Proof. Suppose z_1 and z_2 are on the same side of z_3z_4 . The four points are concyclic if the counter clockwise angles of rotation from z_1z_3 to z_1z_4 and from z_2z_3 to z_2z_4 are equal. In this case, the ratio

$$\frac{z_4-z_1}{z_3-z_1}/\frac{z_4-z_2}{z_3-z_2}$$

of the complex numbers is real, (and indeed positive).

On the other hand, if z_1 , z_2 are on opposite sides of z_3z_4 , the two angles differ by π , and the cross ratio is a negative real number.

6.6 Construction of the regular 17-gon

6.6.1 Gauss' analysis

Suppose a regular 17-gon has center $0 \in C$ and one vertex represented by the complex number 1. Then the remaining 16 vertices are the roots of the equation

$$\frac{x^{17} - 1}{x - 1} = x^{16} + x^{15} + \dots + x + 1 = 0.$$

If ω is one of these 16 roots, then these 16 roots are precisely $\omega, \omega^2, \ldots, \omega^{15}, \omega^{16}$. (Note that $\omega^{17} = 1$.) Geometrically, if A_0, A_1 are two distinct vertices of a regular 17–gon, then successively marking vertices A_2, A_3, \ldots, A_{16} with

$$A_0A_1 = A_1A_2 = \ldots = A_{14}A_{15} = A_{15}A_{16},$$

we obtain all 17 vertices. If we write $\omega = \cos \theta + i \sin \theta$, then $\omega + \omega^{16} = 2 \cos \theta$. It follows that the regular 17-gon can be constructed if one can construct the number $\omega + \omega^{16}$. Gauss observed that the 16 complex numbers ω^k , k = 1, 2, ..., 16, can be separated into two "groups" of eight, each with a sum constructible using only ruler and compass. This is decisively the hardest step. But once this is done, two more applications of the same idea eventually isolate $\omega + \omega^{16}$ as a constructible number, thereby completing the task of construction. The key idea involves the very simple fact that if the coefficients a and b of a quadratic equation $x^2 - ax + b = 0$ are constructible, then so are its roots x_1 and x_2 . Note that $x_1 + x_2 = a$ and $x_1x_2 = b$.

Gauss observed that, modulo 17, the first 16 powers of 3 form a permutation of the numbers $1, 2, \ldots, 16$:

Let

$$y_1 = \omega + \omega^9 + \omega^{13} + \omega^{15} + \omega^{16} + \omega^8 + \omega^4 + \omega^2, y_2 = \omega^3 + \omega^{10} + \omega^5 + \omega^{11} + \omega^{14} + \omega^7 + \omega^{12} + \omega^6.$$

Note that

$$y_1 + y_2 = \omega + \omega^2 + \dots + \omega^{16} = -1.$$

Most crucial, however, is the fact that the product y_1y_2 does not depend on the choice of ω . We multiply these directly, but adopt a convenient bookkeeping below. Below each power ω^k , we enter a number j (from 1 to 8 meaning that ω^k can be obtained by multiplying the jth term of y_1 by an appropriate term of y_2 (unspecified in the table but easy to determine):

From this it is clear that

$$y_1y_2 = 4(\omega + \omega^2 + \dots + \omega^{16}) = -4.$$

It follows that y_1 and y_2 are the roots of the quadratic equation

$$y^2 + y - 4 = 0$$
.

and are constructible. We may take

$$y_1 = \frac{-1 + \sqrt{17}}{2}, \qquad y_2 = \frac{-1 - \sqrt{17}}{2}.$$

Now separate the terms of y_1 into two "groups" of four, namely,

$$z_1 = \omega + \omega^{13} + \omega^{16} + \omega^4, \qquad z_2 = \omega^9 + \omega^{15} + \omega^8 + \omega^2.$$

Clearly, $z_1 + z_2 = y_1$. Also,

$$z_1 z_2 = (\omega + \omega^{13} + \omega^{16} + \omega^4)(\omega^9 + \omega^{15} + \omega^8 + \omega^2) = \omega + \omega^2 + \dots + \omega^{16} = -1.$$

It follows that z_1 and z_2 are the roots of the quadratic equation

$$z^2 - v_1 z - 1 = 0.$$

and are constructible, since y_1 is constructible. Similarly, if we write

$$z_3 = \omega^3 + \omega^5 + \omega^{14} + \omega^{12}, \qquad z_4 = \omega^{10} + \omega^{11} + \omega^7 + \omega^6,$$

we find that $z_3 + z_4 = y_2$, and $z_3 z_4 = \omega + \omega^2 + \cdots + \omega^{16} = -1$, so that z_3 and z_4 are the roots of the quadratic equation

$$z^2 - y_2 z - 1 = 0$$

and are also constructible.

Finally, further separating the terms of z_1 into two pairs, by putting

$$t_1 = \omega + \omega^{16}, \qquad t_2 = \omega^{13} + \omega^4,$$

we obtain

$$t_1 + t_2 = z_1,$$

 $t_1 t_2 = (\omega + \omega^{16})(\omega^{13} + \omega^4) = \omega^{14} + \omega^5 + \omega^{12} + \omega^3 = z_3.$

It follows that t_1 and t_2 are the roots of the quadratic equation

$$t^2 - z_1 t + z_3 = 0,$$

and are constructible, since z_1 and z_3 are constructible.

6.6.2 Explicit construction of a regular 17-gon ⁴

To construct two vertices of the regular 17-gon inscribed in a given circle O(A).

- 1. On the radius OB perpendicular to OA, mark a point J such that $OJ = \frac{1}{4}OA$.
- 2. Mark a point E on the segment OA such that $\angle OJE = \frac{1}{4} \angle OJA$.
- 3. Mark a point F on the diameter through A such that O is between E and F and $\angle EJF = 45^{\circ}$.
- 4. With AF as diameter, construct a circle intersecting the radius OB at K.

⁴H.S.M.Coxeter, Introduction to Geometry, 2nd ed. p.27.

- 5. Mark the intersections of the circle E(K) with the diameter of O(A) through A. Label the one between O and A points P_4 , and the other and P_6 .
- 6. Construct the perpendicular through P_4 and P_6 to intersect the circle O(A) at A_4 and A_6 . ⁵

Then A_4 , A_6 are two vertices of a regular 17-gon inscribed in O(A). The polygon can be completed by successively laying off arcs equal to A_4A_6 , leading to A_8 , A_{10} , ... A_{16} , $A_1 = A$, A_3 , A_5 , ..., A_{15} , A_{17} , A_2 .

⁵Note that P_4 is not the midpoint of AF.