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Chapter 1

Introduction

In the course of this thesis, two image processing applications, namely a computational
rule for edge detection and a full-reference image quality measure, based on so-called
complex shearlet transforms will be developed. A complex shearlet transform can be
seen as a complex-valued generalization of the shearlet transform, which was originally
introduced by Kutyniok, Labate, Lim and Weiss in 2005 [1] and applies anisotropically
scaled and sheared wavelet-based atoms for decomposing signals of two and possibly
higher dimensions. While shearlet-based decompositions have been shown to provide
optimally sparse approximations of a certain class of natural images [2], the complex-
valued shearlet transform introduced in chapter 2 has the virtue of exhibiting a Fourier-
like shift invariance in its magnitude response, a property also known to be present
in the responses of certain cells in the primary visual cortex, so-called complex cells.
Both these observations motivate the assumption that complex shearlet transforms
might provide a useful model for the functional behavior of parts of the early stages of
the human visual system, suggesting their applicability to image processing tasks like
edge detection or image quality assessment.

In chapter 2, some basic results and ideas from Fourier analysis, the theory of wavelets
and the theory of shearlets will be reviewed, while the construction of wavelets and
shearlets will be motivated via quest of finding optimally sparse representations of
piecewise smooth functions in one and two dimensions. The essential part of chap-
ter 2 in the context of this thesis, however, is the introduction of complex shearlet
transforms. After discussing some basic properties of the Hilbert transform in one and
two dimensions, such transforms will be defined by considering complex-valued atoms
constructed from Hilbert transform pairs of shearlet generators.1

Chapter 3 will briefly discuss the neurophysiological findings, forming the basis of our
assumption that the complex-valued transforms defined in chapter 2 might provide
useful models for the functional behavior of cells in the primary visual cortex. While
this chapter is not integral to the understanding of the methods developed in chapter 4,
it should provide an intuition beyond the mathematical arguments laid out in chapter

1It should be noted that such a construction was already given by Storath in [3].
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2, why the application of complex-valued shearlet atoms was considered in the first
place.

In chapter 4, which should be regarded as the main part of this thesis, we will motivate,
develop and examine two image processing applications based on the complex shearlet
transforms introduced in chapter 2. First, a complex shearlet-based edge measure is
defined in section 4.1, which exhibits various desirable properties such as a high degree
of contrast invariance, a surprisingly precise localization of edges mostly independent
of the smoothness of the transition between two distinct geometrical regions and also
provides estimates of the tangential direction of an edge at a specific location. As the
construction of said measure was strongly inspired by the so-called phase congruency
measure proposed by Kovesi in [4], its definition is preceded by a short review of this
concept.

Finally, in section 4.2, a complex shearlet-based computational rule for full-reference
image quality assessments is derived. In this task, we will consider pairs of images
where one is a somehow distorted version of the other and try to determine the loss of
image quality induced by the distortion as subjectively perceived by a human observer.
One of the most significant applications of such quality assessments is the field of image
compression, where the question as to which parts of an image can be subjected to a
certain kind of compression without severely effecting the subjectively perceived image
quality is of great importance. Again, the definition of the complex shearlet-based
image quality metric will be preceded by the examination of two methods widely used
for computing full-reference image quality assessments, namely the structural similarity
index and the multiscale strucutral similarity index proposed by Wang et al. [5, 6].

The thesis will be closed by a short discussion of the complex shearlet transforms
defined in chapter 2 and the applications developed in chapter 4.

Furthermore, all function spaces used in this thesis and some other useful definitions
and formulas can be found in the appendix.

Please note that scripts for all MATLAB generated figures shown and all numerical
experiments carried out in the course of this thesis can be found on the attached DVD.
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Chapter 2

Complex Shearlet Transforms

In the remainder of this thesis, we will consider complex shearlet transfroms to be
transforms based on complex-valued functions of the form

ψc = ψeven + iψodd,

where ψeven is an even-symmetric real-valued shearlet (i.e. a function with possibly
anisotropic support constructed from applying shearing, scaling and translation oper-
ators to a wavelet-like generating function) and ψodd is an odd-symmetric real-valued
shearlet such that ψeven and ψodd form a Hilbert transform pair. Such a construc-
tion has the benefit of bringing wavelet- or shearlet-based multiscale representation
systems conceptually closer towards the classical Fourier basis in the sense that the
Fourier modes

eiξ· = cos(ξ·) + i sin(ξ·)

also follow this structure with the cosine being an even function, the sine being an odd
function and both being 90 degree phase shifts of one another. While it can be argued
that such a structure might be the cause of several desirable properties, it most notably
introduces a large extent of shift invariance to the magnitude response of a complex
shearlet transform, as we shall see later in this chapter.

The first section of this chapter will give a brief introduction to the basic concepts
and results in Fourier analysis, the theory of wavelets and the theory of shearlets while
motivating the latter two in the context of piecewise smooth functions in one and two
dimensions. This will be pivotal to both understanding and formalizing the applications
developed later in this thesis and provide the necessary background for the main part
of this chapter, which is the discussion of the respective complex transforms.
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2.1 From Fourier to Shearlets via an Analysis of Op-

timality

The main goal of this thesis is to develop methods for image processing applications like
edge detection or image quality assessment by mimicking certain parts of the human
visual system on a functional level. The central assumption we adopt here - and whose
validity and origins will be discussed in detail in chapter 3 - is that at the early stages
of human visual processing, some kind of time-frequency decomposition is performed
and that evolutionary development in some sense optimized this decomposition for the
tasks ahead. This rationale immediately raises the question as to which properties a
time-frequency decomposition should have to be optimal for human visual processing,
if such notions of optimality can be formalized in mathematical language and if it is
possible to actually design decompositions fulfilling them.

The first step towards such an analysis of optimality is certainly to provide a precise
mathematical description of the signals which are to be decomposed and what we
actually mean by decomposition. For our purposes, we will consider images to be of
a cartoon-like character, a notion first introduced by Donoho in [7] which can be seen
as a generalization of the concept of one-dimensional piecewise smooth functions (i.e.
functions which are smooth apart from a finite number of jump singularities) to higher
dimensions. For two examples of such functions, see figure 2.1.

Definition 2.1.1 (Piecewise smooth functions). Let f ∈ L2(R) with f being compactly
supported in the unit interval, i.e. f(x) = 0 for all x ∈ R \ [0, 1]. If the interval
[0, 1] can be partitioned into non-intersecting open subintervals (ti, ti+1)i∈{1,...,K} ⊂ [0, 1]
with K ∈ N such that the restrictions f |(ti,ti+1) ∈ C2(ti, ti+1) are twice continuously
differentiable and the one-sided limits lim

x↓ti
f |(ti,ti+1)(x), lim

x↑ti+1

f |(ti,ti+1)(x) are finite for

all i ∈ {1, . . . , K − 1}, f is called piecewise smooth.

Definition 2.1.2 (Cartoon-like image functions, as in [8]). Let f ∈ L2(R2) with its
support contained in the closed unit square, i.e. f(x, y) = 0 for all (x, y) ∈ R2 \ [0, 1]2.
If f can be written as

f = f0 + 1Bf1,

where 1 denotes the characteristic function, B ⊂ [0, 1]2 is a set with ∂B being a closed
C2-curve with bounded curvature, f0, f1 ∈ C2(R2) have their support contained in [0, 1]2

and ‖f0‖C2 , ‖f1‖C2 ≤ 1, then f is said to be a cartoon-like image function.

When considering the here defined notion of a cartoon-like image as a model for natural
images, we shouldn’t worry too much about the fact that images typically contain
more than one significant object. This restriction only was introduced to ease the
mathematical analysis and there will be no danger in claiming that any time-frequency
decomposition which is in some sense optimal for decomposing a function, like the one
shown in figure 2.1, will also be optimal for decomposing images containing several
smooth structures, where each one is enclosed by a C2-curve. Still, we should keep in
mind that the claim brought forward by this definition of a cartoon-like image, namely

10
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Figure 2.1: Example of a piecewise smooth function (left, computed using [9] ) and
a grayscale plot of a cartoon-like image function with f0 = 0 (right).

that at least a vast majority of natural images consist of smooth areas, which are
nicely separated from one another by (piecewise) smooth closed curves, is a very strong
one. Furthermore, this claim is the basis of the mathematical analysis concerning the
optimality of shearlet-based approximations in section 2.1.3 and therefore an essential
premise for this whole thesis.

