

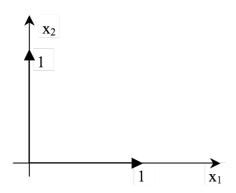
Spiegelung an einer Geraden, die mit der x_1 -Achse den Winkel α einschließt

Die **Spiegelung** an einer Geraden, die durch den Ursprung O verläuft und mit der x_1 -Achse den Winkel α einschließt, ist gegeben durch $\overrightarrow{x'} = A \cdot \overrightarrow{x}$, wobei die Abbildungsmatrix $A = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix}$ ist.

In der Euklidischen Geometrie hatten wir eine Verschiebung durch einen Verschiebungsvektor beschrieben, der wiederum durch einen Anfangs- und Endpunkt gegeben war. In der Koordinatenebene wird bei einer Verschiebung der Ursprung O nicht auf sich selbst abgebildet, sondern in einen Bildpunkt O' \neq O verschoben. Nach dem Satz über die Verschiebung des Ursprungs ist der Verschiebungsvektor \vec{d} . Da eine Verschiebung um den Nullvektor die Identität ergibt, muss die Abbildungsmatrix die Einheitsmatrix sein.

Die **Verschiebung** um den Vektor \vec{d} ist gegeben durch $\vec{x'} = A \cdot \vec{x} + \vec{d}$, wobei die Abbildungsmatrix die Einheitsmatrix $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ist.

Die Abbildungsgleichung der zentrischen Streckung



Auch diese lässt sich mit dem Satz über das Aufstellen der Abbildungsmatrix bestimmen, wenn das Streckzentrum der Ursprung ist. Denn dann wird der Ursprung auf sich selbst abgebildet.

Die Einheitsvektoren werden dann mit dem Faktor k gestreckt/gestaucht, also

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \overrightarrow{e_1}' = \begin{pmatrix} k \\ 0 \end{pmatrix} \text{ und } \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \overrightarrow{e_2}' = \begin{pmatrix} 0 \\ k \end{pmatrix}$$

Die **zentrische Streckung** mit dem Ursprung als Streckzentrum und dem Streckfaktor k, $k \in \mathbb{R} \setminus \{0\}$, ist gegeben durch $\overrightarrow{x'} = A \cdot \overrightarrow{x}$, wobei die Abbildungsmatrix $A = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ ist.

Verkettung von Abbildungen

Wir betrachten zwei Abbildungen, gegeben durch A und \vec{d} bzw. B und \vec{f} . Diese Abbildungen sollen hintereinander ausgeführt werden. Also $\vec{x'} = A \cdot \vec{x} + \vec{d}$ und $\vec{x''} = B \cdot \vec{x'} + \vec{f}$.

Dann lautet die Verkettung der Abbildungen $\vec{x}'' = B \cdot (A \cdot \vec{x} + \vec{d}) + \vec{f} = B \cdot A \cdot \vec{x} + B \cdot \vec{d} + \vec{f}$. Dabei werden die beiden Matrizen miteinander multipliziert. Das Matrizenprodukt ist folgendermaßen

$$\text{definiert: } B \cdot A = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \cdot \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\ b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22} \end{pmatrix}$$

Merkregel: Zeile mal Spalte

Bei der Multiplikation der Matrizen kommt es auf die Reihenfolge an, die Matrix der zweiten Abbildung steht links neben der Matrix der ersten Abbildung.

Übungsaufgabe: Die Verkettung einer Spiegelung mit sich selbst ist die Identität, da Spiegelungen involutorisch sind.

$$\begin{pmatrix}
\cos 2\alpha & \sin 2\alpha \\
\sin 2\alpha & -\cos 2\alpha
\end{pmatrix} \cdot \begin{pmatrix}
\cos 2\alpha & \sin 2\alpha \\
\sin 2\alpha & -\cos 2\alpha
\end{pmatrix}$$

$$= \begin{pmatrix}
\cos^2 2\alpha + \sin^2 2\alpha & \cos 2\alpha \cdot \sin 2\alpha - \sin 2\alpha \cdot \cos 2\alpha \\
\sin 2\alpha \cdot \cos 2\alpha - \cos 2\alpha \cdot \sin 2\alpha & \sin^2 2\alpha + \cos^2 2\alpha
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$

