likelihood classification
rule. We begin with some basic considerations. Assume
we have three distributions P,,, P,, and P,, which char-
acterize G1, G5 and G5 and three related two-dimensional
random variables X, X2 and X3: X5 ~ P,,, Xo ~ P,
and X3 ~ P,,. Now, starting with an estimated vector
7 = (Je, g)f)T of a sample upgny we like to check whether
7 is a realization of a distribution similar to X, X5 or Xs.

We want to be a bit more general. Let us consider a fam-
ily of distributions P, parameterized by a parameter space
A. Moreover, let us assume for a moment that we know the
distributions P,,, P,, and P,,, where P,, describes the dis-
tribution of y € R? for the different types G1,G2,G3. Let
py; denote the corresponding density functions. Then we
can define sets in R* by A; = {y : p,,(y) = max; p,, (y)}.
One A; includes those arguments y where p,, (y) is max-
imal. A data sample is then classified by the computed
vector (Je, §r) according to its position (., s) € Aix, (see
[10],[11],[14]).

However we don’t know P,,, P,, and P,,. Hence we first
have to estimate vy, v, v3, where we assume that the dis-
tributions P, are parameterized by a parameter space A.

Since we don’t know a better model we require independent
and normal distributed variables. Hence we can estimate
the unknown parameters of the three two-dimensional nor-
mal distributions P,;, = Na(u;,%;), where v; = (u;, X5).
With the given observations we can determine p; and ¥;
by using the maximum likelihood estimators of u; and ¥;,
see [14],[15]. Note that we have 5 known samples for each
group Gj:

51

51
. 1 o 1 R N
fi= Z yj and X; = - Z (y; — i) (yj — )7,
j=bi—4 j=5i—4

where y; is computed to Wy We get 0; for v; and
thus distributions No(f;, f]z) Now we may define the clas-
sification rule: From the given data upgny we compute
z = (Je,Jyr) using the linear regression model described in

the previous section. Then upgn belongs to group G; if

(2= 1) 87 (2 = ) < (2= 1) "S5 (2 = fiy) Vi

C. Evaluation of unknown samples

Nine unknown samples were analyzed. For the estimated
values §. and ¢ see Table II. Further Table II shows the
realized classifications. Figure 7 displays the three con-
nected domains of classification A; , Az and Az. Since
the variances differ, ¥; # X; for ¢ # j, we have quadratic
separating functions instead of linear ones. An subsequent
inspection showed that ys, resp. @y were assigned incor-
rectly. The correct classifications G, resp. Ga2. The es-
sential reason of misclassification is the very weak material
dependent structure in Barkhausen noise voltage. And the
appearance of misclassifications only in a small neighbor-
hood of the boundary between G; and G5 indicates the
quality of the model.

V. SUMMARY

By using wavelet analysis combined with statistical
methods we developed a method for classifying the qual-
ity of ferromagnetic materials. = The success of the
method demonstrates the existence of a relation between
Barkhausen noise voltage and material parameters.

Precisely, we have introduced a new method to uti-
lize Barkhausen noise for testing the drawing quality of
wires. For that purpose wire samples were selected with
the same composition but different strength factors (hard-
ness) caused by different annealing times. The strength
factors were determined by non-destructive material test-
ing.

First, the data samples were analyzed by complex
wavelet transforms with respect to Cauchy wavelets. After
constructing a set of significant indicators we used linear
regression to relate these to material parameters. To realize
an objective assignment the classical maximum likelihood
classification rule was used.

After this calibration process, the resulting classification
scheme was used for analyzing nine different, a priorly un-
known data sets. Seven data sets were classified correctly,



but two of the test samples u?,,, were assigned incorrectly,
they correspond to the classification results close to the
boundary between Gy and Gs, see Figure 7.
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G1 708 64.7 707.9 64.69

Gh 697 62.7 696.9 62.69

G 708 67.7 707.9 67.69

Gy 725 61.2 724.9 61.19

Gh 713 65.8 712.9 65.79

G 600 67.7 599.9 67.69 j-th

Go 665 67.3 664.9 67.29 test

Go 617 66.1 616.9 66.09 sample Ue Jr || classification

G 649 70.5 648.9 70.49 1 72.01 466.89 Go

G 649 70.5 648.9 70.49 2 58.48 911.48 G

Gs || 1294 49.0 | 1293.9 48.99 3 50.01 1275.54 G

Gs3 || 1344 53.9 | 1343.9 53.89 4 60.39 809.49 Gy

Gs3 || 1400 46.1 | 1399.9 46.09 b) 66.19 622.04 Go

Gs || 1334 47.2 | 1333.9 47.19 6 53.71 1771.89 G

Gs3 || 1400 56.1 | 1399.9 56.09 7 64.93 677.36 G1
8 62.57 807.21 Gy
9 61.94 556.49 G

TABLE II
RECOVERED MATERIAL PARAMETERS OF NINE TEST SAMPLES AND THE
| || Bf | B¢ | CLASSIFICATION IS REPRESENTED.
1 —4.608 - 10° 1.699 - 102

Y1 || —3.855-102 1.821- 10"

o 6.026 - 10~5 —2.131-10"6

s || 4.219-107° | —2.008-10~°

Yy || —2.007-1075 | 1.167-1076

5 5.186 - 102 —1.987-10!

J6 || —1.733-102 1.272 - 10"

Iy 1.479 - 102 —5.973 - 10°

TABLE I

THE FIRST TABLE SHOWS THE VALUES OF GIVEN OBERVATIONS Yf AND
Y. AND THE RECOVERED VECTORS }Aff AND f/e. THE SECOND TABLE
SHOWS THE ESTIMATED MODEL PARAMETERS ﬁAf AND ,ée FOR THE
GIVEN OBSERVATIONS.
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