Current Research Projects

Developing epistemic action models that connect different theoretical perspectives such as the cognitive, the social, the semiotic in different mathematical learning areas (for example geometry, calculus, algebra, modeling). Aim is to establish a background theory for the design of suitable learning environments in mathematics and for understanding teaching-learning-processes better. This also refers to the interconnection of interest in mathematics and epis-temic processes. The idea is to reconstruct conditions that foster and hinder knowledge construction in mathematics. In this respect gestures play a crucial role. Newly, the role and value of “smart objects” come into play. This leads to a multimodal view on knowledge construction, that includes the body, inscriptions and technology.

Included is the empirically based investigation of the epistemology of the networking of theo-ries in mathematics education, which is a methodological research interest embedded in a European research group.

In addition, design based research is a methodological approach in research, which becomes more and more important for higher education in pre-service teacher training at the university level as it meets our interest in research-based learning. Design research is also important for task development (e.g. with digital media), in the interdisciplinary research group FaBiT and for the development of conceptions for inclusive instruction in mathematics and our interdisciplinary project MAL, learning Algebra in a multimodal way. Design research is also done at university level in pre-service teacher education which is addressed by the project Spotlights-Lehre. This project aims at interlocking education in mathematical content knowledge and pedagogical content knowledge, at least as an example experience for the students in order make them aware of the relevance of their academic education for their future professional work as a mathematics teacher.

Third-party Funding since 2006

2006: Workshop for the international research group “building networking theories”, Bremen University
2007 - 2008: Curriculum development for Grade 11 and 12, Bremen Government
2008 - 2011:
Effective knowledge construction in interest-dense situations, together with Tommy Dreyfus (Tel Aviv University) and Ivy Kidron (Jerusalem College of Technology), funded by the German-Israeli-Foundation
2009, 2011: Workshop for the international research group “building networking theories”, Nolting-Hauff-Stiftung, Sparkasse Bremen
2010 - 2011:
Offensive Bildungsstandards, advancement for teachers at primary schools, funded by the State of Bremen (cooperation with Prof. Bönig, FB 12)
2010 - 2012:
Establishing a center for mathematics education, called matelier, funded by the state of Bremen and Bremen University
2010 - 2013: The role of signs in constructing mathematical knowledge, funded by Bremen University
2011 - 2013: Research based learning in mathematics, together with Bernd Stratmann and Marc Keßeböhmer (Bremen University), funded by the University of Bremen
2011 - 2014: Offensive Bildungsstandards, advancement for teachers at secondary schools, funded by the State of Bremen
2014 / 2015: Moffunt: An in-service program to adavance out-of-field mathematics teachers (about 10 TEuro, Cooperation with Hans-Dieter von Zelewski)
2014 - 2017: EdU-MINT: funded by the Telecom foundation (Entwicklungsverbund zur Lehrerbildung Diagnose und Förderung heterogener Lerngruppen, with the Universities Dortmund, Essen, Oldenburg), in Bremen two projects are supported for together 180 TEuro.
2014 - 2017: FaBiT: Creative Unit “Fachbezogene Bildungsprozesse in Transformation" (interdisciplinary research group together with 6 subject didactics), ca. 720 TEuro.
2016 - 2019: MAL: Multimodal Algebra Lernen; interdisziplinary project of the AG Mathematikdidaktik (Bikner-Ahsbahs, David Reid) with the digital media lab (Rainer Malaka), Westermann Publisher, the Company xCon and the ifib. Aim of the project is de-velopment of “smart objects” and researcher of the role the play in supporting learning Algebra in a multimodel way. Funded by the BMBF, for the University of Bremen about 720 TEuro
2016 - 2019: "Spotlight-Y: Integrating Mathematics and Mathematics education at the university level." (Co-application with Marc Keßeböhmer and Ingolf Schäfer)
2016 - 2019: Communicator of Spotlights: partial project T4 of the “Qualitätsoffensive Lehrerbildung” of the University of Bremen. This project has the aim to intertwine instruction of content knowledge and pedagogical content knowledge in the teaching and learning at the university level. First approaches will be developed in two study areas, in mathematics (Spotlight-Y) and English Speaking Cultures (Varieties).