Verknüpfung von zwei Spiegelungen

Wenn die beiden Geraden, an denen gespiegelt werden soll, gegeben sind, wählt man das Achsenkreuz möglichst günstig.

a) Die Geraden verlaufen parallel

Die x_2 -Achse wird in die erste Spiegelachse gelegt. Die zweite Spiegelachse ist dann eine zur x_2 -Achse parallele Gerade, die die x_1 -Achse bei d schneidet.

Abbildungsgleichung für die erste Spiegelung:

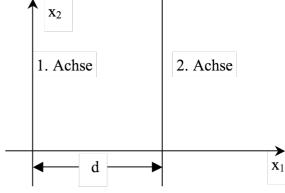
$$\vec{x}' = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \vec{x}$$

Herleitung der Abbildungsgleichung für die Spiegelung an der 2. Achse:

Für jeden Punkt P und seinen Bildpunkt P' gilt offensichtlich $p_2' = p_2$. Für die erste Koordinate gilt: $d - p_1 = p_1' - d$, was aufgelöst nach p_1' ergibt: $p_1' = 2d - p_1$. Beide

Koordinatengleichungen liefern für die Spiegelung an der 2. Achse die Abbildungsgleichung:

$$\vec{x}'' = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \vec{x}' + \begin{pmatrix} 2d \\ 0 \end{pmatrix}$$
. Die Verkettung beider Abbildungen liefert :



2. Achse

1. Achse

$$\vec{x}'' = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 2d \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 2d \\ 0 \end{pmatrix}$$
 was offensichtlich eine Verschiebung ist.

Der Verschiebungsvektor hat die Länge von 2d, ist von der ersten zur zweiten Spiegelachse orientiert und ist senkrecht zu beiden Achsen.

Damit ist durch diese Rechnung gezeigt:

Die Spiegelung an zwei parallelen Spiegelachsen, die den Abstand d haben, ist eine Verschiebung mit einem Verschiebungsvektor, der die Länge 2d hat, von der ersten zur zweiten Spiegelungsachse und senkrecht zu beiden Achsen verläuft.

b) Die Geraden schneiden einander

Der Ursprung wird in den Schnittpunkt der beiden Achsen gelegt und die x_1 -Achse auf die erste Spiegelachse. Die zweite Spiegelachse ist dann eine Ursprungsgerade, die mit der x_1 -Achse einen Winkel α einschließt.

Abbildungsgleichung für die erste Spiegelung:

$$\vec{x'} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \vec{x}$$

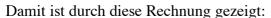
Abbildungsgleichung für die zweite Spiegelung:

$$\vec{x''} = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \vec{x'}$$

Die Verkettung beider Abbildungen wird durch das Matrizenprodukt

$$\begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix} \text{ berechnet. Die Ergebnismatrix ist gerade}$$

eine Drehmatrix (Vorzeichen beachten!) für den Drehwinkel 2α.



Die Spiegelung an zwei sich schneidende Spiegelachsen, die einen Winkel α einschließen, ist eine Drehung um den Schnittpunkt beider Geraden mit dem Drehwinkel 2α .

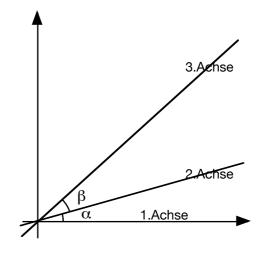
Verknüpfung von drei Spiegelungen

an drei Achsen, die durch einen gemeinsamen Punkt verlaufen.

Auch hier wählt man das Achsenkreuz günstig, indem man den Ursprung in den Schnittpunkt der drei Achsen legt und die x_1 -Achse auf die erste Spiegelachse. Dann schließt die zweite Spiegelachse mit der x_1 -Achse einen Winkel α ein und die dritte einen Winkel von α + β mit der x_1 -Achse.

