Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem

von Reimund Albers, Bremen

Im Baseler Problem geht es um die Summe der reziproken Quadrate, also

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots$$
, und ein exaktes Ergebnis für diese Reihe. Natürlich kann man

numerisch eine Näherungszahl ermitteln und auch mit einfachen Mitteln zeigen, dass die unendliche Reihe beschränkt ist und somit einen Grenzwert besitzen muss. Es war jedoch lange unklar, welches der exakte Wert ist. Hier haben sich vor allem Baseler Mathematiker ca. einhundert Jahre daran versucht, bis 1737 der (damals) Baseler

Leonard Euler die Lösung $\frac{\pi^2}{6}$ veröffentlichte.

Bis heute gibt es viele verschiedene Herleitungen dieses Ergebnisses¹. Alle fußen auf Überlegungen, die (zumindest) Grundkenntnisse in Analysis erfordern. Das gilt auch für den originalen Beweis von Euler.

Ich möchte hier eine Herleitung vorstellen, die ganz wesentlich auf geometrischen Überlegungen beruht. Die Idee dazu habe ich von dem Film "Why is pi here? And why is it squared?" des Internetautors "3Blue1Brown", der allerdings sehr stark physikalisch argumentiert und gerade die geometrischen Überlegungen nicht wirklich ausarbeitet. Ich möchte mit dieser Darstellung die für den Gedankengang wesentlichen, geometrischen Betrachtungen herausstellen.

Beginnen wir mit der Definition einer abstrakten, geometrischen Größe, die physikalisch motiviert ist.

DEFINITION Die Intensität eines Punktes (in Bezug auf einen anderen Punkt)

Die Intensität $I_B(A)$ eines Punktes A in Bezug auf den Punkt B ist $I_B(A) = \frac{1}{|AB|^2}$.

Man erkennt hier das $\frac{1}{r^2}$ Gesetz für Energiestrahlung (Licht, Wärmestrahlung), das bei der Begriffsbildung Pate gestanden hat.

Ein für die Herleitung wesentliches Gesetz ist der sogenannte "inverse Pythagoras".

Gegeben ist ein rechtwinkliges Dreieck ABC mit rechtem Winkel bei C. Es sei F der Fußpunkt der

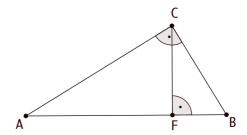
Höhe von C auf die Seite \overline{AB} .

Dann gilt $I_c(F) = I_c(A) + I_c(B)$.

Reweis

Es seien wie üblich |AC| = b, |BC| = a, |FC| = h und

AB = c. Dann gilt für den Flächeninhalt des



 $^{^1}$ Eine Veröffentlichung von 14 Herleitungen dazu findet man unter http://secamlocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf

Dreiecks $\frac{1}{2}ab = \frac{1}{2}hc$, also $a^2b^2 = h^2c^2 = h^2(a^2 + b^2)$. Die Division durch $a^2b^2h^2$ führt auf

 $\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2}$. Unter Berücksichtigung der eingeführten Strecken *a*, *b* und *h* und der

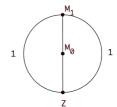
Definition der Intensität erhält man die behauptete Beziehung $I_c(F) = I_c(A) + I_c(B)$. \Box Daher gilt folgendes **Verteilungsgesetz**:

Im rechtwinkligen Dreieck kann man die Intensität des Höhenfußpunktes verteilen auf die beiden Endpunkte der Hypotenuse (alle Intensitäten bezogen auf den Scheitelpunkt des rechten Winkels).

Genau das werden wir nun sehr häufig tun.

Wir beginnen mit einem Kreis um den Mittelpunkt M_0 , der einen <u>Umfang</u> von 2 hat. Sei Z ein Punkt auf dem Kreis und ihm genau gegenüber der Punkt M_1 .

Alle nun angegebenen Intensitäten beziehen sich auf den Punkt Z, so dass wir im Folgenden nur I(...) für die Intensität schreiben statt $I_z(...)$.



Wegen des Umfanges 2 gilt
$$|M_1Z| = \frac{2}{\pi}$$
 und daher $I(M_1) = \frac{1}{|M_1Z|^2} = \frac{\pi^2}{4}$.

