Electromagnetic inverse scattering problem
Alexander Konschin

Scattering on nano-structured surfaces

- Non-destructive testing method for nano structures.
- Electromagnetic wave propagation modeled by Maxwell’s equations
 \[\nabla \times (\mu^{-1} \nabla \times E) - \omega^2 \left(\varepsilon + i \frac{\sigma}{\omega} \right) E = F \quad \text{in } \mathbb{R}^3, \]
 where permeability \(\mu \) is assumed to be periodic and permittivity \(\varepsilon \) is also periodic but locally perturbed.
- Electromagnetic wave propagation in TE mode modeled by Helmholtz equation
 \[\Delta u + k^2 n^2 u = f \quad \text{in } \mathbb{R}^3, \]
 where refractive index \(n^2 \) is assumed to be periodic but locally perturbed.
- Main tool: Bloch-Floquet transform defined by
 \[(J \phi)_{(\alpha, x_1, x_2, x_3)} = \sum_{j \in \mathbb{Z}^2} \phi_{(x_1 + j_1, x_2 + j_2, x_3)} e^{i \alpha \cdot j}. \]
- Theorem: Under some assumptions there exists a unique solution to the Maxwell’s equations and the Helmholtz equation.

Discretization

- Bloch-Floquet transform gives a family of quasi-periodic scattering problems with coupling.
 \[\Rightarrow \text{ suits perfectly for discretization and parallelizes greatly} \]
- Finite-element space: locally constant functions in \(\alpha \), and Nédelc or Lagrange elements in space. Solve large linear equation system by GMRES combined with incomplete LU decomposition.

Inverse Problem

- Goal: detect perturbation in periodic structure having measurements of the scattered wave.
- Measurement operators: \(\Lambda \) measures full wave, \(S \) measures near-field in one period and \(T \) measure far field of scattered wave.
- Theorem: Under some assumptions the measurement operators are injective, ill-posed and Frechet differentible.
- Newton method gives nice results.

Figure 1: \(L^2 \)-error related to discretization in space (Helmholtz and Maxwell).

Factorization method

- The Factorization method is a fast imaging method for reconstructing the support of the perturbation.
- Let \(F \) be the far field operator, \(F_\#: = |\text{Re} F| + |\text{Im} F| \).
- Theorem: Under some assumptions the operator \(F_\# \) is strictly positive and
 \[z \in \text{ support of perturbation } \iff \sum_{j=1}^\infty \frac{|\langle \phi_\infty^z, \psi_j \rangle_{L^2(S)}|^2}{\lambda_j} < \infty, \]
 where \(\phi_\infty^z \) is the far field of fundamental solution and \(\{\lambda_j, \psi_j\}_{j=1}^\infty \) the eigen system of \(F_\# \).
- Numerical results clearly show the perturbed part:

Figure 2: Middle: Helmholtz problem, right: Maxwell problem.