Having fixed the mathematical descriptions of the signals we aim to analyze, we can now
turn back to the question of how we are going to decompose them. It is no coincidence
that in the definitions of piecewise smooth functions and cartoon-like image functions,
we chose the separable Hilbert spaces L2(R) and L2(R2). By doing so, we made sure
to have a scalar product at our disposal, which can serve as a natural measure of the
correlation of two functions inside L2(Rd) (if not specified otherwise, we will from now
on assume d to be either 1 or 2). Furthermore, we know from the theory of orthonormal
bases that any f ∈ L2(Rd) can be written uniquely as

f =
∑

i∈I

〈f, φi〉φi, (2.1)

where (φi)i∈I ⊂ L2(Rd) is an orthonormal basis of L2(Rd), I is some index set and the
L2-scalar product is naturally given by

〈·, ·〉 : L2(Rd)× L2(Rd) → C : (f1, f2) 7→
∫

Rd

f1(x)f2(x)dx.

Hence, at least in the setting of orthonormal bases it is clear that the function f can
easily be reconstructed from the set of measurements (〈f, φi〉)i∈I .
So for decomposing signals f ∈ L2(Rd), we will try to find suitable subsets Φ ⊂ L2(Rd),
so-called dictionaries, whose span lies dense in L2(Rd), i.e. span(Φ) = L2(Rd) and
consider the set of inner products {〈f, φ〉 : φ ∈ Φ} for analyzing f . Additionally, we will
ask for a tractable, ideally linear, way of reconstructing f from these coefficients. This
might not sound necessary for tasks like image quality assessment or edge detection but
it certainly is for others, like decomposition-based texture synthesis, where one tries to
reconstruct different textures from only first and second order statistics computed on
the set of inner products. Furthermore, our analysis of optimality will revolve around
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the question of how few coefficients of a decomposition will be sufficient to compute
good enough approximations of the original signal f , which obviously cannot be tackled
without having a way of reconstructing from these coefficients.

Before formally defining this notion of optimality, we will introduce two additional con-
ditions for candidate dictionaries Φ ⊂ L2(Rd), which are motivated mostly by technical
considerations but will have the great benefit of putting us within the mathematical
framework of frame theory, where, amongst other advantages, the existence of a sim-
ple reconstruction formula closely resembling (2.1) will come essentially for free (for
a short introduction to the basic vocabulary of frame theory, please refer to [10, p.
2-12]). From now on, we will restrict ourselves to dictionaries Φ = (φi)i∈I ⊂ L2(Rd)
where the index set I is countable and who fulfill the so-called frame condition

A‖f‖2 ≤
∑

i∈I

|〈f, φi〉|2 ≤ B‖f‖2 (2.2)

for all f ∈ L2(Rd) and some fixed real constants 0 < A ≤ B. Using standard frame
theoretical terminology, wen can now perform the decomposition of a function f ∈
L2(Rd) by applying the so-called analysis operator T , given by

T : L2(Rd) → ℓ2(I) : f 7→ (〈f, φi〉)i∈I (2.3)

and reconstructions by using the adjoint operator T ∗, the so-called synthesis operator,

T ∗ : ℓ2(I) → L2(Rd) : (ci)i∈I 7→
∑

i∈I

ciφi, (2.4)

via the reconstruction formula

f =
∑

i∈I

〈f, φi〉(T ∗T )−1φi, (2.5)

where T ∗T : L2(Rd) → L2(Rd), the so-called frame operator, is self-adjoint and in-
vertible (for a simple proof of the invertibility of T ∗T and formula (2.5), see [10, p.
5f.]). It is worth noting at this point that the frame condition (2.2) is a relaxation of
Parseval’s identity

∑
i∈I

|〈f, φi〉|2 = ‖f‖2, which is fulfilled for an orthonormal sequence

Φ = (φi)i∈I ⊂ L2(Rd) and all f ∈ L2(Rd) if and only if Φ is also a basis of L2(Rd).
Hence, frames can be seen as a generalization of the concept of bases which also allows
for redundant representation systems, i.e. systems whose span is dense in the ambient
space but who are not linearly independent. Considering such overcomplete systems
can be very useful when trying to reconstruct signals via equation (2.5) when some of
the coefficients 〈f, φi〉 got lost, and - as we shall see later in this chapter - can also lead
to extremely efficient representations of signals which would not be achievable with
orthonormal bases.

As it was already stated, we will consider frames Φ ⊂ L2(Rd) to be well suited for
decomposing and analyzing piecewise smooth functions or cartoon-like image functions,
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if only a small number of analysis coefficients suffice to reconstruct good approximations
of an original signal f ∈ L2(Rd) i.e. if Φ provides sparse approximations. To formally
compare different frames with respect to sparsity, we will look at the decay of the error
of so-called N -term approximations (i.e. approximations of the form (2.5) where the
sum on the right hand only consists of N ∈ N terms) when sending N to infinity.
Naturally, this approach requires a mechanism for selecting these terms, which would
ideally always choose the set of terms providing the best approximation possible. It
can easily be shown that for the special case of an orthonormal basis (see lemma A.1.4
in the appendix), the best N -term approximation in fact coincides with the N -term
approximation associated with the N largest coefficients (in magnitude). While this
does not remain true when considering general frames, we will still adopt this rather
simple but efficient selection approach for reasons of practicality.

Definition 2.1.3 (N -term approximation with N largest coefficients). Let Φ =
(φi)i∈I ⊂ L2(Rd) be a normalized frame for L2(Rd), i.e. ‖φi‖ = 1 for all i ∈ I,
f ∈ L2(Rd) and N ∈ N, then the N-term approximation associated with the N largest
coefficients is given by

fN =
∑

i∈IN

〈f, φi〉(T ∗T )−1φi, (2.6)

where T is the analysis operator, T ∗ its adjoint and the index set IN ⊂ I selects the N
largest analysis coefficients in magnitude, i.e.

|IN | = N and |〈f, φi〉| ≥ |〈f, φj〉|

for all i ∈ IN and j ∈ I \ IN .

Please note that the set IN and therefore also the approximation fN in definition 2.1.3
is not necessarily unique. Furthermore, assuming the frame Φ to be normalized can of
course be done without loss of generalization.

To measure the sparsity of the decompositions of piecewise smooth functions or cartoon-
like image functions provided by a frame, we will from now on look at the decay rate
of the error of the N -term approximation associated with the N largest coefficients in
magnitude, i.e. we will try to find the largest exponent α ∈ R+ such that

‖f − fN‖ . N−α (2.7)

for all f ∈ L2(Rd) within the class of piecewise smooth functions or cartoon-like images
as N goes to infinity, where fN is a N -term approximation of type (2.6). The symbol
. denotes that the function on the left-hand side decays asymptotically at least as
fast as the function on the right-hand side, i.e. there exists a constant C ∈ R and a
number N0 ∈ N such that ‖f − fN‖ < CN−α for all N ≥ N0, which is equivalent to
‖f − fN‖ ∈ O(N−α) in Landau notation.

The question remains here, whether it is possible for some classes of functions to define
a theoretical upper bound for the exponent α in equation (2.7), such that any frame
whose N -term approximations obey this decay rate can truly be considered to provide
optimally sparse representations. It was in fact shown by Donoho in [7] that for each
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dictionary Φ = (φi)i∈I ⊂ L2(R2), there exists at least one cartoon-like image function
f such that for each (countable) sequence of coefficients (cj)j∈J with J ⊂ I fulfilling
f =

∑
j∈J

cjφj and generated from a practically feasible selection process (for a precise

definition of feasibility in this context, see section A.1.1 in the Appendix), it holds that

‖(cj)j∈J‖ℓp =
(∑

j∈J

|cj |p
)1/p

= ∞, (2.8)

for all 0 < p < 2
3
. This means in return that when considering (cordn )n∈N to be a

rearrangement of the original sequence with decreasing order (in magnitude), the best

decay we can hope for is given by
∣∣cordn

∣∣ . n− 3

2 . As the decay of the analysis coefficients
can indirectly be related to the decay of the error of a N -term approximations via
the frame condition (2.2) and by using a few other methods and results from frame
theory, we finally arrive at the result on optimally sparse approximations for cartoon-
like images stated in definition 2.1.4. For a detailed explanation of this derivation,
please refer to [2, p. 155ff.].