 $\label{eq:main_model} Im \ ersten \ Schritt \ zeichnen \ wir \ zu \ dem \ Kreis \ um \ M_0 \\ einen \ Kreis \ k_1 \ um \ M_1 \ mit \ dem \ Radius \ \left|ZM_{_1}\right|. \ Zur$

Geraden ZM_1 zeichnen wir eine Senkrechte durch M_1 , die den Kreis k_1 in $P_{1,1}$ und $P_{1,2}$ schneidet. Nach dem Satz des Thales ist das Dreieck $ZP_{1,1}P_{1,2}$ rechtwinklig in Z. Damit erfüllen die Punkte M_1 , $P_{1,1}$ und $P_{1,2}$ die Voraussetzungen für das Verteilungsgesetz und es gilt:

$$P_{1,2}$$
 M_0
 $P_{1,1}$
 Z

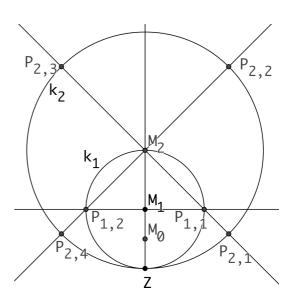
$$I(M_1) = I(P_{1,1}) + I(P_{1,2}) = \frac{\pi^2}{4}$$

Da der Kreis k_1 den doppelten Radius gegenüber dem Kreis um M_0 hat, ist sein Umfang 4 mit den Bogenlängen $\left|\widehat{ZP}_{1,1}\right| = 1$, $\left|\widehat{P_{1,1}P_{1,2}}\right| = 2$ und $\left|\widehat{P_{1,2}Z}\right| = 1$.

 $\begin{array}{l} \text{Im n\"{a}chsten Schritt konstruieren wir } M_2 \text{ als} \\ \text{Schnitt der Geraden } ZM_1 \text{ mit } k_1 \text{ und zeichnen} \\ \text{einen Kreis } k_2 \text{ um } M_2 \text{ mit dem Radius } \left| ZM_2 \right|. \end{array}$

Die Gerade ZM_2 teilt die Ebene in zwei Hälften. Diejenige, in der $P_{1,1}$ liegt nennen wir die rechte Halbebene, diejenige, in der $P_{1,2}$ liegt nennen wir die linke.

Die Gerade $P_{1,1}M_2$ schneidet den Kreis k_2 in zwei Punkten. Den in der rechten Halbebene nennen wir $P_{2,1}$, den in der linken Halbebene $P_{2,3}$. Nach dem Satz des Thales ist das Dreieck $ZP_{2,1}P_{2,3}$ rechtwinklig in Z. $P_{1,1}$ ist in diesem Dreieck der Fußpunkt der Höhe von Z auf die



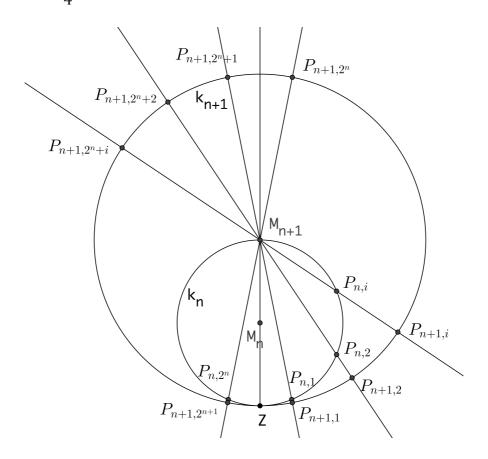
Hypotenuse $P_{2,1}P_{2,3}$. (Satz des Thales über dem Durchmesser ZM_2 des Kreises k_1 .) Damit erfüllen $P_{1,1}$, $P_{2,1}$ und $P_{2,3}$ die Voraussetzung für das Verteilungsgesetz und es gilt $I(P_{1,1}) = I(P_{2,1}) + I(P_{2,3})$. Analog schneidet $P_{1,2}M_2$ den Kreis k_2 in $P_{2,2}$ und $P_{2,4}$ und es gilt $I(P_{1,2}) = I(P_{2,2}) + I(P_{2,4})$. Addieren wir die beiden Gleichungen für die Intensitäten, so

erhalten wir
$$I(P_{1,1}) + I(P_{1,2}) = I(P_{2,1}) + I(P_{2,3}) + I(P_{2,2}) + I(P_{2,4}) = \frac{\pi^2}{4}$$
.

