Korrektoren gesucht für Mathematik-Olympiade 3. und 4. Klasse Sa, 21. Februar 11Uhr, MZH 5210

Zusätzliche Plena 10 Feb. 13:00-15:00 Uhr Didaktiklabor 13 teh 10-12 Uhr MZH 6240 anmelden bei dreid@math.uni-bremen.de

Logik

Wenneine Zahl durch 24 Keilbar ist, dann ist sie auch durch 4 und 6 Keilbar

A. Eine Zahl ist durch 24 teilbar
B. 11 11 4 11

A=>Bunde Kontraposition

7(BundC) => 7 A | 24 Earlbar

7B Oder 7C => 7A

Sie auch nicht durch 24 Eerlbar

Wenn eine Zahlnicht durch 4 oder) nicht durch 6 Leilbarist, dann ist Mintehrung Wenn eine Zahl durch 4 und durch 6 Leilbar ist, dann ist sie auch durch 24 Leilbar.

Die Aussage ist nicht immer wahr 12. durch 4 und 6 Eeilbar, abor nicht durch 24

48: durch 4 und 6 teilbar und auch durch 24

Verneiunng einer Implikation 7 (A => B) (=> A und 7B

AJBIC	A=>BundC	73 oder 1 C => 7 A
w t t w t w t w t w t w t w t w t w t w		+ + F W + + + + + + + + + +

$$\frac{K|1234567}{f_{K}|1234567}$$
 $\frac{12471220}{12471220}$

Beweis mit vollståndiger Indulction $f_{11}+f_{2}+f_{3}+\dots+f_{m}=f_{m+2}$

Indulctionsanfang

 $N=1$ linke S
 $\sum_{k=1}^{m}f_{k}=f_{m}=1$
 $\sum_{k=1}^{m}f_{k}=f_{m+2}-1$

Ind. vorauss. $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$
 $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$
 $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$

The several $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$
 $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$
 $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$
 $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$
 $\sum_{k=1}^{m}f_{k}=f_{m+3}-1$

$$3 \equiv 3 \mod 11$$

 $9 \equiv -2 \mod 11$
 $27 \equiv -6 \equiv 5 \mod 11$
 $81 \equiv 4 \mod 11$
 $243 \equiv 12 \equiv 1 \mod 11$
 $729 \equiv 3 \mod 11$
Periodische Wiederholung

$$10^{16} \equiv x \mod 97$$

 $10^{16} \equiv 3 \mod 97$
 $10^{16} \equiv 3^8 \mod 97$
 $3^8 = 3^4 \cdot 3^4 = 81 \cdot 81$
 $= (-16) \cdot (-16) \mod 97$
 $= 256 \mod 97$
 $= 200 + 56 \mod 97$
 $= 62 \mod 97$
 $= 62 \mod 97$