Definition 2.1.4 (Optimally sparse approximations of cartoon-like images, as in [2]).
Let Φ = (φi)i∈I ⊂ L2(R2) be a normalized frame for L2(R2), i.e. ‖φi‖ = 1 for all
i ∈ I, then Φ is said to provide optimally sparse approximations of cartoon-like image
functions (see definition 2.1.2) if the N-term approximations associated with the N
largest coefficients in magnitude fN ∈ L2(R2) (see definition 2.1.3) fulfill

‖f − fN‖ . N−1

for all cartoon-like image functions f ∈ L2(R2).

In the upcoming sections, we will now look at Fourier-, wavelet- and shearlet-based
constructions of frames for L2(R) (respectively L2(a, b) in the Fourier case) and L2(R2),
and analyze the decay rate of the error of their N -term approximations of piecewise
smooth functions and cartoon-like image functions in the spirit of equation (2.7) and
definition 2.1.3. In the case of cartoon-like image functions, we will be especially
interested in finding out whether one of these frames actually achieves the optimal
decay of N−1 proposed in definition 2.1.4. It will turn out that wavelets, while being
nicely suited for representing one-dimensional piecewise smooth functions, fail to do
so due to their incapacity of efficiently describing two-dimensional geometric features
such as curve-like discontinuities occurring at edges. This shortcoming, however, will
be remedied in the construction of shearlet-based frames whose N -term approximations
of cartoon-like image functions actually achieve the desired error decay rate of N−1.

2.1.1 Fourier Analysis

The first approach we’ll examine is to decompose one-dimensional piecewise smooth
functions using sine and cosine waves with varying frequencies, that is, we will consider

14



atomic functions of the form

ein· = cos(n·) + i sin(n·)

with n ∈ Z, which puts us right into the realm of Fourier analysis. The origins of this
branch of mathematics date back to the 18th century, when mathematicians became
more and more interested in examining the idea that many real world phenomena like
ocean waves could be described as the result of linear combinations of occurences of
a much more simple nature. Eventually, Jean Baptiste Joseph Fourier (1768-1830)
made the claim1 that in fact any integrable 2π-periodic function (i.e. a function f ∈
L1(R/2πZ)) could be written as

f(x) =
∑

n∈Z

(
1

2π

∫ 2π

0

f(t)eintdt

)
einx, (2.9)

for all x ∈ [0, 2π) and showed how such an expansion could be exploited to solve linear
partial differential equations in his famous book The Analytic Theory of Heat (this little
historical fact is taken from [11, p. 3]). To get a quick intuition about the applicability
of sinusoidal waves in this context, one should consider that the Fourier modes ein· are
in fact eigenfunctions of the Laplace operator ▽2 used in the heat equation ∂f

∂t
= α▽2f

and that by the linearity of ▽2, each linear combination of solutions will again be a
solution.

1

−1

3−3

1

−1

3−3

Figure 2.2: Plots of the functions eni· for n ∈ {1, 2, 3} on the interval [−π, π], with
the real part cos(n·) shown on the left and the imaginary part sin(n·) shown on the
right side.

But here, we are certainly not in the business of solving linear partial differential
equations. Our program is to find representation systems for the Hilbert space L2(R),
providing us with sparse representations of piecewise smooth functions. The first thing
one should note at this point is that - due to their lack of decay - the functions ein·

don’t even belong to L2(R). We will therefore constrain our examinations for the time
being to Hilbert spaces L2(a, b) that are restricted to a closed interval [a, b]. While this
is not a problem for the analysis of sparse approximations of elements of the class of
piecewise smooth functions, whose support is by definition contained in [0, 1], it is a

1While this claim holds for many functions, it eventually turned out to be false. For a continuous
counterexample, see [11, p. 67ff.]. For a more elaborate analysis of pointwise convergence, see chapter
15 in [11].
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first hint that it could be useful to consider atomic functions that are actually localized
on the real line.

It is now time to state the first important result about the system of functions of
the form (ein·)n∈Z, namely that they form an orthogonal basis for the space of square
integrable functions on the interval [−π, π], L2(−π, π), which of course can easily be
normalized to form an orthonormal basis. This implies that - with respect to the frame
condition (2.2) - the normalized Fourier modes constitute a frame for L2(−π, π) with
constants A = B = 1 and a frame operator T ∗T = Id.

Theorem 2.1.5 (Orthonormal Fourier basis in L2(−π, π)). The set{
(2π)−

1

2 ein· : n ∈ Z

}
⊂ L2(−π, π) is an orthonormal basis for L2(−π, π).

Proof. See for example [12, p. 78] or [13, p. 72].

While the Fourier modes cannot form a basis for spaces of integrable or square inte-
grable functions defined on the whole real line, one can still ask whether expressions
of the form

∫
R
f(x)eiξx are well defined for arbitrary functions f in L1(R) (respectively

L2(R)) and whether there might be a way of reconstructing f from such coefficients.
As it turns out, when allowing the frequency ξ to take values on the whole real line,
there is in fact a reconstruction formula for arbitrary continuous and integrable func-
tions basically given by a continuous version of (2.9), i.e. the sum is replaced by an
integral. This result is formalized in the following theorem, which defines the famous
Fourier transform and its inverse.

Theorem 2.1.6 (Fourier transform and inverse Fourier transform). Let f ∈ L1(R)
then the so-called Fourier transform, given by

(Ff)(ξ) = f̂(ξ) =

∫

R

f(x)e−ixξdx (2.10)

for ξ ∈ R, is a well defined, bounded and continuous operator from L1(R) to L∞(R).
If additionally f̂ ∈ L1(R) (which implies the continuity of f), the inverse Fourier
transform is given by

(F−1f̂)(x) =
ˇ̂
f(x) = (2π)−1

∫

R

f̂(ξ)eixξdξ, (2.11)

and it holds that

f(x) =
ˇ̂
f(x) (2.12)

for all x ∈ R.

For functions in L2(Rn) with n > 1, the product xξ in equations (2.10) and (2.11) is
replaced by the inner product 〈x, ξ〉.

Proof. For the properties of (2.10), see [12, p. 213f.], for the Fourier inversion theorem
(2.12), see [12, p. 218].
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As a matter of fact, for functions f ∈ L2(R) \ L1(R), the integral in equation (2.10)
must not converge. This problem, however, can be overcome by defining the Fourier
transform of such functions as the limit of the Fourier transforms of functions inside
L2(R) ∩ L1(R), which lies dense in L2(R). So the Fourier transform is actually well
defined on the Hilbert space L2(R). For more details on this construction, see [12, p.
221f.].

While in this thesis, we will only consider the approximations provided by discrete
transforms (i.e. transforms based on countable systems), the here defined Fourier
transform will be an important tool for the construction of wavelet- and shearlet-based
systems as well as in the definition of the notion of phase congruency (see section 4.1.1).
Furthermore, we can now elaborate on the remark made at the very beginning of this
chapter, that in magnitude, the Fourier transform is shift invariant.

Remark 2.1.7 (Shift invariance in magnitude of Fourier transform). Let f ∈ L1(R)∩
L2(R), then the magnitude response of the Fourier transform is invariant under trans-
lations, i.e.

|Ff(ξ)| = |F(Tλf)(ξ)| , (2.13)

for all ξ, λ ∈ R, where Tλ is the translation operator, given by

(Tλf)(x) = f(x− λ) (2.14)

for all x ∈ R.

Proof. We simply compute

|F(Tλf)(ξ)| =
∣∣∣∣
∫

R

f(x− λ)e−iξxdx

∣∣∣∣

=

∣∣∣∣
∫

R

f(x)e−iξ(x+λ)dx

∣∣∣∣

=
∣∣e−iξλ

∣∣
︸ ︷︷ ︸

1

∣∣∣∣
∫

R

f(x)eiξxdx

∣∣∣∣

= |Ff(ξ)| .

