

5. Übung Teilbarkeitsregeln, Teilbarkeit

Präsenzübungen

- 1. Pascalsches Dreieck
 - a. Addiert man im Pascalschen Dreieck alle Zahlen einer Zeile, so ist das Ergebnis immer eine Zweierpotenz 2^n , n \mathbb{N} . Wie ergibt sich n? Begründen Sie diese Gesetzmäßigkeit.
 - b. Bei der Entwicklung von (a + b)ⁿ kommt der Teilterm a⁷b⁵ vor. Welche Zahl steht davor?
- 2. Addiert man zu einer dreistelligen Zahl das Doppelte der Quersumme und das Dreifache der Einerziffer, so ist das Ergebnis immer durch 6 teilbar. Begründen Sie das.

Entwickeln Sie eine ähnliche Aufgabe.

Hausübungen (Abgabe: Do, 25.11.04)

- **3**. (Wiederholung zur Logik)
 - "Wo man singt, das lass dich nieder, böse Menschen kennen keine Lieder" Wir bilden für dieses Sprichwort die beiden (vereinfachenden) Teilaussagen A:"Die Menschen singen" und B:"Die Menschen sind gut". Analysieren Sie dann die logische Struktur. Gilt zwischen A und B eine Implikation oder eine Äquivalenz?
- 4. Bildet man im Pascalschen Dreieck die alternierende Summe, also a_0 a_1 + a_2 a_3 +- ..., wobei die a_i die Zahlen aus einer Zeile sind, so ergibt sich 0. Begründen Sie das.
- 5. Entwickeln Sie für 6 eine Teilbarkeitsregel über die gewichtete Quersumme. Testen Sie mit dieser Regel, ob n = 158234 durch 6 teilbar ist. Bestimmen Sie nun (möglichst bequem) den Rest von n beim Teilen durch 6.
- 6. Bildet man zu einer Zahl die Quersumme, dann von dieser Quersumme die Quersumme u.s.w. bis man eine einstellige Zahl erreicht hat, so ist diese letzte Zahl der 9er-Rest der ursprünglichen Zahl. Begründen Sie das.
- 7. Beweisen Sie die Transitivität der Teilerrelation: $a \mid b \square \text{nd} \square b \mid c$ $a \mid c$