Geometrische Reihe

$$S = 1 + q + q^2 + q^3 + ... + q^n + ...$$

Werden bei der geometrischen Reihe die einzelnen Summanden kleiner, so ergibt die unendliche Reihe einen endlichen Wert.

Verallgemeinerung

Werden die einzelnen Summanden (irgendwie) kleiner, soegibeire untwicker Werch

Gegenbeispiel: Die harmonische Reihe

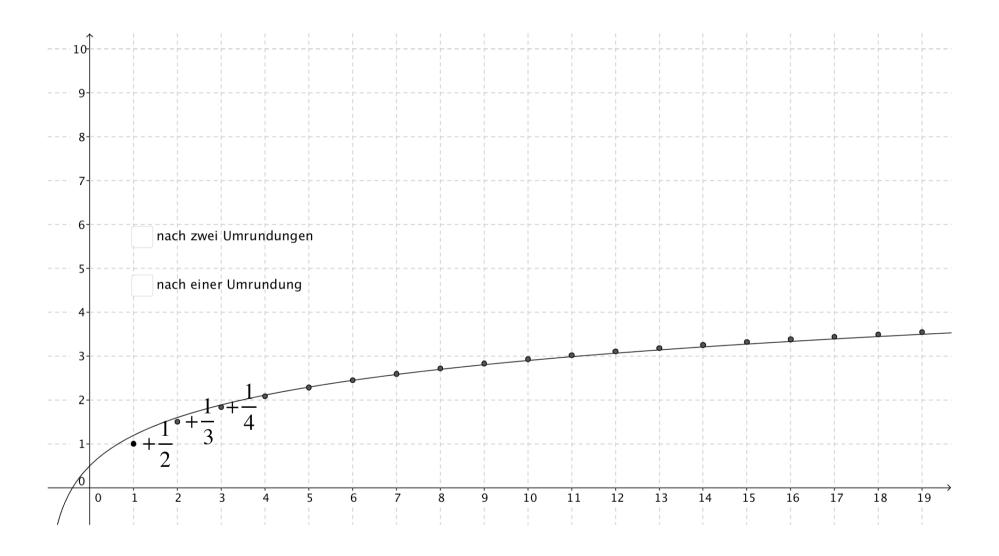
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots$$

Die harmonische Reihe hat keinen Grenzwert, sondern wächst über alle Grenzen.

Die Harmonische Reihe wächst sehr langsam.

Sie ist ein Gegenbeispiel für die Konvergenzvermutung, wenn Stellen bei numerischen Näherungen fest bleiben.

n	Sn
99.995	12,09009613
99.996	12,09010613
99.997	12,09011613
99.998	12,09012613
99.999	12,09013613
100.000	12,09014613
100.001	12,09015613
100.002	12,09016613
100.003	12,09017613
100.004	12,09018613
100.005	12,09019613



Die harmonische Reihe hat keinen Grenzwert, sondern wächst für $n \rightarrow \infty$ über alle Grenzen.

Der klassische Beweis:

$$S = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1}{17} + \dots$$

$$S > \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1$$

In der letzten Zeile kann man erkennen, dass man unendlich oft $^{1}/_{2}$ bekommt, so dass diese Summe unendlich groß wird.

Die ursprüngliche Summe S ist sogar noch größer, also muss diese auch unendlich groß werden.