Please note that the important step in the computation above was that due to the
interplay of sine and cosine, the absolute value |eix| is 1 for all x ∈ R. This observation
already gives an intuition, how by mimicking the structure of Fourier modes, shift
invariance in magnitude can also be introduced to wavelet- and shearlet-based systems.

We will conclude this short trip into the realm of Fourier analysis by returning to
our original goal, namely to analyze the decay behavior of N -term approximations of
piecewise smooth functions obtained from the Fourier basis defined in theorem 2.1.5.
To do this, we will consider the most basic kind of a piecewise smooth function, a
simple step function restricted to the interval [−π, π].
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Example 2.1.8 (Fourier series approximations of a step function). Let f ∈ L2(−π, π)
be given by

f(x) =

{
1 if x ∈ [−π, 0)
0 else

,

i.e. f = 1[−π,0) with x ∈ [−π, π], then the error of the N-term approximations associ-
ated with the N largest coefficients in magnitude fN ∈ L2(−π, π) (see definition 2.1.3)

provided by the orthonormal Fourier basis
{
(2π)−

1

2 ein· : n ∈ Z

}
⊂ L2(−π, π) obeys

‖f − fN‖ ≍ N− 1

2 ,

where ≍ denotes that ‖f − fN‖ . N− 1

2 and N− 1

2 . ‖f − fN‖. By lemma A.1.4, fN
coincides with the best N-term approximation. For a visual representation, see figure
2.3.

Proof. First, we note that the coefficients are given by

〈f, (2π)− 1

2 ein·〉 = (2π)−
1

2

∫ 0

−π

e−inxdx

= (2π)−
1

2

1− eiπn

n
i

= (2π)−
1

2

1− cos(nπ)

n
i

=

{
(2π)−

1

2
2i
n

if n is odd

0 else
,

for n ∈ Z \ {0}. Hence, we can define the set IN ⊂ Z of the N largest coefficients as
IN = {n ∈ Z : n is odd and |n| < N} ∪ {0} (if N is even, we simply remove the index
N − 1 from the set) and by lemma A.1.4, we get

‖f − fN‖2 =
∑

n∈Z\IN

∣∣∣〈f, (2π)− 1

2 ein·〉
∣∣∣
2

=
∑

n∈Z\IN

∣∣∣∣(2π)−
1

2

2i

n

∣∣∣∣
2

=
2

π

∑

n∈Z\IN

1

n2

≍
∫ ∞

N

x−2dx

= N−1.

Furthermore, a closed formula for the N -th approximation error is given by

‖f − fN‖2 =
π

2
− 2

π

∑

n∈IN\{0}

1

n2
.
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Figure 2.3: The first image shows the Fourier series approximations fN of f = 1[−π,0)

on the interval [−π, π] from example 2.1.8 for N = 5 (blue), N = 15 (green), and
N = 50 (red). The second plot shows the errors ‖f − fN‖ for N ∈ {1, . . . , 50}.

When examining the N -term approximations plotted in figure 2.3, we notice that away
from the discontinuity, the partial sums of the Fourier series quickly converge to the
constant values 1 (respectively 0), while in a small neighborhood around 0, the approx-
imations increasingly overshoot (respectively undershoot) these values - a very undesir-
able feature which is known in the literature as the so-called Gibbs phenomenon2. The
main reason why Fourier series approximations have difficulties with representing jump
discontinuities is that periodic sine and cosine waves are not at all localized on the real
line. Simply put, the position of a jump discontinuity on the real line matters to a sine
or cosine wave only modulo the interval [0, P ], where P denotes the period of the wave.
Another way of looking at this issue is that in the presence of a jump discontinuity,
the analysis coefficients of the orthonormal Fourier basis only decay through increasing
the frequency of the Fourier modes, an action that is completely independent of the
localization of the jump discontinuity on the real line.

One rather simple fix to localize the functions ein· on the real line would be to introduce
a window function g ∈ L2(R) and consider atomic functions of the form

φa,b(·) = g(· − a)eib·, (2.15)

where the frequency b and the translation parameter a can be chosen from some discrete
subset of R×R. Such functions were first proposed by Nobel prize winner Dennis Gabor
in 1946 [14] and can, in contrast to the Fourier bases considered so far, in fact be used

2Named after the American scientist Josiah Willard Gibbs (1839 - 1903).
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to construct orthonormal bases for L2(R). To give an example, the set

Φ =
{
φm,n(·) = 1[0,1](· − n)e2πim· : (m,n) ∈ Z× Z

}
⊂ L2(R)

indeed forms an orthonormal basis for L2(R) (see example 3.5.3 in [10]). While this
approach resolves the issue of finding discrete orthonormal bases of L2(R), the question
remains, how the window function g should be chosen to efficiently decompose certain
classes of signals. The obvious problem arising with this question is that the optimal
size and shape of the window g again depends on the local behavior of a signal f . It
is possible that one function f ∈ L2(R) exhibits a strong oscillatory behavior on the
interval [0, 1], suggesting a very tight window, and is almost constant on the interval
[5, 6], suggesting a rather wide window. Hence, one would require a construction com-
bining functions of different frequencies (as in the standard Fourier series), different
locations on the real line (as introduced via the translation parameter in systems based
on functions of the form (2.15)) and different levels of localization inside one discrete
dictionary. This line of thought now directly leads us into the field of multiresolution
analysis and wavelet theory.

2.1.2 Wavelets

As it was discussed at the end of the previous section, we now aim to construct discrete
dictionaries for L2(R) containing atomic elements of varying frequency, location and
localization. For this purpose, we will consider functions ψ ∈ L2(R), fulfilling the
so-called wavelet admissibility condition∫

R

∣∣∣ψ̂(ξ)
∣∣∣
2

|ξ| dξ <∞, (2.16)

and sets of functions

Ψa,b =

{
ψj,m(·) = a−

j
2ψ

( · −majb

aj

)
: (j,m) ∈ Z× Z

}
⊂ L2(R), (2.17)

with a fixed scaling density parameter a > 1 and a fixed translation density parameter
b > 0. The convergence of the integral in equation (2.16) is a necessary condition for
the existence of an inversion formula of the continuous wavelet transform, in which
the scaling parameter, written as aj in equation (2.17), and the translation parameter,
written as majb in equation (2.17), take all possible values on the real line, with the
exception of 0 in the case of the scaling parameter (see [15, p. 24f.]). Please note that
in the case that ψ ∈ L1(R) (implying the continuity of ψ̂), the admissibility condition
(2.16) can only be satisfied if ψ has a vanishing mean value, that is

ψ̂(0) =

∫

R

ψ(x)dx = 0. (2.18)

Hence, the admissibility condition enforces the function ψ - which here essentially plays
the role of ei· in the definition of the orthonormal Fourier basis (see theorem 2.1.5) - to
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exhibit at least some extent of wavelike behavior. For an example of such a function,
see figure 2.4.

While in the Fourier case, the dictionary was constructed by simple frequency mod-
ulations, the scaling parameter in (2.17) not only changes the frequency3 of ψ but
also its degree of localization. To be precise, the atomic functions ψj,m covering the
lower frequencies will be badly localized on the real line while their high frequency
counterparts will be highly localized. Naturally, using localized functions also requires
the possibility of considering different translates, which is provided in (2.17) by the
translation parameter m.
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Magnitude of the Meyer wavelet in the frequency domain
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Meyer wavelet in the time domain

Figure 2.4: The Meyer wavelet (left) and its Fourier transform in magnitude (right).
For a definition of the Meyer wavelet, see A.1.5. (computed with [9])

Analogous to the Fourier case, we will now try to construct dictionaries Ψa,b based on
a wavelet ψ such that Ψa,b forms an orthonormal basis of L2(R). While Stromberg in
1982 [16] and Meyer in 1985 [17] published first specific examples of such orthonormal
wavelet bases, we will consider a much more general approach developed by Meyer
and Mallat in 1986 termed multiresolution analysis [18, 19]. The basic idea behind
this technique is to construct a sequence of nested subspaces of L2(R) such that via
orthogonal projections, each of these subspaces provides approximations of signals in
L2(R) at different resolutions. Furthermore, it will be required that the union of
these subspaces lies dense in L2(R) while their intersection is just the zero function
(i.e. when going up the ladder of subspaces, the approximations go from arbitrarily
bad to arbitrarily good) and that each subspace has an orthonormal basis given by
the translates of a so-called scaling function φ considered at different dyadic scales.
This means that the whole system of subspaces can be constructed by scaling and
translating a single generator function φ - a structure closely resembling the definition
of a discrete wavelet system Ψa,b in equation (2.17). Assuming the existence of such a
multiresolution analysis, we can then look at the difference between two neighboring
subspaces described by the orthogonal complement of the smaller one inside its larger
neighbor. The direct sum of this thereby constructed sequence of increments will then
be equivalent to L2(R) and we will show that it is possible to define a generator function
ψ, fulfilling the wavelet admissibility condition, such that each increment space has

3Note that Ff(a·)(ξ) = 1

|a| f̂
(

ξ
a

)
.
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an orthonormal basis constructed from translates of ψ considered at different scales.
Eventually, this process will lead to a simple way of constructing functions ψ such that
the sets Φa,b with a = 2 and b = 1 defined in (2.17) form an orthonormal basis of
L2(R).

