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Abstract

In this paper we discribe and analyse two finite element methods for mixed
problems with penalty. In each case the bilinear form corresponding to mixed
problems with penalty is modified to become coercive over the finite element space.
Error estimates are derived for each procedure.

1. Introduction

The Mindlin-Reissner model is often used by engineers for the study of plate and shell
problems. It is known that many numerical schemes for this model are satisfactory only
when the thickness parameter ¢ is "not too small”. For a small ¢ some bad behavior
(such as the "looking” phenomenon) may occur. Brezzi and Fortin [4] have transfered
this model into solving two elliptic problems and one mixed problems with penalty. In
this paper we present two finite element methods for mixed problems with penalty. It
is proved that the methods converge with optimal order uniformly with respect to the
penalty parameter.

The mixed problems with penalty we consider is as follows:
Problem (S). Given f € L2(Q) and ¢ € (0, 1], find [¢, p] € HL(Q) x H'(Q) such that

(grad¢, grady) — (divy, p) = (£, 7)) Vi) € Hy(9), (1)
— (divg, q) — t*(vp, V) =0 Vg € H'(Q). (2)
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For simplicity of the notation we set
D :=H(Q) x H(Q)
and we rewrite (1) and (2) as

{M¢w+mwm=&w)
b(#,q) — t*d(p,q) =0

with the bilinear forms

V[, q] € D

a(é, 1)) := (gradg, grady), b(y,q) := —(divy),q), d(p,q) == (Vp, Vq)

on H(Q) x HY(Q), HY(Q) x H'(Q), H'(Q) x H'(2), resp. Here (-, -) is the inner product
in L2. Moreover, H*(Q), k € N, and L*(Q2) = H°(Q) are the usual Sobolev and Lebesgue
spaces equipped with the norms (cf. Adams [1])

|v]|x == { z /Q|Dau(x)|2daj} )

\al<k

Furthermore, H}(Q) = [Hy(Q)]?>. We use a circumflex ”"” above a function space to de-
note the subspace of the elements with mean value zero. We use two standard differential
operators:

grady =

Oa Oy - )
2 a; o0z dy

oY 9y
oz Jy ] ’ le@b _ 87/11 87/12

We assume that the domain 2 is a convex polygon.
A standard mixed method for approximating the solution of Problem (S) would depend
on choosing a pair of spaces Vy, C H§(Q) and W), C H*(Q) such that ”inf-sup” condition

inf sup > b(¥. q)

> WD 5
vV gew, 1l llallo ’

B independent of h, holds (cf. Arnold and Falk [2], Huang [7]). As can be seen in the
book of Girault and Raviart [6], there are quite a few such spaces known for this problem,
however, most of these combinations employ some basis functions that are not found in
many of the engineering code packages that are most commonly used. Hughes et al. [8]
and Brezzi and Douglas [3] proposed to modify Stokes problem so that the associated
bilinear form is coercive over Vj, x W), and almost any pair of spaces can be choosen for
V;, x Wy, and the resulting method can be implemented easily and rapidly within the
framework of many existing engineering codes. In this paper we shall modify the mixed
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problems with penalty as Hughes et al. [8] and Brezzi and Douglas [3]. It follows that
the associated bilinear form corresponding mixed problems with penalty is coercive over
V, x Wy, and almost any pair of spaces can be also choosen for Vj, x W},. This method will
be illustrated and analysed in Section 2. The method of Section 3 is a penalty procedure.
We point out that this method introduces a penalty error of order O(h) independent of
the choise of the discretization space; consequently, though the use of higher order spaces
is feasible for the method without stabily problem, such usage is not recommended.

2. A variant Method of Hughes, Balestra and Franca

Let T}, be a triangulation of 2 and h be the longest side of the triangles of 7},. We
suppose that the triangles of 7}, satisfying the usual regularity assumptions for finite
elements (cf. Ciarlet [5]) and that

hkx < cpk, for all K € Tj,, (3)
hk = diam(K),
pk = sup{diam(B) | B is a ball contained in K}.
Here and in the rest of the paper, ¢, ¢, ¢, --- will be positive constants independent of
h and t. They may have different values in different formulas.

