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Abstract. We report on a study on stability, bifurcation scenarios and routes into
chaos in Taylor-Couette flow. By increasing the Reynolds number with the angular
velocity of the driving inner cylinder, the flow bifurcates from laminar mid-plane-
symmetric basic flow via a pitchfork bifurcation to mid-plane-symmetric Taylor-Vortex
flow. Both flow states are rotationally symmetric. We now compare the dynamical
behaviour in a system with symmetric boundary conditions with the effects in an
asymmetric system. We also could vary the gap widths. The different flow states can
be detected by visualization with small aluminium flakes and also measured by Laser
Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). The dynamical
behaviour of the rotating flow is discussed by time series analysis methods and velocity
bifurcation diagrams and then compared with numerical calculations.

1 Introduction

The subject of hydrodynamic instabilities and the transition to turbulence is
important for the understanding of nonlinear dynamic systems. A classical sys-
tem to investigate such instabilities is besides the Rayleigh-Bénard system the
Taylor-Couette system. The system was first examined theoretically and exper-
imentally by Taylor [16]. It consists of two concentric cylinders where the so
formed gap is filled with the working fluid. Here, only rotation of the inner
cylinder is considered and the outer one is held at rest. By increasing the speed
of the inner cylinder, the azimuthal Couette-flow becomes unstable and is re-
placed by a cellular pattern in which the fluid travels in helical paths around the
cylinder in layers of vortices (Taylor-Vortex flow). By a further increase of the
rotation speed the system undergoes several bifurcations before the flow struc-
ture becomes more complicated. Different routes to chaos are possible by further
increasing the rotation rate. One model was described by Ruelle & Takens [13].
Benjamin [3], [4] showed the importance of the finite size of the cylinders and its
effects upon the bifurcation phenomena. A summary of the current state of re-
search was published by Ahlers [1], Chossat [6], Koschmieder [9], Meyer-Spasche
[10] und Tagg [15].

In this work, short systems are investigated to reduce the multiplicity of
possible solutions. Some new aspects of the dynamical behaviour of the Taylor-
Couette flow during the transition to turbulence for the case of symmetric and
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asymmetric boundary conditions and the small (5 = 0.85) and the wide gap
width (n = 0.5) are presented in this study.

2 Experimental setup

Most of our experiments were carried out by increasing the Reynolds number
of the inner cylinder in a quasistationary way from rest. However, since the
occuring flow structures could depend on initial conditions, it is possible to vary
the acceleration rate for the cylinder. The temperature was precisely controlled
and measured to allow the determination of a well defined Reynolds number of
the flow. The Taylor-Couette flow is characterized by the following three control
parameters: The aspect-ratio (I' = H/d), the radius ratio (n = R;/R,) and the
Reynolds number Re = %ﬂ", where H, d, R;, R,, {2; and v are the height, the
gap width, the inner and outer radii, the angular velocity of the inner cylinder
and the kinematic viscosity respectively. The symmetric experimental setup is
illustrated in Fig. la. It is only possible to obtain different aspect ratios by
integrating different inner cylinders due to the constant length of the system.
The radius ratios we used during this work were (5 = 0.5) to realize a wide
cylindrical gap and (n = 0.85) a small one. To realize asymmetric boundary
conditions, a new setup consisting an inner cylinder with a mounted bottom
plate is available (Fig. 1b). In this system the radius ratio is (n = 0.5) and the
aspect ratio is variable.

3 Measuring Techniques

To observe the behaviour of the flow, two different techniques were used. Using
the PIV-technique one gets a 2-D vector map of the flow field whereas LDV yields
to time series with high resolution containing information about one component
of velocity at a special location in the working fluid depending on time.