Definition 2.1.9 (Multiresolution Analysis, as in [15]). A sequence (Vj)j∈Z of closed

subspaces with Vj ⊂ L2(R) for all j ∈ Z constitutes a multiresolution analysis if the
following properties are satisfied

∀j ∈ Z : Vj+1 ⊂ Vj , (2.19)

∀j ∈ Z : f(·) ∈ Vj ⇔ f
( ·
2

)
∈ Vj+1, (2.20)

∀j,m ∈ Z : f(·) ∈ Vj ⇔ f(· − 2jm) ∈ Vj, (2.21)
∞⋂

j=−∞

Vj = {0}, (2.22)

∞⋃

j=−∞

Vj = L2(R), (2.23)

∃φ ∈ L2(R) : {φ(· −m) : m ∈ Z} is an orthonormal basis of V0. (2.24)

The function φ in condition (2.24) is often called father wavelet or scaling function,
while the spaces Vj are typically termed scaling spaces. Please note that (2.20) tells
us that each space Vj is just a scaled version of V0, eventually justifying the term
multiresolution analysis.

Given the existence of a multiresolution analysis (Vj)j∈Z, we can - following the program
already sketched in the previous paragrah - define a sequence of so-called wavelet spaces
(Wj)j∈Z, describing the difference between two neighboring scaling spaces, that is

Wj = V ⊥
j ⊂ Vj−1. (2.25)

This implies that
Vj−1 =Wj ⊕ Vj

for all j ∈ Z and due to (2.19),
Wj ⊥Wj′

for all j, j′ ∈ Z with j 6= j′. Furthermore, we conclude from (2.22) and (2.23) that
⊕

j∈Z

Wj = L2(R).

So the sequence (Wj)j∈Z consists of mutually orthogonal spaces whose sum equals
L2(R). If we were able to find a function ψ generating the spaces Wj in the same way
as the scaling function φ generates the scaling spaces Vj, that is, for each space Wj,

the set
{
ψj,m(·) = 2−

j
2ψ (2−j · −m) : m ∈ Z

}
is an orthonormal basis, then we would

have also constructed an orthonormal basis for L2(R). The following theorem shows
that this is indeed possible.
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Theorem 2.1.10 (Orthonormal wavelet basis for L2(R)). Let (Vj)j∈Z be a multireso-
lutoin analysis (see defintion 2.1.9), φ ∈ L2(R) be the associated scaling function and
let h ∈ ℓ2(Z) be the sequence given by hn =

√
2〈φ(2 · −n), φ〉, that is

φ(·) =
√
2
∑

n∈Z

hnφ(2 · −n).

Then with ĥ(ξ) =
∑
n∈Z

hne
−inξ,

ψ̂(ξ) = 2−
1

2 e−i
ξ
2 ĥ

(
ξ

2
+ π

)
φ̂

(
ξ

2

)
(2.26)

defines the Fourier transform of a wavelet ψ such that for each j ∈ Z,
{
ψj,m(·) = 2−

j
2ψ(2−j · −m) : m ∈ Z

}

is an orthonormal basis for the space Wj ⊂ L2(R) (see equation (2.25)), and the set

{
ψj,m(·) = 2−

j
2ψ(2−j · −m) : (j,m) ∈ Z× Z

}

is an orthonormal basis for L2(R).

Proof. See Daubechies [15, p. 129ff.] or Mallat [13, p. 278ff.].

The question remains, however, how we can construct a sequence of scaling spaces
satisfying the conditions (2.19)-(2.24). One should note in this regard that the only
free variable appearing in the definition of a multiresolution analysis is in fact the
scaling function φ. So the right question might be which properties a function φ must
have, such that its translates considered on all dyadic scales construct scaling spaces
satisfying the six axioms from definition 2.1.9. While this can in fact be answered (see
for instance [15, p.140ff.]), we will go even one step further and reconsider the so-called
scaling relation

φ(·) =
√
2
∑

n∈Z

hnφ(2 · −n), (2.27)

which already appeared in theorem 2.1.10. Applying the Fourier transform to both
sides gives

φ̂(ξ) =
1√
2
ĥ

(
ξ

2

)
φ̂

(
ξ

2

)

=
1

2
ĥ

(
ξ

2

)
ĥ

(
ξ

4

)
φ̂

(
ξ

4

)

and assuming the continuity of φ̂ in 0, we can go to the limit and get

φ̂(ξ) = φ̂(0)
∞∏

j=1

2−
1

2 ĥ(2−jξ). (2.28)
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Hence, it seems to be possible to define the scaling function φ, and thereby implicitly a
sequence of scaling spaces constituting a multiresolution analysis, by a discrete sequence
h ∈ ℓ2(Z). The exact conditions such a sequence h has to satisfy such that its associated
scaling function is the generator of a multiresolution analysis are given in the theorem
below.

Theorem 2.1.11 (Multiresolution analysis from scaling filter h). Let h ∈ ℓ2(Z) be a
sequence satisfying

ĥ(0) =
√
2,

inf
ξ∈[−π/2,π/2]

∣∣∣ĥ(ξ)
∣∣∣ > 0,

∀ξ ∈ R :
∣∣∣ ˆh(ξ)

∣∣∣
2

+
∣∣∣ĥ(ξ + π)

∣∣∣
2

= 2

with ĥ being continuously differentiable in a neighborhood of 0, then

φ̂(ξ) =
∞∏

j=1

2−
1

2 ĥ(2−jξ). (2.29)

is the Fourier transform of a scaling function φ ∈ L2(R). That is, the spaces

Vj = span
{
φj,m(·) = 2−

j
2φ(2−j · −m) : m ∈ Z

}

constitute a multiresolution analysis for L2(R) (see definition 2.1.9).

Proof. See Mallat [13, p. 270ff.].

Theorems 2.1.11 and 2.1.10 provide us with an efficient recipe for constructing wavelet
orthonormal bases for the Hilbert space L2(R). While we will not examine specific
constructions of such bases here, several examples are given in [13, p. 289ff.].

We have now introduced a way of constructing orthonormal bases for L2(R) whose
atoms not only have varying frequencies but also varying levels of localization on the
real line. Hence, we would expect that N -term approximations provided by these bases
outperform the Fourier basis defined in 2.1.5 at heavily localized features such as jump
discontinuities. A first hint that this is indeed the case is given in figure 2.5, where we
used a wavelet multiresolution analysis to compute best N -term approximations of the
step function already considered in figure 2.3. Furthermore, we will state a much more
general result for piecewise Lipschitz continuous functions on a closed interval taken
from [13, p. 456f.].

Theorem 2.1.12 (Error decay of wavelet approximations of piecewise regular func-
tions). Let ψ ∈ L2(R) be a wavelet associated with a multiresolution analysis4 for
L2(−π, π) with q ∈ N vanishing moments, that is

∫ π

−π

xkψ(x)dx = 0 (2.30)

4For the construction of multiresolutions on closed intervals, see chapter 7.5.3 in [13].
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Figure 2.5: The first image shows the best N -term approximations fN of f = 1[−π,0)

on the interval [−π, π] obtained from a wavelet multiresolution analysis for N = 5
(blue), N = 15 (green), and N = 50 (red). The second plot shows the approximated
errors ‖f − fN‖ for N ∈ {1, . . . , 50}. In contrast to the Fourier series approximations
shown in figure 2.3, the Gibbs oscillations have already almost disappeared for N = 50
and the error decays much faster (computed using [9]).

for all integers 0 ≤ k < q and let f ∈ L2(−π, π) be uniformly Lipschitz α continuous
(see definition A.1.6) with 1/2 < α < q between a finite number of discontinuities
K ∈ N. Then the error of the N-term approximations associated with the N largest
coefficients in magnitude of f (see definition 2.1.3) decays as

‖f − fN‖ . N−α. (2.31)

Proof. See Mallat [13, p. 456f.].