Let Sj, be the space of continuous, piecewise linear finite elements corresponding to 7},.
We define the following finite element spaces:

Xh = [ShﬂH&(Q)]Q, Mh = Shﬂ[‘:rl(Q).
Forthermore, we set

Dh = Xh X Mh-

We consider a variant method of Hughes, Balestra and Franca for Problem (S):
Problem (S;). Given f € L?(Q) and ¢t € (0,1], find [@y,pn] € Dy such that for all

[wa q] € Dh

a’(¢ha 1/1) + b(%m) = (fa w)’ (4)
b(dn,q) — t2d(pn, ) — @ > h%[(Vph, Va)k — (Adn, V)] = —a > h%(f,va)x, (5)

where « is a constant which is independent of ¢, A and its value will be determined in
Lemma 2.1. We rewrite (4) and (5) as

A([Sn,pn), [0, ) = (F.0) +a Y Wi (f,va)k

KeTy,



with

A([én, pnl, [, q)) = a(én, ¥) + b(, pr) — b(dn, q) + t°d(pn, q)
+a Y, hi[(Vph VO k — (Adn, VO)k]-

KeTy,

Next lemma prove that the operator A(-,-) : D x D, — R is coercive over the space
Dy, if Dy, is equipped with the norm

11, dlllo, = {IWI} + 2 vt + Y bkl valix}?, V¥, € Dy

KeTy,

Lemma 2.1. Suppose that T}, is a regularity triangulation of €2 satisfying the assumption
(3). Then,
A([Y, ql; [, q]) > clllv, qlll, ;

where ¢ is a constant which is independent of f, £ and A.
Proof. From the inverse estimate (cf. Ciarlet [5]) we have for all [¢, q] € D,

A([%, ql; [¥, 4])
= a(¥,y) +1%d(g,q) +a Y hil(Vve, va)x — (A¢, V)]
KeTy,
> | vels+2Ivals+o > el v allix = ehic | 7 ¢lloxl 7 dllox)
KETh
o
> | vele+Pllvais+e X il vdlox —5 2 (@l v ¥llox + il v dllox)
KeTy, KeT,
: a a
> min{1- 2212 (19 yl+ 21 v ali+ T Kl v all)
KeTy,
Choosing o = 2/(1 + ¢%) and referring the definition of the norm || - ||p, we obtain
1
A gl Wodl) 2 UV els+ v+ > kil v alls )
14¢y KeT,
> clly,dllp, O

For the error estimate we need a regularity property:
Lemma 2.2 (Regularity). Suppose that 2 is a convex polygon and that f € L?(Q),
g € L*() and ¢ € (0,1]. Then there is a unique pair [¢, p] € H}(Q) x H'(R) to solving
(grad¢, grady) — (divy, p) = (f, 7)) V) € Ho(9),
— (divg, q) —t*(Vp,vq) = (9,9) Vg€ H'(Q).
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Moreover, ¢ € H}(Q) NH2(Q), p € HY(Q) N H2(Q) and
19112 + llpllx + tllpllz < d(lI£llo + ¢~ lgllo),

where c is a constant which is independent of f, g and ¢ .
Proof. See Huang [7].

In the next we give the erroe estimate in Dj-norm between the solutions of Problem
(S) and (S":
Theorem 2.1. Suppose that T}, be a regularity triangulation of 2 satisfying the assump-
tion (3). Let [¢, p] € D and [, pr| € Dy, be the solutions of Problem (S) and (Sy), resp.
Then,
I[¢ — én,p = palllp, < chl[f]lo,

where ¢ is a constant which is independent of f, ¢ and A.

Proof. From Problem (S) and (Sy,) we have for all [¢, q] € Dy,

a(¢ — én, %) + b(Y),p — pn) =0,
b(¢— dn, @) —t°d(p—pn, @) — > Wi (V(p —pr) — A(d — é1), V@) = 0.

KeTy,

Let [x, 7] € Dy be an optimal order correct interpolation of [¢, p] € D and then

a(x — én, ) +b(h,m — pr) = alx — ¢, ¥) + b(¥,r — p),
b(X — ¢n,q) — t2d(r —pn,q) —a Y hi(V(r —pr) — Alx — én), V@)K

KeTy,

=b(x —¢,q) —t?d(r—p,q) —a > hx(V(r—p)—Alx —¢),Va)k.