Current PHD-projects

Julia Cramer: The role of Argumentation in processes of constructing mathematical knowledge (empirical study)

Daniela Schansker: Role of gestures in understanding place values by the help of digital media (DeciPlace: empirical study)

Mareike Best: The concept of function in the transistion to higher secondary school level (project in the Creative Unit: FaBiT)

Maike Braukmüller: Connecting factors for integration a digital learning system for algebra with smart algebra tiles in textbooks (within the MAL project)

Current PostDoc-projects

Thomas Janßen: Developing “smart objects” for the learning of Algebra in the MAL Project (Multimodal Algebra Lernen)


Completed Projects

PHD-Theses

Reviewer / Supervisor

(2016) Thomas Janßen: Entwicklung algebraichen Struktusinns im Klassenunterrict [Developing structure sense in the classroom] (design research)

(2015) Christina Krause: The mathematics in our hands. How gestures contribute to constructing mathematical knowledge.

(2014) Thomas Bardy: Zur Herstellung von Geltung mathematischen Wissens im Mathematikunterricht [constituting validity of mathematical knowledge in mathematics instruction]


Co-Reviewer

(2017) Michael Liebendörfer: Motivationsentwicklung im Mathematikstudium (Development of motivation in the studies of mathematics)

(2014) Roxana Grigoras: On Assumptions and Hypotheses in Mathematising by Tasks without Numbers.

(2011) Gudrun Stefan: Motivation und Interesse im Mathematikunterricht der Grundschule. Genese – Indizierung – Förderung (Philosophischen Fakultät der Universität Passau) [Motivation and interest in primary school. Genesis – indication – support]

(2009) Andreas Busse: Umgang Jugendlicher mit dem Sachkontext realitätsbezogener Aufgaben (Universität Hamburg, Fachbereich Erziehungswissenschaften) [How adolescents cope with the content context of realistic tasks]


Master Theses

Currently: Giacomo Zawalski and Sebastian Prüfer are supervised.

2018

Silja Burghart: Ein Komplementäres Scaffolding-Design: Erweiterung des dezimalen Stellenwertsystems von den natürlichen Zahlen zu den Dezimalbrüchen mit einem Design-Based-Research-Ansatz

2017

Maik Suhrhoff: Welche Praxeologien verwenden Lehrer*innen und Lehrer beim Unterrichten des Funktionsbegriffs in der Sekundarstufe I der Oberschule (Which praxeologies do teachers use in their lessens on functions at lower secondary level of the “Oberschule”)

Steffen Lühring, Janina Neukirch, Valentin Wolf: Flexibilität im Umgang mit Funktionen (flexibility in dealing with functions) (Diese Masterarbeit wurde mit dem Preis für die beste Designstudie in der Lehrerbildung an der Universität Bremen 2017 sowie mit dem Preis für die beste ausgezeichnete Masterarbeit 2017 im Master of Eduction in der Didaktik der Mathematik an der Universität Bremen ausgezeichnet.)

Charis Peter:

2015

Dirk Thode: Funktionale Zusammenhänge grafisch darstellen: Eine Fallstudien mit Lernenden der Qualifikationsphase [Representing functional ralationships graphically: A case study with students from grade 12]

Mirco Motzkus: Eine geometrische Einführung der lokalen Änderungsrate [A geometrical introduction of the rate of change]

Daniel Chwatinski: Erwartungen und Anforderungen einer einführenden Mathemaikdidaktik-Veranstaltung aus Sicht der Studierenden: Eine empirische Erkundung [Expectations and affordances of a lecture on mathematics education from the students‘ view: An empirical exploration] (co-review)

2014

Daniela Rott: Einfluss von Alltagserfahrungen von Schülerinnen und Schülern beim Problem der abgebrochenen Partie [Students' everyday experience and the problem of points] (co-review)

Oliver Hansen: Das Modell der Relationsgraphen und seine Anwendung als Diagnosemittel [The model of relational graphs and its application as a diagnostic tool]

2013

Sina Vogt: Emergente Aufgaben im Mathematikuntericht: Merkmale und Entstehungsbedingungen [Emgergent Tasks: Features and conditons for their emergence]

Daniela Behrens: Mathematische Erkenntnis durch Gesten erlangen und teilen [Achieving and sharing mathematical knowledge through gesturing]

2012

Ron Dygas: Typische Situationsverhaftungen in einer Fördersituation zu Dezimalbrüchen [Types of situation bonds in a support situation of decimal fractions]

Alena Brandt und Martina Penner: Der epistemologisch mathematische Blick in Aktion [the epistemological and mathematical view in action]

Franziska Janning: Bildungsbiographische Brüche vor dem Hintergrund erfolgreicher Bildungsbiographien im Fach Mathematik [fractions in biographical formation on the background of successful biographical formation in the subject of mathematics]

Sylvia Reiners, Algebraischer Strukursinn [Algebraic structure sense].