Theorem 2.1.12 tells us that the error decay rate for approximations of the function
f = 1[−π,0) associated with a wavelet basis is only bounded by the number of vanishing
moments of the corresponding wavelet ψ, which is a remarkable result and a great
improvement to the error decay rate of N− 1

2 of the Fourier approximations.

At this point, we will consider our quest for constructing orthonormal bases for the
decomposition of one-dimensional signals to be finished and turn to our original goal
of analyzing frames for L2(R2) with respect to the class of cartoon-like images (see
definition 2.1.2). While the orthonormal wavelet bases derived from a multiresolution
analysis can easily be generalized to two dimensions, it will turn out that such a con-
struction will indeed have difficulties when dealing with certain features newly arising
in the two-dimensional setting, such as curve-like discontinuities.
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2.1.2.1 Wavelets in Two Dimensions

One very simple but useful way of constructing an orthonormal wavelet basis for L2(R2)
is to start with a one-dimensional multiresolution analysis and consider tensor products
of the scaling function φ and the associated wavelet ψ, that is, φ⊗ψ, ψ⊗φ and ψ⊗ψ. As
it turns out, these functions will be the generators of a separable orthonormal wavelet
basis of L2(R2), a result which is formalized in the following theorem.

Theorem 2.1.13 (Orthonormal wavelet basis for L2(R2)). Let φ ∈ L2(R) be the scaling
function and ψ ∈ L2(R) be the wavelet of a multiresolution analysis for L2(R) (see
definition 2.1.9) then the wavelets given by

ψ(1)(x, y) = (φ⊗ ψ)(x, y) = φ(x)ψ(y),

ψ(2)(x, y) = (ψ ⊗ φ)(x, y) = ψ(x)φ(y),

ψ(3)(x, y) = (ψ ⊗ ψ)(x, y) = ψ(x)ψ(y)

are the generators of an orthonormal basis of L2(R2), that is, the set
{
ψ

(k)
j,m(·) = 2−jψ(k) (Aj · −m) : j ∈ Z, m ∈ Z2

}
, (2.32)

with the scaling matrix A =

(
2−j 0
0 2−j

)
is an orthonormal basis of L2(R2).

Proof. See Mallat [13, p. 341f.].

When also including the scaling function (φ⊗ φ)(x, y) = φ(x)φ(y), we get a separable
two-dimensional multiresolution analysis defined by the spaces V 2d

j = Vj⊗Vj for j ∈ Z.
For a visualization of the two-dimensional Meyer wavelets and the associated scaling
function, see figure 2.6.

We have already discussed that in the one-dimensional case, the major problem with
approximations based on the Fourier modes was that the functions eiξ· are not local-
ized and therefore have difficulties representing highly localized features such as jump
discontinuities - which serve as separators of two smooth parts in the definition of
piecewise smooth function (see definition 2.1.1). Now, in two dimensions and having
the cartoon-like image model in our mind (see definition 2.1.2), the discontinuities sep-
arating two smooth regions of a signal are not localized at a single point but along
a (smooth) curve. This raises the question, whether the way the wavelets from set
(2.32) are localized in the two-dimensional plane makes them also well suited for rep-
resenting such anisotropic features (i.e. features that are directionally dependent). As
it turns out, the isotropic nature of the scaling matrix A defined in theorem 2.1.13
leads to a non-optimal decay behavior of the wavelet coefficients along such curve-like
discontinuities (for a visual illustration, see figure 2.7). This eventually translates into
a non-optimal (compare definition 2.1.4) decay rate of the error of the best N -term
approximations of cartoon-like image functions obtained from a two-dimensional or-
thonormal wavelet basis. A formal result was given by Kutyniok, Lim and Lemvig in
[2, p. 159].
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Figure 2.6: The functions φ ⊗ φ, φ ⊗ ψ, ψ ⊗ φ and ψ ⊗ ψ (upper row) and their
respective Fourier transforms in magnitude (lower row), where ψ is the Meyer wavelet
(see definition A.1.5) and φ the associated scaling function (computed using [9]).

Example 2.1.14 (Non-optimally sparse wavelet approximations of cartoon-like im-
ages). Let Φ ⊂ L2(R2) be a wavelet basis of L2(R2) and f = 1B, where B is a ball
contained in [0, 1]2, then

‖f − fN‖ ≍ N− 1

2

where fN is the best N-term approximation obtained from Φ.

Proof. See [2, p. 159].

So the error decay of the N -term approximations of a cartoon-like image obtained
from a orthonormal wavelet basis is far off the optimal rate, which would be N−1 (see
definition 2.1.4). The essential reason for this is that, similar as for the Fourier basis in
the one-dimensional setting, the localization of the atoms in a two-dimensional wavelet
basis is not well suited for fitting the now occurring anisotropic structures, such as
curve-like discontinuities. This shortcoming will be remedied by the construction of
shearlet-based frames for L2(R2), presented in the upcoming section.

2.1.3 Shearlets

To have a chance of achieving optimally sparse approximations of cartoon-like images,
we will require a dictionary based on atoms which are not only localized but are also well
suited for fitting anisotropic features, which are very common in the two-dimensional
setting. Assuming we want to construct these dictionaries in a similar fashion as in the
Fourier and wavelet case, that is, we want to choose a generator function (like ei· or a
function ψ ∈ L2(R) satisfying the wavelet admissibility condition) and build the dic-
tionary from applying certain operations to this generator (like frequency modulation,
scaling or translation), one simple way of introducing a higher degree of directional
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Figure 2.7: The lower right row shows the magnitudes of the wavelet coefficients cor-
responding to the discrete two-dimensional wavelets displayed above. The coefficients
were obtained from a discrete stationary wavelet transform of the two-dimensional step
function shown left (using the MATLAB Wavelet Toolbox). As the values in the di-
agonal of the scaling matrix Aj = diag(2−j, 2−j) (see theorem 2.1.13) are the same,
the scaling is of an isotropic nature, that is, the degree of scaling is the same for both
the x- and the y-direction. Hence, while still being directionally sensitive, the wavelets
ψ ⊗ φ on higher scales are not perfectly adapted to the anisotropic nature of the here
considered discontinuity.

sensitivity would be to apply anisotropic scaling. That is, instead of using a scaling
matrix Aj = diag(2−j, 2−j) (see theorem 2.1.13) where the amount of scaling is uniform
in both coordinates, one can consider a scaling matrix with two different diagonal en-
tries. Using such an anisotropic scaling matrix will result in atomic functions strongly
stretched in x- or y-direction on higher scales. Hence, we will also need the ability of
changing the preferred direction via a rotation-like operation. Note that this necessity
of adding another degree of freedom again resembles the transition from Fourier bases
to wavelets, where the use of localized generator functions required us to introduce a
second parameter, namely the translation parameter (see equation (2.17)).

The first constructions of frames for L2(R2) applying anisotropic scaling were given
by Candès and Donoho in 2004 under the name of curvelets [20, 21], quickly followed
by a filterbank-based approach by Do and Vetterli in 2005 termed contourlets [22].
Both curvelet- and contourlet-based systems use rotations to change the preferred
direction of the anisotropically scaled atoms, which leads to problems when entering the
digital realm, as rotations typically don’t preserve the integer grid5. Furthermore, these
systems are not based on a single, or even a finite number of generator functions, but
use different generators at each scale. Both these issues were resolved in a construction
based on so-called shearlets, introduced by Kutyniok, Labate, Lim and Weiss in 2005
[1], where the designation ’shearlets’ emphasizes the fact that grid-preserving shearings
are applied instead of rotations.