Da der Kreis k_2 den doppelten Radius gegenüber dem Kreis k_1 hat, ist sein Umfang 8. Da die Geraden $P_{2,1}P_{2,3}$ und $P_{2,2}P_{2,4}$ senkrecht zueinander sind, teilen sie den Kreis k_2 in vier gleiche Teile mit jeweils der Länge 2. Aus Symmetriegründen halbiert Z den Bogen $\widehat{P_{2,4}P_{3,4}}$.

Somit gelten
$$|\widehat{ZP_{2,1}}| = 1$$
, $|\widehat{P_{2,1}P_{2,2}}| = 2$, $|\widehat{P_{2,2}P_{2,3}}| = 2$, $|\widehat{P_{2,3}P_{2,4}}| = 2$ und $|\widehat{P_{2,4}Z}| = 1$.

Diese Konstruktionen setzen wir schrittweise fort. Der Schritt von n auf n+1 ist eine Konstruktion der Punkte auf dem Kreis k_{n+1} aus den Punkten auf dem Kreis k_n . Gegeben ist der Kreis k_n um M_n mit dem Radius $\left| ZM_n \right|$ und den Punkten $P_{n,1}$ bis $P_{n,2^n}$. Der Kreis k_n hat den Umfang 2^{n+1} und die Punkte $P_{n,i}$, $i=1,2,...,2^n$ liegen äquidistant auf k_n , d.h. der Bogen von einem Punkt zum nächsten hat die Länge 2. Aus Symmetriegründen halbiert Z den Bogen $\widehat{P_{n,2^n}P_{n,1}}$, so dass $\left| \widehat{ZP_{n,1}} \right| = 1$ ist. Die Summe der Intensitäten über alle Punkte auf k_n ist $\frac{\pi^2}{4}$.



Mit dieser Figur erfolgt nun die Konstruktion des nächsten Kreises k_{n+1} und der darauf liegenden Punkte.

Der Strahl ZM $_n$ schneidet den Kreis k_n in M_{n+1} . k_{n+1} ist der Kreis um M_{n+1} mit dem Radius $|ZM_{n+1}|$. k_n und k_{n+1} berühren sich somit in Z. Die Geraden $M_{n+1}P_{n,i}$, $i=1,2,...,2^n$ schneiden den Kreis k_{n+1} jeweils in zwei Punkten. Da M_{n+1} ein Punkt der oben eingeführten Achse ZM₂ ist, liegt einer der Schnittpunkte in der rechten Halbebene – er bekommt die Kennung $P_{n+1,i}$ – und der andere in der linken Halbebene, $P_{n+1,2^n+i}$. Für die Punkte

 $P_{n+1,i}$, $i=1,2,...,2^{n+1}$ gelten nun folgende Eigenschaften:

1. Die $P_{n+1,i}$ liegen äquidistant.

Auf dem Kreis k_n liegen die Punkte $P_{n,1}$ bis $P_{n,2^{n-1}}$ in der rechten Halbebene, die Punkte $P_{n,2^{n-1}+1}$ bis $P_{n,2^n}$ in der linken. Da die Punkte $P_{n,i}$ auf dem Kreis k_n äquidistant liegen, sind

 $\widehat{P_{n,2^{n-1}+1}}$

 $P_{n.2^n}$

 $P_{n+1,1}$

 $P_{n,2}$

 $P_{n+1,2}$

sind dann auch die Bögen, die zwischen den Geraden $M_{n+1}P_{n,i}$ auf der Kreislinie von k_{n+1} liegen, gleich

Als einziger Sonderfall muss der Bogen betrachtet werden, der zwischen den Geraden $M_{n+1}P_{n+1,2^{n-1}}$

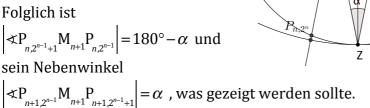
und
$$M_{n+1}P_{n+1,2^{n-1}+1}$$
 liegt.

Nennen wir die Größe der Peripheriewinkel $\left| \langle P_{n,i} M_{n+1} P_{n,i+1} \right| = \alpha$, so ist

ebenfalls
$$| \langle P_{n,2^{n-1}} Z P_{n,2^{n-1}+1} | = \alpha$$
.