3.1 PIV

In our system a pulsed double cavity, frequency doubled Nd:YAG-Laser is used
for the Particle Image Velocimetry. The second cavity is required to get a very
short time delay between the two pulses. A single laser achieves only a repetition
frequency of about 15Hz. This time delay is too long for high flow rates and no
correlation between the records would be possible. The emitted laser beam is
frequency doubled and then spread with a cylindrical lense to get a green light
sheet, because the original wavelength of a Nd:YAG-Laser is in the infrared
spectrum. To get two images in a short time-interval, a fast CCD-camera is
used. In Fig. 2 a sketch of the Taylor-Couette system with the applied PIV-setup
is shown. With the two recorded images one gets a light intensity distribution
which shows the particles suspended into the measuring fluid. The recorded
images are devided into smaller subareas, so called ‘interrogation areas’. The
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a) photograph of the symmet- b) principle sketch of the asymmetric setup with ro-
ric experimental setup tating bottom plate
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Fig. 1. The two different experimental setups which were used during this work

cross correlation algorithm (see Eqn. 1) calculates for every interrogation area a
vector of the movement of the particles so that at least a 2-D vector map of the
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Fig. 2. Taylor-Couette system with the applied PIV-setup

flow in the gap is illustrated.

> > I(m,n)I*(m +i,n+ §) = C(i, 5) (1)

I and I describe the light intensities within the interrogation areas at the time
t and At due to the spatial coordinates m and n. The crosscorrelation C(3, j) has
its maximum, if many particles correlate with their spatial shifted equivalent —
true correlation. To get more information about the PIV-technique the reader is
refered to the book by Raffel et al. [11].

3.2 LDV

Beam Splitter

Focusing
- Avalanche Phote  Optics
Lenses Diode APD

Fig. 3. Sketch of LDV, [12]

Laser-Doppler-Velocimetry is a widely accepted tool for fluid dynamic investi-
gations, as it gives information about flow velocity without influencing the fluid.
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For the application of the Laser-Doppler-Velocimetry on the rotating system a
special traversing system has been constructed, which allows the traversing of the
LDV-system in axial direction. Fig. 3 shows a principle sketch of a LDV-system.
The LDV-system used in our experiments consists of a He-Ne-Laser, whose beam
is split and then one laser beam is shifted in its frequency. Suspended particles
create a signal by scattering light when passing the interference fringes formed
by the intersected beams in the measuring volume. From these Doppler Bursts
information of the direction and the quantity of the velocity can be obtained. As
tracer particles for the LDV-measurements polysterene spheres with a diameter
of 1.6pm were used. By using different algorithms, for example described in [18],
it is possible to calculate the power spectrum, the attractors and bifurcation
diagrams out of the obtained time series, measured with the LDV-gsystem. Both
systems we used are distributed by DANTEC-Electronics, Denmark

4 Numerical Method

The mathematical model to describe the system are the incompressible Navier—
Stokes equations. Since we are mainly interested in the first bifurcations and to
limit the required cpu-times, we use a 2.5-D approach. This means we assume
that all dependent variables are constant in the azimuthal direction . Numerical
computations for the full 3-D problem will be reported in a forthcoming paper.

The 2.5-D incompressible Navier—Stokes equations read in dimensionless
form: We are looking for a velocity field u = u,e, +u.e, +u, e, and a pressure
field p fulfilling

1 1,1 1
Oty + urOrtty + u,0,ur — ;u?p =—0p+ ﬁ (;67-(7'67-117«) + 65”7' - ,r_zur)
1
Oi, + urOpt, + u,0,u, = -0,p+ e (—6 (réru;) + afuz)
1 B 1,1 9 1
atucp + uraruga + Uzazu<p + ;'Uzrucp = ﬁ(;&(r&wp) + 6Z'U,(p — r—z’u,(p)
1

=0 (ruy) + Oyu, =0

<

for t > 0, ﬁ:ri<r<ra=ﬁ,0<z<Fand0§cp<27rtogetherwith
the no—slip boundary conditions

7
ur=u, =0, u,=1 at ri:m
1
Up = Uy = Uy, =0 at r, = ——
/]
Ur =u, =0 at 2=0 andz=1

and either

u, =0 at z2=0 andz=1T (symmetric case)
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or

Up =T at z=0 andu,=0 atz=1I  (asymmetric case).
Here we have used dimensionless velocities, pressures and coordinates.