KeTy,

Choosing 1 = x — ¢n, ¢ = r — p, and referring Lemma 2.1 it follows that

cllix — én, 7 — pilll3,
< A([x = én, 7 = prl; [X — Pn, 7 — Pa)
= [a(X — n, X — ¢n) +b(x — én, 7 — pn)] — [b(X — Pn, 7 — Pn)
—t2d(r —pn, T —pn) —a Y Bi(V(r —pn) — Alx — 6n), V(r — pn)) ]

a6 X — ) + B(x— dmo 7 — B)] — PO — b7 — p)
—t%d(r —p,r —pr) —a > R (V(r—p) — Alx — 8), V(r — pr))x]-

KeTy,



This yields
X = én,7 — palllD,

< C{I|x—¢||?+||7“—p||3+ > hllx = ol + 1 v (r = p)lls

KETh
+ 3 Wl (r=plle+ X hilx - MBK}

KETh KETh

From this and Lemma 2.2 we conclude

I[6 = ¢n, p=pulllp, < llé=x, p—7lllp, + llx = én, 7 — palllp,
< ch(l|¢ll2+ llpllx + tllpll2)
< ch|fllo. O

We change spaces Sy, X, My, Dy, as

Sh ={vel’@Q )|U|K€P (K), K €Ty}, m>j,
Xj, = [Sn () Ho (O
=&ﬂmm)

D! = X! x M,

with P,,(K) the space of polynomials, of degree less or equal to m, on K and consider

the finite element approximation over Dj:
Problem (S}). Given f € L?(Q) and ¢t € (0,1], find [@s,pn] € Dj, such that for all

[v,q] € D,

((/bhaw) + b(¢:ph) = (fa 10),
b(¢h,q) — t2d(pn, @) — @ Y Bi[(VPh, VO K — (Adn, V@ k] = —a Y hi(f
KeTy, KeTy,

Analogously, we can prove the following error estimate for Problem (S},):
Theorem 2.2. Suppose that 7}, be a regular triangulation of €2 satisfying the assumption
(3). Let [¢,p] € D and [¢n,pr] € Dy be the solutions of Problem (S) and (S},), resp.
Then,

Il¢ = én, = palllp, < ch?{Igll+1 + lIpll; + tllpllji},

where c is a constant which is independent of f, ¢ and A.

Now we give the L2-estimate:



Theorem 2.3 (Ly-estimate). Suppose that T, be a regular triangulation of ) satisfying
the assumption (3). Let [@,p] € D and [¢p, pr] € Dy, be the solutions of Problem (S) and
(S},), resp. Then,

l¢ = énllo < etk {lIgllj41 + lIplly + tllpllj4i},
2 = prllo < 2P’ {41 + lIplly + llpllj+1},

where ¢, ¢y are constants which are independent of f, ¢ and A.

Proof. We use a duality argument to derive the L%-estimate. Let [p, s] € D be the solution
of

b(p,q) — t*d(s,q) =0 VY. al € D. (6)

From this we have for all [, ¢] € Dj,

6 — onlls = alp, ¢ — én) +b(6 — b, 5)
= [a(p— 9,0 — én) +b(d — dn, 5 — q)]
+a(y, ¢ — én) +b(d — ¢n, 9)]
= I+1I. (7)

{ a(p, ) + b1, 5) = (6 — b, V)

Choosing [¢, g] € Dy, as an optimal order correct interpolation of [p, s] € D and by Lemma
2.2 we obtain

I = alp—1,¢—on) +b(d— dn,s—q)
< dl¢ = onlls ([lp— 2l +Is — allo)
< chll¢ = onllr (loll2 + lIs]l1)
< chll¢ = dullr | — dnllo- (8)

From Problem (S), (S},) and (6) we have

I = a(¢,¢—¢h)+b(¢—¢h,Q)
= —b(y,p—pn) + t°d(p — pn,q)
+a Y hi (Ve —pr) — Ald— dn), VO)k

KeTy,
= —b(¢ — p,p — pn) + t*d(p — pn,q — 5)
ta Z Wi (V(p—pn) — A — én), VO k&

KeTy,



From this and Lemma 2.2 we get

I, = —b(y—p,p—pu)+t2d(p — pr,q— s)
1o = lloll 7 (0 — pa)llo + 2| 7 (2 — P)lloll 7 (s — @)llo

IA
N =

IN

ch([|pll2 + tl[s]]2) { > bl v (e —p)llg e + 1 v (p— ph)||§}
KETh

< chlld)—d)hllo{ Sobkllv—p)llix+tIl v (p— ph)llo} : (10)

KeTy,

Choosing x € X}, as an optimal order correct interpolation of ¢ we conclude that

I, = « Z Wi (V(p— pn) — A(¢ — ¢n), VK

KeTy,

= ¢ Y hxl(V(p—pn), s+ V(@ =)k — (A6 —x) + Alx — dn), V@) k]