Da alle drei Achsen durch den Ursprung laufen, kann man sofort die Abbildungsgleichungen für alle drei Spiegelungen hinschreiben:

$$\vec{x'} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \vec{x} = A \cdot \vec{x}$$



$$\overrightarrow{x''} = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \overrightarrow{x'} = B \cdot \overrightarrow{x'}$$

$$\overrightarrow{x'''} = \begin{pmatrix} \cos 2(\alpha + \beta) & \sin 2(\alpha + \beta) \\ \sin 2(\alpha + \beta) & -\cos 2(\alpha + \beta) \end{pmatrix} \overrightarrow{x''} = C \cdot \overrightarrow{x''}$$

Die Verkettung ist dann $\overrightarrow{x'''} = C \cdot B \cdot A \cdot \overrightarrow{x}$, es kommt also darauf an, das Produkt der 3 Matrizen zu

bilden.
$$B \cdot A = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix}$$
 (siehe oben), so dass gilt:

bilden.
$$B \cdot A = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix}$$
 (siehe oben), so dass gilt:
$$C \cdot (B \cdot A) = \begin{pmatrix} \cos 2(\alpha + \beta) & \sin 2(\alpha + \beta) \\ \sin 2(\alpha + \beta) & -\cos 2(\alpha + \beta) \end{pmatrix} \cdot \begin{pmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix}$$
. Dieses Produkt auszuführen ist

umfangreich, es wird in die einzelnen Komponenten der Ergebnismatrix D zerlegt.

$$d_{11} = \cos 2(\alpha + \beta) \cdot \cos 2\alpha + \sin 2(\alpha + \beta) \cdot \sin 2\alpha$$

Es ist hilfreich, das Ergebnis zu kennen, um bei der Umformung Ziel gerichtet vorzugehen. Die Verkettung der drei Spiegelungen ergibt eine Spiegelung an einer Achse, die mit der x₁-Achse einen Winkel von β einschließt. Im Ergebnis muss sich also ergeben:

$$D = C \cdot B \cdot A = \begin{pmatrix} \cos 2\beta & -\sin 2\beta \\ \sin 2\beta & \cos 2\beta \end{pmatrix}.$$
 Das signalisiert, dass man bei der Umformung die Summe von

α und β auflösen muss, nicht aber die doppelten Winkel.

$$d_{11} = \cos(2\alpha + 2\beta) \cdot \cos 2\alpha + \sin(2\alpha + 2\beta) \cdot \sin 2\alpha$$

$$= (\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta) \cdot \cos 2\alpha + (\sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta) \cdot \sin 2\alpha$$

$$=\cos 2\alpha \cos 2\beta \cos 2\alpha - \sin 2\alpha \sin 2\beta \cos 2\alpha + \sin 2\alpha \cos 2\beta \sin 2\alpha + \cos 2\alpha \sin 2\beta \sin 2\alpha$$

In der letzten Zeile heben sich der 2. und der 4. Summand auf, im 1. und 3. Summand kann man $\cos 2\beta$ ausklammern:

$$d_{11} = (\cos 2\alpha \cos 2\alpha + \sin 2\alpha \sin 2\alpha) \cdot \cos 2\beta$$
$$= 1 \qquad \cdot \cos 2\beta$$
$$= \cos 2\beta$$

Die Rechnungen für die verbleibenden Komponenten d_{12} , d_{21} , d_{22} verlaufen ganz analog und sind eine hervorragende Übung für das Rechnen mit Winkelfunktionen. Damit ist das Ergebnis gezeigt.

Die Spiegelung an drei Geraden g₁, g₂ und g₃, die sich in einem Punkt schneiden und Winkel der Größe $\alpha = |\langle g_1, g_2| \text{ bzw. } \beta = |\langle g_2, g_3| \text{ einschließen, lassen sich zu einer} \rangle$ Geradenspiegelung an einer Geraden \overline{g} zusammenfassen. Dabei ist der Winkel zwischen g_1 und $\overline{g} \beta$.