Folglich ist

$$\left| \propto P_{n,2^{n-1}+1} M_{n+1} P_{n,2^{n-1}} \right| = 180^{\circ} - \alpha$$
 und sein Nebenwinkel



2. Die Länge der Bogenabschnitte auf k_{n+1} ist 2

Auf dem Kreis k_{n+1} liegen 2^{n+1} äquidistante Punkte. Die Kreislinie hat die doppelte Länge der Kreislinie von k_n , also $2 \cdot 2^{n+1}$. Folglich hat jeder Bogen zwischen zwei aufeinander folgenden Punkten von k_{n+1} die Länge 2.

Aus Symmetriegründen halbiert Z den Bogen $\widehat{P_{n+1,2^{n+1}}P_{n+1,1}}$, so dass $\widehat{ZP_{n+1,1}} = 1$.

3. Die Summe der Intensitäten über alle Punkte auf k_{n+1} ist $\frac{\pi^2}{4}$.

Die Gerade durch $P_{n+1,i}$ und $P_{n+1,2^{n}+i}$ verläuft durch den Mittelpunkt M_{n+1} des Kreises k_{n+1} . Folglich ist das Dreieck $ZP_{n+1,i}P_{n+1,2^{n}+i}$ rechtwinklig in Z. Da die Gerade ZM_{n+1} durch M_n verläuft und $P_{n,i}$ auf dem Kreis k_n liegt, ist nach dem Satz von Thales $\left| \ll M_{n+1}P_{n,i}Z \right| = 90^{\circ}$, also $P_{n,i}$ Fußpunkt der Höhe von Z auf $\overline{P_{n+1,i}P_{n+1,2^{n}+i}}$. Damit erfüllen $P_{n+1,i}$, $P_{n+1,2^{n}+i}$ und $P_{n,i}$ die Bedingungen für das Verteilungsgesetz und es gilt $I(P_{n,i}) = I(P_{n+1,i}) + I(P_{n+1,2^{n}+i})$. Die Summe über alle i von 1 bis 2^n liefert $\sum_{i=1}^{2^n} I(P_{n,i}) = \frac{\pi^2}{4} = \sum_{i=1}^{2^n} \left(I(P_{n+1,i}) + I(P_{n+1,2^{n}+i}) \right) = \sum_{i=1}^{2^{n+1}} I(P_{n+1,i})$.

Machen wir nun den Grenzübergang $n \to \infty$, so entartet der Kreis k_n zur Geraden durch Z senkrecht zu ZM₀. Die Punkte indizieren wir nur noch einfach. Die Entfernung von Z zum ersten Punkt auf den Kreisen war immer 1, also liegt der erste Punkt P₁ bei 1. Seine Intensität zu Z ist folglich $I(P_1) = \frac{1}{1^2}$. Alle weiteren Punkte liegen, wie schon auf den Kreisen, äquidistant mit dem Abstand 2.

Damit liegt der nächste Punkt auf der Geraden bei 3 und seine Intensität ist $I(P_2) = \frac{1}{3^2}$. Die Summe aller Intensitäten lässt sich somit explizit hinschreiben.

$$I(P_1)+I(P_2)+I(P_3)+I(P_4)+I(P_5)+...=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+...$$
 Da die Summe aller

Intensitäten bei jedem Schritt konstant $\frac{\pi^2}{4}$ geblieben ist, gilt dieses auch hier.

Beschränken wir uns nur auf die Punkte der rechten Halbebene, so gilt aus

Symmetriegründen
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots = \frac{\pi^2}{8}$$
.

Ziel unserer Untersuchung ist die Summe $S = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \dots$

Multipliziert man die Summe mit $\frac{1}{4}$, erhält man $S_g = \frac{1}{4}S = \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \frac{1}{8^2} + \frac{1}{10^2} + \dots$, also den Anteil mit geradzahligen Nennern. Die von uns berechnete Intensitätssumme ist gerade der Anteil mit den ungeradzahligen Nennern, $S_u = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots = \frac{\pi^2}{8}$.

Dann gilt
$$S = S_g + S_u = \frac{1}{4}S + \frac{\pi^2}{8}$$
, also $\frac{3}{4}S = \frac{\pi^2}{8} \implies S = \frac{\pi^2}{6}$, womit wir

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \dots = \frac{\pi^2}{6}$$
 gezeigt haben.