KeTy
1
2

2,5

< Ch|¢—¢h||0{lz R (|l v (0 = pa)ll5

KETh

+ Ix—cbhh}(ll)

From (7-11), (3) and Theorem 2.2 it is follows that

I¢ = énllo < k™ {lI¢llj41 + lIpll; + tllpllj+1}-

Let the dual problem be changed to find [p, s] € D such that

{a<p,w>+bw,s> =0
b(p,q) — t*d(s,q) = (p— pn,q)

so that ||p||1 + ||s]lo + t||s]|1 < ¢|lp — prllo (see: Huang [7]). Then, with ¢ € Dy,

V[, q] € D

lp — pull§ = b(p, p — pr) — t°d(p — P, )
=b(Y,p = pn) +b(p —,p — pn) — t*d(p — ph, 5)
= —a(¢ — ¢n, ) +b(p — ¥, p — pr) — t*d(p — ph, 5)
<c(llg = ullillll + llp = Llloll 7 (0 = pa)llo + 2 lIsll1ll 7 (2 — pa)llo)
< cllp = pullo(ll¢ = énlls + Al 7 (0 = pr)llo + ¢l 7 (P — pr)lo)-

From this, (5) and Theorem 2.2 it follows that

lp = prllo < c(l|¢ = dulls + Rl 7 (0 = pr)llo +tl| 7 (» — p1)llo)
< ch?{||Bllj+1 + llpll; + tlpll+1}. O



3. A penalty stabilization

Consider the penalty version of Problem (P):
Problem (P"). Given f € L2(Q) and ¢ € (0, 1], find [¢", p"] € D such that

{ a(¢",¥) + b(3, p") =E9), s den.

b(¢", q) — (* + h*)d(p", q) = 0,

Then the finite element approximation of Problem (P") over D}, is as follows:
Problem (P}). Given f € L?(Q) and ¢ € (0, 1], find [¢y, pr] € Dy, such that

{ a(¢n, V) + b(1), pr) = (£,9), V[, q] € Dp,.

b(¢n, q) — (t* + h*)d(pn,q) = 0,

First let us analyse the difference between the solution of Problem (S) and (P"):
Lemma 3.1. Let [, p|] and [¢", p"] be the solutions of Problem (S) and (P"), resp. Then,

I = &" 1l + (t+ R 7 (0 = p")llo < chllf]lo,
l¢ = ¢"lo < ch?[Iflo,
lp = "llo < chl[f]lo-

where ¢ is a constant which is independent of f, ¢ and A.

Proof. From Problem (S) and (P") we have

{ a(¢ — ¢", ) +b(th,p— p") =0 V[ib, q] € D. (12)

b(¢ = ¢",q) — (2 + h*)d(p - p", ) = —h*d(p,q)
Choosing 1) = ¢ — ¢" and ¢ = p — p" in above we have
16— "I + (& + K7 (=25 < ch? 7 pllo- | 7 (0= 0")llo.
From this and Lemme 2.2 it follows that
I — 6"l + &+ )| 7 (0 = p")llo < chllplly < chl|f]lo.

We use a duality argument to estimate ||p — p"||o. Let [p, s] be the solution of

{ a(p, ) +b(¢,5) =0 V[, q] € D.

b(p, q) — t*d(p,q) = (p — p", q)



Choosing ¢ = p — p" in above and referring (12) and Huang [7] we conclude that

lp—p"l5 = blp,p—p") —t?d(s,p—p")

—a(¢p — ¢", p) — t*d(s,p — p")

c(llp = ¢"lls +tll 7 (0 — pM)lo) (ol + ¢l v sllo)
ch||£]lollp — p"[lo-

IA

Then,
I = p"lo < chlIf]fo-

Let the dual problem be changed to find [p, w] € D such that

{ alp ) +0(ws) = (9= d"0) (13)

b(p,q) — t*d(s,q) = 0

Choosing ¥ = ¢ — ¢" in above and referring (12-13) and Lemma 2.2 it follows that

6 — "5 = alp,d — ¢") + b(d — &, 5)
= —b(p,p — p") + t2d(p — p", s) — h2d(p", 5)
= —h%d(p", s)
< ch?| 7 p"lo - I 7 sllo
< ch?||fllo- ll¢ — ¢"llo, O

ie.,

l6 = ¢"llo < ch®||fllo. O

Next we give the error estimate between the solutions of Problem (P") and (Pj):
Lemma 3.2. Let [¢" p"] and [¢y, ps] be the solutions of Problem (P?) and (P}), resp.
Then,