To solve this problem numerically, we use a code based on the method de-
scribed in [2] and in [17] for the 2.5-D case. The method uses the so called
fractional step 6—scheme for the time discretization in a variant as an opera-
tor splitting to decouple the incompressibility condition from the nonlinearity,
see also [8]. For the space discretization the Taylor—Hood element, i.e. piecewise
quadratic finite elements for the velocity and piecewise linears for the pressure,
are used.

5 Results

5.1 Symmetric system

In this section the influence of the gap width on the flow is investigated. On
this account experiments on bifurcation scenarios in the Taylor-Couette system
were carried out for two different radius ratios, n = 0.85 (small gap) and n = 0.5
(wide gap). The velocity bifurcation diagrams as illustrated in Fig. 4 and 5 were
obtained by collecting the extrema, of the velocity time series measured with
the LDV-technique with a quasi-stationary increase of the Reynolds number.
As it can be seen from the bifurcation diagram (Fig. 4), the flow undergoes a
bifurcation from the laminar basic state to a steady Taylor vortex flow via a
pitchfork bifurcation. This is an imperfect pitchfork bifurcation perturbed by
the boundary conditions. By smoothly increasing the Reynolds number only one
branch is reachable, which is the normal mode with inward flow adjacent to
the end plates. The anomalous mode may be reached by changing the Reynolds
number instantaneously. After this pitchfork bifurcation, the flow bifurcates via
a Hopf bifurcation into the Wavy-Mode. With a further increase of the Reynolds
number, the flow bifurcates via a second Hopf bifurcation into the modulated
wavy mode before chaotic motion occurs. The second critical Reynolds number
for the onset of the wavy mode is about 2.5 times higher as the first critical one.
In contrast to small cylindrical gaps (n = 0.85) just mentioned, the experiments
on bifurcation scenarios in the wide gap Taylor-Couette system n = 0.5 show a
different bifurcation scenario and a different route into chaos, which is illustrated
in Fig. 5. The basic flow bifurcates via a pitchfork bifurcation into Taylor vortex
flow. The onset of the Wavy-Mode is shifted to higher Reynolds numbers in
comparison to 7 = 0.85 because the vortices at the end-plates cannot oscillate
due to the boundary conditions. This state is only stable over a small range of
Reynolds numbers and it seems that the flow bifurcates directly into chaotic
motion.
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Bifurcation Diagram (Gauss)
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Fig. 4. Bifurcation diagram in the Taylor-Couette system as a function of the Reynolds
number. The meridional velocities are normalized by the velocity of rotation
(n=10.85,I' =13.2, 2 = 0.40L, (r — R;)/(Rs — R;) = 0.6)

C: Couette flow TVEF': Taylor-Vortex flow WVEF: Wavy-Vortex flow
MWVE': Modulated Wavy Vortex flow
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Fig. 5. Bifurcation diagram in the Taylor-Couette system as a function of the Reynolds
number. The meridional velocities are normalized by the velocity of rotation.
(n=10.5,I=397, 2=0.37L, (r — R;)/(Rs — R;) = 0.91)

TVF: Taylor-Vortex flow WVEF': Wavy-Vortex flow
QPF: Quasiperiodic flow
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a)
Spectrum for Re = 1208.58
0.100
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/et
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b)
Spectrum for Re = 1527.87

Re = 1500

Fig. 6. powerspectrum and attractor in case of two different Reynolds numbers
(m=0.5,I'=3.97, 2=0.37L, (r — R;)/(Ra — R;) = 0.91)

Figure 6 shows the frequency spectrum and the attractor for two different
Reynolds numbers. The spectrum of Fig. 6a shows one characteristic frequency.
All diagrams correspond to the Wavy vortex flow state. The reconstruction of
the flow yields a limit cycle which is perturbed by noise. In the flow state in Fig.
6b a second frequency occurs at higher Reynols numbers. The attractor is not a
limit cycle anymore. It is pointed out that it is a quasiperiodic flow state and not
a chaotic one. The further research is now focussed on the exact investigation of
the dynamics of Reynolds numbers higher than Re = 1500.