Similar to the wavelet case, a function ψ ∈ L2(R2) is said to be an admissible shearlet

5In fact, only rotations by multiples of 90 degrees leave the integer grid intact.
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if it satisfies ∫

R2

∣∣∣ψ̂(ξ1, ξ2)
∣∣∣
2

ξ21
dξ2dξ1 <∞, (2.33)

where ψ̂ of course denotes the two-dimensional Fourier transform of ψ. So basically
any function in L2(R2) whose Fourier transform is compactly supported away from
the origin is an admissible shearlet and just as in the wavelet case, the convergence
of the integral (2.33) implies the existence of an inverse continuous shearlet transform
(see [8, p. 19f.]). One specific construction of an admissible shearlet, the so-called
classical shearlet, which combines a one-dimensional wavelet and a one-dimensional
bump function, is given below.

Definition 2.1.15 (Classical shearlet, as in [8]). Let ψ ∈ L2(R2) be defined by

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(
ξ2
ξ1

)
,

where ψ1 ∈ L2(R) is a discrete wavelet in the sense that it satisfies the discrete Calderón
condition, given by ∑

j∈Z

∣∣∣ψ̂1(2
−jξ)

∣∣∣
2

= 1

for almost every ξ ∈ R, with ψ̂1 ∈ C∞(R) and supp(ψ̂1) ⊂
[
−1

2
,− 1

16

]
∪
[

1
16
, 1
2

]
, and

ψ2 ∈ L2(R2) is a bump function in the sense that

1∑

k=−1

∣∣∣ψ̂2(ξ + k)
∣∣∣
2

= 1

for almost every ξ ∈ [−1, 1], satisfying ψ̂2 ∈ C∞(R) and supp(ψ̂2) ⊂ [−1, 1]. Then ψ
is called a classical shearlet.

A function ψ ∈ L2(R2) satisfying equation (2.33) can now be used as a generator for a
shearlet-based system by applying scaling, shear and translation operators, that is, we
will consider functions

ψj,k,m(·) = ψ(SkAj · −m),

where m ∈ Z2 is again a translation parameter and scaling matrices Aj and shear
matrices Sk are given by

Aj =

(
2j 0
0 2j/2

)
, Sk =

(
1 k
0 1

)
. (2.34)

The effects of applying a shear or scaling operator to a generator function in both the
time and the frequency domain are depicted in figure 2.8. When considering classical
shearlets, the generator will by definition be vertically aligned in the time domain and
the functions ψj,k,m even more so when increasing the parameter j. Of course, by also
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Figure 2.8: A two-dimensional digital shearlet filter is scaled twice and sheared twice
in clockwise direction. The lower row shows the respective magnitude responses in the
frequency domain (computed using ShearLab 3D [23]).

increasing the shear parameter k, the shearlets will progressively be sheared towards a
horizontal alignment, but only at the cost of gradually stretching them out6. Further-
more, a perfect horizontal alignment could only be reached by sending k to infinity,
which not only would lead to functions with an extremely thin support in y-direction
but would also be a huge obstacle in any practical implementation of a shearlet-based
transform. One possible solution to this problem is to split the frequency plane into
four different cones (denoted C1 to C4 in figure 2.9) and to consider a generator func-
tion ψ having its Fourier transform essentially supported in C1∪C3 associated with the
vertical directions and a second generator ψ̃ with the essential support of its Fourier
transform contained in C2 ∪ C4 associated with the horizontal directions. Assum-
ing the function ψ to be a classical shearlet, i.e. ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(
ξ2
ξ1

)
, where

ψ1 is a discrete wavelet and ψ2 a bump function, ψ̃ can then simply be chosen as
ψ̃(ξ1, ξ2) = ψ(ξ2, ξ1). To nicely separate these cones at the lower frequencies, we will -
roughly speaking - cut out a square centered around the origin in the frequency plane,
that is we will restrict the scaling parameter j ≥ 0 and add translates of a scaling func-
tion instead, thereby also covering the lower frequencies. These considerations lead to
the formal definition of a discrete cone-adapted shearlet system.

Definition 2.1.16 (Cone-adapted discrete shearlet system, as in [8]). Let ψ ∈ L2(R2)
be an admissible shearlet (see equation (2.33)) associated with the horizontal frequency
cones (see figure 2.9) and ψ̃ ∈ L2(R2) its counterpart associated with the vertical fre-
quency cones. Let furthermore φ ∈ L2(R2) be a scaling function and scaling and shear
matrices given by

Aj =

(
2j 0
0 2j/2

)
, Sk =

(
1 k
0 1

)
, Ãj =

(
2j/2 0
0 2j

)
. (2.35)

6This is the price we have to pay for using shearings instead of rotations.
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Figure 2.9: Tilings of the frequency domain induced by wavelet-based (left)
and shearlet-based (right) systems. Gray areas indicate the essential frequency
support of a single atom. Furthermore, the partition of the frequency plane
into four cones and a low-frequency square used in definition 2.1.16 is depicted
on the right side (the images are modified but originally taken from [13] and
http://en.wikipedia.org/wiki/Shearlet).

The cone-adapted discrete shearlet system SH(φ, ψ, ψ̃) is then given by

SH(φ, ψ, ψ̃) = Φ(φ) ∪Ψ(ψ) ∪ Ψ̃(ψ̃),

where

Φ(φ) =
{
φm = φ(· −m) : m ∈ Z2

}
,

Ψ(ψ) =
{
ψj,k,m = 2j

3

4ψ (SkAj · −m) : j ∈ N0, |k| <
⌈
2
j
2

⌉
, m ∈ Z2

}
,

Ψ̃(ψ̃) =
{
ψ̃j,k,m = 2j

3

4 ψ̃
(
ST

k Ãj · −m
)
: j ∈ N0, |k| <

⌈
2
j
2

⌉
, m ∈ Z2

}
.

Again, the question comes up whether there exist functions ψ, ψ̃ and φ such that the
system SH(φ, ψ, ψ̃) forms a frame for L2(R2). As we would expect by now, the answer
is yes. In fact, with an aptly chosen scaling function φ and by projecting the sets Ψ(ψ)
and Ψ̃(ψ̃) onto their respective frequency cones, a frame with framebounds A = B = 1
(compare (2.2)) can be constructed from any classical shearlet ψ.

Theorem 2.1.17 (Shearlet-based frame for L2(R2)). Let ψ ∈ L2(R2) be a classical
shearlet and let a scaling function φ ∈ L2(R2) be chosen such that

∣∣∣φ̂(ξ)
∣∣∣
2

+
∑

j≥0

∑

|k|≤⌈2j/2⌉

∣∣∣ψ̂(ST

−kA−jξ)
∣∣∣
2

1C +
∑

j≥0

∑

|k|≤⌈2j/2⌉

∣∣∣ ˆ̃ψ(ST

−kÃ−jξ)
∣∣∣
2

1C̃ = 1,
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for almost every ξ ∈ R2, where the set C denotes the horizontal frequency cones C =

{(ξ1, ξ2) ∈ R2 :
∣∣∣ ξ2ξ1
∣∣∣ ≤ 1} and C̃ denotes the vertical frequency cones C̃ = R2 \ C. Let

furthermore the sets Φ(φ),Ψ(ψ), Ψ̃(ψ̃) ⊂ L2(R2) be given as in definition 2.1.16 and
PCΨ(ψ) be the projection of Ψ(ψ) onto C and PC̃Ψ̃(ψ̃) be the projection of Ψ̃(ψ̃) onto
C̃. Then, the union

Φ(φ) ∪ PCΨ(ψ) ∪ PC̃Ψ̃(ψ̃)

is a frame for L2(R2) with frame bounds A = B = 1 (compare (2.2)).

Proof. See [24].

We now hope that the error of N -term approximations of cartoon-like image functions
provided by such shearlet frames will decay faster than it does with wavelet based
constructions (compare example 2.1.14) and maybe even optimally fast in the sense of
definition 2.1.4. Indeed, when repeating the computation carried out with wavelets in
figure 2.7 with shearlets, the coefficients decay visibly faster in a neighborhood of the
discontinuity when increasing the scaling parameter j (see figure 2.10). It was in fact
shown by Guo and Labate in 2007 in the case of bandlimited7 shearlet generators [25]
and by Kutyniok and Lim in 2011 for shearlet generators with compact support in the
time domain [26] that shearlet frames of the form 2.1.16 can provide optimally sparse
approximations of cartoon-like image functions up to a log factor.