2011

Jakob Priwitzer: Epistemische Basishandlungen in Modellen zur mathematischen Wissenskonstruktion [Basic epistemic actions in models for the construction of mathematical knowledge]

Tim Haga: Schülerseminar zur tropischen Mathematik: Fördert Forschendes Lernen Interesse? [A student seminar on tropical mathematics – does research based learning foster interest?]

Daniela Hickel: Balance zwischen psychologischen Grundbedürfnissen und Vermeidungsverhalten in einer Fördersequenz zu Dezimalbrüchen [Balance between psychological needs and avoidance in a coaching sequence]

Katharina Witte & Sacha Möller: Wissenskonstruktion in einer Fördersituation zu Dezimalbrüchen [Construction of knowledge in a coaching situation on decimal fractions]

Sina Schierloh: Erkundung der geometrischen Anlage von Kunstwerken M.C. Eschers: Ein Weg zur Förderung des räumlichen Vorstellungsvermögens?“ [Exploring the geometrical approach of the artwork of M.C. Escher: a pathway to foster spatial sense]

Jenny Cramer: Entstehung mathematischer Weltbilder und Motivationslagen – biographisch betrachtet [Development of epistemological beliefs and motivation – regarded from a biographical view]

2010

Syrina Laubvogel: Wenn Vorstellungen Prozesse der Wissenskonstruktion stören – Design, Analyse und Evaluation einer Fördersequenz [When imagination disturbs knowledge construction – design, analysis and evaluation of a coaching sequence]

Thomas Janßen: Epistemische Aufbauhandlungen und die Konstruktion mathematischen Wissens. Theorieweiterentwicklung durch Vergleich zweier Modelle [Epistemic actions of the building-type and the construction of mathematical knowledge]

Mathias Lihnig: Kugelprojektion - Eine kartographische Anwendung in der Analytischen Geometrie [Globe projection – a cartographical application of Analytical Geometrie]

Christina Radke: Bedingungen, die Lernen in mathematischen Fördersituationen unterstützen oder behindern [Conditions that foster learning in coaching situations]

Jan Käfer: Mit GPS zum Ableitungsbegriff [With GPS towards the derivative]


Staatsexamensarbeiten

2007

Carmen Schmeyer: Fibonacci-Folgen, Entwicklung von Aufgaben zum Entdecken und Problemlösen [Fibonacci sequences – development of tasks for discovery and problem solving]

2008

Julia Cramer: Wissenskonstruktion am Beispiel unendlicher Mengen: Eine empirische Analyse [Knowledge construction on the example of infinite sets: An empirical study]

Inga Niehsner: Mathematische Wissenskonstruktion am Beispiel einer Lernsituation zur Verbindung von arithmetischen und geometrischen Sachverhalten. [Constructing mathematical knowledge on the example of a learning situation connecting arithmetic and geometrical parts]

2009

Alexandra Winkler: Förderung schwacher Schüler in der Algebra [Supporting students in Algebra]

Lisa Lütkens: Rechenschwäche und Kompetenzerfahrung – ein Widerspruch? [Dyscalculia and experience of competence – a contradiction?]

Daniela Geils: Beziehungen zu mathematischen Gegenständen am Beispiel der Bruchrechnung [Relations to mathematical objects on the example of fractions]

Claudia Drees: Rekonstruktion des Handlungspotenzials einer Schülerin mit Schwierigkeiten im Bereich Längen-, Flächen- und Volumenberechnung [Reconstructing the potential to act of a student with difficulties in calculating length, area and volume]

Sylvia Döhren: Das Vermeidungsverhalten „schwacher“ Schüler in Mathematik am Beispiel einer Fördersitzung [Avoiding behavior of low achieving students in mathematics on the example of a lesson of support]

Mona Dieckmann: Wiedererkennen als Basishandlung mathematischer Wissenskonstruktion [Recognizing as basic action for the construction of mathematical knowledge]


Bachelor Theses

Bianca Blume: Einführung in die negativen Zahlen - ein Schulbuchvergleich [Introduction of negative numbers – a book comparison]

Yvonne Hinrichs: Diagnostische Beschreibung des Lernstandes rechenschwacher Kinder der Klasse 4. [Diagnostic description of the learning state of children with dyscalculia at grade 4]

Jana Holstein: Der Grebe-Punkt [Symmedian Point]

Sarah Schultze: Die Formel von Heron [Heron’s Formula]




Contact

Here you can find my contact information.