16" — @nll1 + (¢ + B)[| 7 (0" — pi)llo < chl|f]lo,
16" — @nllo < ch®||£][o,
12" = pallo < chl|£]lo-

where ¢ is a constant which is independent of f, ¢ and A.
Proof. Set

Ao, p); ¥, q)) := a(9, ¥) + b(¥, p) — b(¢, q) + (¢* + h*)d(p, q).
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From this we obtain

16" = oullI + (> + K*)|| 7 (" — pn) I3
CZ([¢h - ¢h7ph - ph]7 [¢h - ¢haph - ph])
¢ inf A([¢" — v, p" — ¢, [¢" — ¥, p" — q))

[¢aq]EDh
< ch*{llo"(I5 + [Ip"11F + ¢*[lp" I3}

IN N

From this and Lemma 2.2 it follows that

16" = @nll + (¢ + W) 7 (0" = pa)llo < ch{llg" [l + 1"l + tllp" |2} < chllfllo.  (14)

We use the duality argument to estimate ||¢" — ¢p|lo. Let [p, s] be the solution of

{ a(p, ¥) + b(, 5) — (¢" — én, )

b(p, q) — (2 + h2)d(s,q) = 0 V[v,q] € D. (15)

Choosing 9 = ¢" — ¢, in above we have for all [y, n] € Dy,

16" — ¢nlls = alp, 8" — ¢n) + b(¢" — n, 5)
= alp—x, 9" — o) + alx, ¢" — ¢n)
+b(¢" — @n, s — ) + b(¢" — ¢, 1)
= I+II+IIT+]1V. (16)

Choosing [x,n] € Dy, as an optimal order correct interpolation of [p, s] € D and referring
Lemma 2.2 it follows that

I+1IT = a(p—x,¢" — ¢n) +b(¢" — dn, s — 1)
chllpll2ll¢" — nlly + chllsllill¢" — oullx
ch|¢" — dnllolle™ — énllr- (17)

From Problem (P"), (P;), Lemma 2.2 and (15) we have

II+1IV = a(x,¢" — ¢n) + b(¢" — ép,m)
= —b(x,p" — pn) + (£* + B*)d(p" — pn,n)
+b(p, p" — pn) — (t* + B*)d(s,p" — pn)
b(p — X, P" — pn) — (8 + h*)d(p" — pn, s — 1)
cllo = xlloll 7 " = pu)llo + (8 + B> 7 (s = ) lloll 7 (0" — pn)llo
c(?|lpllz + h(@* + W) |Isll) Il 7 (" = pa)lo
ch(h+ V2 +12)||¢" = dullo - | 7 (" = pa)llo- (18)

<
<

INININA
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Equations (14), (16-18) imply

16" = énllo < ch(ll6" — gull + (t + W) 7 (" = p)llo) < ch?||£]o-

Let the dual problem be changed to find [p, s] € D such that

{ a(p, ) + b(1, 5) =0 V[, q] € D.

b(p,q) — (£ + h*)d(s, q) = (p" — pn,q)

Choosing ¢ = p" — pj in above from Problem (P") and (Pj,) we have for all x € X,

Ip" = pall§ = b(p, " — pn) — (8> + A?)d(s, p" — pn)
=b(p — X, 0" — p) + b(x, p" — pr) — (t* + h*)d(s,p" — p)
=b(p— x, 0" — pn) — a(®" — ¢, x) — (* + h?)d(s,p" — pn)
< c(hllpllill 7 (" = pu)llo + 8" — dnllilix|lx

+ (2 + ) |sllll 7 (B" — pa)llo).

Choosing x € X, as an optimal order correct interpolation of p € H}(Q) and referring
Huang [7] it follows that

1" = pally < cllp” = pallo(hll 7 (0" = pa)llo + 6" — ¢nlls

+ VT + 127 (0" = pu)llo),
ie.,

1" = pallo < c((t + Bl 7 (0" — pa)llo + 16" — énlls) < chlifllo. O

From Lemma 3.3 and 3.4 we can immediately obtain the following result:
Theorem 3.1. Let [¢,p] and [¢, pr] be the solutions of Problem (S) and (Py), resp.
Then,

16 = énlls + (t + Bl 7 (o = pa)llo < chll£]lo,
6 — dnllo < ch®||£]lo,
lp = pullo < ch||fllo- O

where ¢ is a constant which is independent of f, £ and A.
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