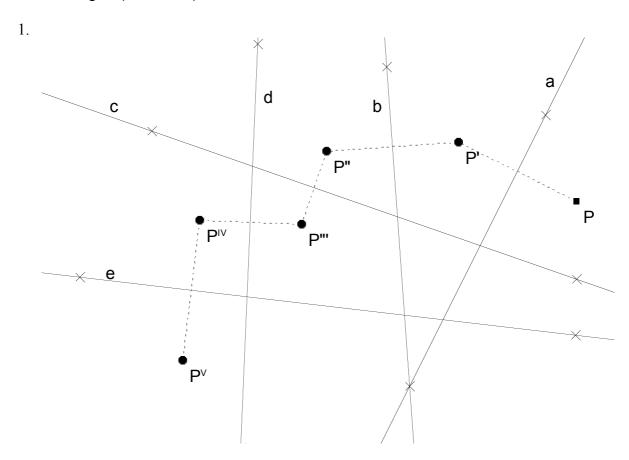


Sommersemester 2005 Reimund Albers

Einführung in die Mathematik II

8. Übung Verknüpfung von Spiegelungen, Drehungen und Verschiebungen

Präsenzübungen (für 6./7.6.)



Die Abbildung zeigt 5 Geraden a, b, c, d und e und die Spiegelung eines Punktes P an diesen in dieser Reihenfolge. Also $(S_e^{\bullet} \ S_d^{\bullet} \ S_c^{\bullet} \ S_b^{\bullet} \ S_a)(P) = P^v$.

Vereinfachen Sie diese Verknüpfung von 5 Geradenspiegelungen zu einer Verknüpfung von 3 Geradenspiegelungen. Machen Sie anschließend die Probe mit dem Punkt P.

Lösen Sie anschließend die Aufgabe auf eine andere Weise und machen Sie wieder die Probe für P.

Warum darf man nicht die beiden Geraden a und c als Paar "verdrehen"?

Hausübungen (Abgabe: Mi, 8.6.)

2. Gegeben sind zwei Drehungen $D_{Z_1,\alpha}$ und $D_{Z_2,\beta}$.

Dann ist die Verknüpfung der beiden Drehungen $D_{Z_1,\beta} \circ D_{Z_1,\alpha}$

- a. für $Z_1 = Z_2$ die Drehung $D_{Z_1,\alpha+\beta}$.
- b. für $Z_1 \neq Z_2$ und $\alpha + \beta < 360^\circ$ die Drehung $D_{\overline{Z},\alpha+\beta}$, wobei das neue Zentrum \overline{Z} bestimmt ist durch $\left| \sqrt[4]{Z} Z_1 Z_2 \right| = \frac{\alpha}{2}$ und $\left| \sqrt[4]{Z} Z_2 \overline{Z} \right| = \frac{\beta}{2}$.
- c. für $Z_1 \neq Z_2$ und $\alpha + \beta = 360^\circ$ die Verschiebung $V_{\overline{Z_1T}}$, wobei der Punkt T bestimmt ist durch $\left| \angle Z_2 Z_1 T \right| = 90^\circ \frac{\alpha}{2}$ und $\left| T Z_1 \right| = 2 \cdot \left| Z_1 Z_2 \right| \cdot \cos(90^\circ \frac{\alpha}{2})$.
- d. für $Z_1 \neq Z_2$ und $\alpha + \beta > 360^\circ$ die Drehung $D_{\overline{Z},\alpha+\beta-360^\circ}$, wobei das neue Zentrum \overline{Z} bestimmt ist durch $\left| \sqrt[4]{Z} Z_1 Z_2 \right| = \frac{\alpha}{2} + 180^\circ$ und $\left| \sqrt[4]{Z} Z_1 \overline{Z} \right| = \frac{\beta}{2} + 180^\circ$.

Aufgaben:

I. Zeichnen Sie für jeden der vier Fälle ein Beispiel mit den nachfolgend angegebenen Daten. Bestimmen Sie zeichnerisch jeweils das neue Drehzentrum, berechnen Sie den Drehwinkel und machen Sie die zeichnerische Probe für einen Punkt P. D.h. bilden Sie den Punkt P ab mit den beiden Einzeldrehungen und der von Ihnen gefundenen Ergebnisabbildung.

a.
$$Z_1 = Z_2$$
, $\alpha = 40^{\circ}$ und $\beta = 60^{\circ}$

$$Z_1 \neq Z_2$$

Zeichnen Sie jeweils Z₁ und Z₂ horizontal nebeneinander mit der Entfernung 6 cm

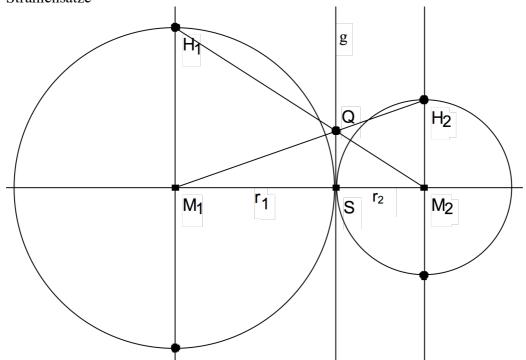
b.
$$\alpha = 40^{\circ}$$
 und $\beta = 60^{\circ}$

c.
$$\alpha = 120^{\circ}$$
 und $\beta = 240^{\circ}$ Bestimmen Sie die Verschiebung.

d.
$$\alpha = 200^{\circ}$$
 und $\beta = 240^{\circ}$

II. Beweisen Sie die Aussage des Falls b. allgemein.

3. Strahlensätze



Gegeben sind zwei Kreise K_1 um M_1 mit dem Radius r_1 und K_2 um M_2 mit dem Radius r_2 , die sich im Punkt S berühren. Zur Geraden M_1M_2 zeichnet man die Senkrechte durch M_1 , die K_1 in H_1 schneidet, die Senkrechte durch M_2 , die K_2 in H_2 schneidet und die Senkrechte durch K_1 0, die K_2 1 in K_2 2 in K_3 3 in K_3 4 in K_4 5 in K_4 5 in K_5 6 in K_5 6 in K_6 7 in K_7 8 in K_7 9 in K_7 9

Beweisen Sie, dass sich die Geraden H₁M₂, H₂M₁ und g in einem Punkt Q schneiden.

Hilfestellung: Sei $Q_1 = g \cap M_1H_2$. Berechnen Sie $|Q_1S|$ mit Strahlensätzen.

Sei $Q_2 = g \cap M_2H_1$. Berechnen Sie $|Q_2S|$ mit Strahlensätzen.

Aufgabe zum räumlichen Vorstellungsvermögen

Versuchen Sie, diese Aufgabe nach Möglichkeit nur in Ihrer Vorstellung zu lösen. Wenn das nicht geht oder Sie unsicher sind, bleibt immer noch die Möglichkeit, ein Modell aus Papier auszuschneiden und es auszuprobieren

4. Verdrehter Würfel. Beschriften Sie die übrigen Ecken.