In Fig. 7 three experimental flow states obtained with the PIV-technique
are shown. Fig. 7b shows the normal 4-vortex state which could be reached by
increase the Reynolds number in a quasistationary way. Figs. 7c and 7d represent
the two different anomalous modes which could be obtained in this system with
a constant I' = 3.97. These two flow states could be adjusted by a sudden
increasing of the Reynolds number. In contrast to the stretched 3-vortex state
the 5 vortices are squeezed into the system. In comparison with the experimental
results a normal flow state is calculated and shown in 7a. The cores of the vortices
are shifted to the outer cylinder but not as much as in the experimental result. In
the experiment the cores seem to be closer to the outer cylinder due to the optical
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way through curved surfaces with different refraction indices. This distortion is

reduced in the new experimental setup using a rectangular tank filled with silicon
oil enclosing the whole setup, which in addition keeps the working temperature

constant.
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Fig. 7. Experimental and numerical results in case of the following parameters: n = 0.5,

r

Couette

system an asymmetric experimental setup with a rotating bottom plate was

constructed. First results are described in Section 5.2.

To investigate the influence of the boundary conditions in the Taylor

5.2 Asymmetric system

In this section we also only consider the situation where the outer cylinder is

held at rest and the inner rotates. In this part of our research the effects of

end conditons should be investigated. In contrast to the previous Section the
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bottom end plate is allowed to rotate with the inner cylinder. As a result of
the rotating bottom plate always outward flow is found adjacent to the rotating
plate, whereas at the stationary top plate inward flow occurs. This leads to an
odd number of cells in such an experimental setup, when only normal modes are
considered.

In 1986, Cliffe & Mullin [7] investigated both experimentally and numerically
the interaction between 5-cell and 3-cell modes in the asymmtric system. They
investigated the stability of the flow states in a range of I' = 4.2 — 5.0 and
Re = 50 — 300.

Stability of 3-cell and one cell modes

In 1997, Blohm [5] in coorperation with Mullin focussed his investigations on the
3-cell and 1-cell modes. One result of his work is the stability diagram of steady
solutions shown in Fig. 8. The line between H and M represents the transition
from steady 3-cell flow to steady one cell flow by numerical calculations. The ex-
perimental stability limit was investigated by smoothly increasing the Reynolds
number at a fixed I'. The squares between H and J indicate a transition from
steady 3-cell flow to a time dependent 1-cell state. Beyond J up to K the system
passes through a transition from steady 3-cell to steady 1-cell flow. A transition
from steady 1-cell to steady 3-cell flow by decreasing the Reynolds number could
only be found numerically at line HI. Experimentally, time dependence occurs
by decreasing the Reynolds number at higher values so that the line from H to
I could not be found in the experiments.

273 . Exp. steady 3to 1 cell collapse
i —— Num. calc., steady collapse
2.62 Time dependent 3to 1 cell collapse
2.51 r
240 I L L L L L L L L L J
90 157 224 291 358 425

Reynolds number

Fig. 8. Experimental and numerical stability diagram measured by Blohm [5] and
calculated by Mullin

For comparison the stability limit between the 3-cell mode and the 1-cell
mode was calculated during this work by the numerical method described in Sect.
4. In consideration of the fact that a 2.5-D-Code was used, no transitions to time
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dependent states were found. The squares in Fig. 9 represent the transition from
three vortices to one vortex by increasing the Reynolds number, whereas the
circles indicate the change from 1-cell state to 3-cell state when decreasing the
Reynolds number. Note that as mentioned before this line could not be reached
experimentally due to the occurence of time dependence at higher Reynolds
numbers. As an example of the two occuring flow states the calculated 3-vortex-

2.6 [ -

94 LI ] ] ] ] ] ]
100 150 200 250 300 350 400

Reynolds number

Fig. 9. Numerical stability diagram, our computations. Squares represent the transition
from three vortices to one vortex by increasing the Reynolds number. Circles indicate
the change from 1-cell state to 3-cell state when decreasing the Reynolds number.

and 1-vortex states are shown in Fig. 10 for I' = 3.2 and two different Reynolds
numbers. The visualization of the numerical results was realized with GRAPE
[14]. The arrows represent the velocity components in r- and z-direction in the
whole cylindrical gap. The inner cylinder on the left side and the bottom plate
are rotating. The top plate and the outer cylinder on the right side are fixed.

Growth of bottom vortex

Blohm [5] found that the size of the cell adjacent to the rotating bottom plate
is depending on the Reynolds number. For different I" he experimentally inves-
tigated the size of the bottom vortex in percent of the height of the cylinder
depending on the Reynolds number. The results are shown in Fig. 11 The effect
of the growing bottom vortex could be seen clearer in the case of higher values
of I'.

To check these results, different flow states depending on the Reynolds number
for two different I" were calculated. Figure 12 and Fig. 13 show the development
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Fig. 10. Numerical results for I' = 3.2 Left side and bottom are rotating. The velocity
components in r- and z-direction in the whole cylindrical gap are shown respectively,
our computations.

55.0 1
53.1 i
51.2 i
49.3 i

ht)

L47.4
> L
0455
C 436 [
3 I
4171
S I
39.8 |
37.9 |

elg
> <« » 0 ®m o ®

b e B B M B B

RTINS
N =000

N @ OUITNI 00 N ©
<
<

wman
o o W b
o moms
s ore o
s o e
o

> erome
-

it

360 L L L L L L L L
55 109 163 217 271 325
Reynolds number

Fig. 11. Experimental results for the growth of the bottom vortex depending on the
Reynolds number due to different values of I'.

of the bottom vortex in the case of I' = 2.975 and I'" = 3.225. These calculations
confirm that in the case of a large I'" the effect of growing is considerably more
noticeable.

Results by decreasing Re: I' = 3.15

In this Section an example for the onset of a time dependent flow in the numerical
calculations by decreasing the Reynolds number in the case of I' = 3.15 is
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Fig. 12. Numerical results for I' = 2.975 depending on Re.
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Numerical results for I' = 3.225 depending on Re.

Fig. 13
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shown. The two graphics in Fig. 14 represent the difference in the flow state
in arbitrary units (a.u.) for consecutive time steps. Calculations at Re = 173
converge straightly so that a steady state is reached very fast. Re = 172 shows
an oscillating behaviour in the difference which is an indication for an oscillating
flow in the system although only a 2.5-D-Code was used. Blohm found these
oscillations by decreasing the Reynolds number in his experiments.

4e-05 | | | |
)
&S 3e-05 = —
g
g Re =173
uq:‘; 2e-05 |
=

1e-05 . . . .

500 600 700 800 900 1000
time

7e-05 T T T T
E)
&S 6e-05 —
g
g Re =172
aq:‘S 5e-05 —
=

4e-05 | | | |

500 600 700 800 900 1000
time

Fig. 14. Difference between two calculated flow states at t and t + At depending on
time for two different Reynolds numbers

6 Conclusions

In this work experimental and numerical investigations in consideration of dif-
ferent boundary conditions for the Taylor-Couette system are presented. First
the experimental results in a very short annulus due to two different aspect ra-
tios in the symmetric system were described. It could be shown that the gap
width influences the dynamic of the flow, which could be seen in the measured
bifurcation scenarios.
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Then the effect of a rotating bottom plate was investigated. The stability
diagram measured by Blohm and calculated by Mullin was compared with our
calculation and shows a very good agreement. Both calculations showed a sta-
bility limit by decreasing the Reynolds number, which could not be found in the
experiments due to a occuring time dependence.

The measurements to distinguish the growth of the bottom vortex show qual-
itatively a good agreement with our calculation. It could be pointed out that
the effect depends on the value of I.

Indications for the onset of an oscillation were found in our numerical cal-
culations by decreasing the Reynoldsnumber as much as in the experimental
investigations of Blohm.

Now we focus our work on comparative experimental investigations with the
new built setup and on numerical calculations for the full 3-D problem.
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