Figure 2.10: The lower right row shows the magnitudes of the shearlet coefficients
corresponding to the digital two-dimensional shearlets displayed above. The coefficients
were obtained from a digital shearlet transform of the two-dimensional step function
shown left, computed with ShearLab 3D [23]. In contrast to the wavelet case (see
figure 2.7), the shearlet atoms are scaled anisotropically and the thereby increased
directional sensitivity when going up the ladder of scales induces a visibly faster decay
of the shearlet coefficients in the neighborhood of the discontinuity.

Theorem 2.1.18 (Optimally sparse shearlet-based approximations of cartoon-like im-
ages). Let ψ, ψ̃ ∈ L2(R2) be aptly chosen shearlet generators and φ ∈ L2(R2) be an aptly
chosen scaling function (e.g. like in theorem 2.1.17, for more details see [2, p.175])

7A function is called bandlimited if its Fourier transform is compactly supported, i.e., the used
frequency bands are limited.
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and let the cone-adapted discrete shearlet system SH(φ, ψ, ψ̃) ⊂ L2(R2) (see definition
2.1.16) be a frame for L2(R2). Then, apart from a log-factor, the frame SH(φ, ψ, ψ̃)
provides optimally sparse approximations of cartoon-like image functions (see definition
2.1.2) in the sense of definition 2.1.4, that is

‖f − fN‖ . N−1 log(N)3/2, (2.36)

for all cartoon-like image functions f ∈ L2(R2), where fN denotes the N-term approx-
imation associated with the N largest shearlet coefficients in magnitude provided by
SH(φ, ψ, ψ̃).

Proof. See [2, p. 175ff.].

So up to the negligible logarithmic factor in (2.36), shearlet frames do in fact provide
in some sense optimal representations of cartoon-like image functions and hence can
- in accordance with the argument laid out at the very beginning of this chapter - be
considered an interesting model of the functional behavior of the primary visual cortex,
where certain neurons in fact encode a time-frequency decomposition.

2.2 Wavelet and Shearlet Transforms

Having defined wavelet orthonormal bases in section 2.1.2 and shearlet frames in section
2.1.3, we now formally fix the notion of shearlet and wavelet transforms. In principal,
performing a shearlet or wavelet transform is nothing but the application of the syn-
thesis operator (see equation 2.4) associated with the respective basis or frame to a
function in L2(Rd).

Definition 2.2.1 (One-dimensional discrete wavelet transform). Let ψ ∈ L2(R) be
a wavelet associated with a multiresolution analysis (see definition 2.1.9 and theorem
2.1.10), then the one-dimensional discrete wavelet transform associated with ψ is given
by

f 7→ (Wψf) (j,m) = 〈f, ψj,m〉, (2.37)

where f ∈ L2(R), j ∈ Z, m ∈ Z and the wavelets ψj,m are given as in theorem 2.1.10.

Definition 2.2.2 (Two-dimensional discrete wavelet transform). Let φ ∈ L2(R) be the
scaling function of a multiresolution analysis (see definition 2.1.9) and ψ ∈ L2(R) be
the associated wavelet (see theorem 2.1.10), then the discrete two-dimensional wavelet
transform associated with φ and ψ is given by

f 7→ (Wφ,ψf) (k, j,m) = 〈f, ψ(k)
j,m〉, (2.38)

where f ∈ L2(R2), k ∈ {1, 2, 3}, j ∈ Z, m ∈ Z2 and the wavelets ψ
(k)
j,m are given as in

theorem 2.1.13.
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Definition 2.2.3 (Discrete cone-adapted shearlet transform). Let ψ, ψ̃ ∈ L2(R2) be
shearlet generators and φ ∈ L2(R2) be a scaling function such that SH(φ, ψ, ψ̃) (see def-
inition 2.1.16) is a frame for L2(R2), then the discrete cone-adapted shearlet transform
associated with φ, ψ and ψ̃ is given by

f 7→
(
SHφ,ψ,ψ̃f

)
(m′, (j, k,m), (j̃, k̃, m̃)) =

(
〈f, φm′〉, 〈f, ψj,k,m〉, 〈f, ψ̃j̃,k̃,m̃〉

)
, (2.39)

where j, j̃ ∈ N0, k, k̃ ∈
{
−
⌈
2
j
2

⌉
, . . . ,

⌈
2
j
2

⌉}
, m′, m, m̃ ∈ Z2 and the functions

φm′ , ψj,k,m and ψ̃j̃,k̃,m̃ are given as in definition 2.1.16.

2.3 Complex Wavelet and Shearlet Transforms

In section 2.1, we have argued rather extensively that a discrete cone-adapted shearlet
transform can in some sense be considered optimal to decompose natural images and
hence might just be the time-frequency decomposition we are looking for. But as
we will see in chapter 3, the primary visual cortex is not only populated by cells
essentially encoding linear filters, so-called simple cells, but also cells whose behavior
seems to be a nonlinear integration of simple cell responses, so-called complex cells.
While these complex cells have been found to be selective to changes in rotation and
freqeuncy (modeled by the shear matrices Sk and the scaling matrices Aj in the context
of shearlets), their responses are to a certain extent invariant to translations, that is,
to spatial phase modulations [27, 28].

Naturally, this raises the question of how the responses of such shift invariant complex
cells can be modeled, assuming that a discrete cone-adapted shearlet transform in
fact captures the essential functional behavior of the more basal simple cells. As we
have already discussed at the very beginning of this chapter and formally shown in
remark 2.1.7, the complex valued Fourier transform (see theorem 2.1.6) is perfectly
shift invariant in the absolute value, that is, when considering a sine and a cosine wave
having the same frequency ξ and nonlinearly combining them by

√
sin(ξ·)2 + cos(ξ·)2,

we always end up with the radius of the unit circle, that is 1. Furthermore, both the
wavelet admissibility condition (2.16) and the shearlet admissibility condition (2.33)
are solely based on the absolute value of the Fourier transform of a candidate function,
whereas in definition 2.1.15, the classical shearlet is purely described by the structure
of the magnitude response of the Fourier transforms of functions ψ1 and ψ2. Also, the
action of scaling or shearing a shearlet generator can be characterized by the respective
changes in the frequency plane (see figures 2.8 and 2.9). Hence, a worthwile approach
to the construction of shift invariant responses from wavelet and shearlet atoms seems
to be to again exploit the special relationship of sine and cosine waves. That is, we will
generalize the structure of the Fourier modes eiξ· = cos(ξ·) + i sin(ξ·) to wavelets and
shearlets in the sense that for each shearlet (or wavelet) ψ, we will consider a second
shearlet ψ⋆ for which the roles of sine and cosine are reversed. Meaning that both ψ
and ψ⋆ will have the same Fourier tansform in the absolute value but the amount of
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cosine waves present in ψ⋆ will be equal to the amount of sine waves in ψ and vice
versa.

When considering the one-dimensional case (i.e. the wavelet case), a bounded linear
operator on L2(R) performing just that is given by the Hilbert transform.

Definition 2.3.1 (Hilbert transform). Let f ∈ L2(R), then the Hilbert transform of f
is given by

(Hf)(x) = 1

π

∫

R

f(t)

t− x
dt (2.40)

or equivalently in the Fourier domain

F(Hf)(ξ) = −isgn(ξ)f̂(ξ), (2.41)

where i denotes the imaginary unit and sgn the sign function.

Note that in equation (2.40), the denominator in the integrand is zero for x = t.
Hence, the integral should be interpreted as a Cauchy principal value. Furthermore,
equation (2.40) can also be written as a convolution, namely − 1

π·
∗f . The equivalence of

(2.40) and (2.41) therefore follows from F
(
1
·

)
= −πisgn(·) and the Fourier convolution

theorem.

The Hilbert transform is a bounded and linear operator on L2(R) and commutes with
translations and positive dilations (see [29, p. 55]), that is

(Hf(· −m)) = (Hf)(· −m) (2.42)

and

(Hf(a·)) = (Hf)(a·) (2.43)

for all f ∈ L2(R), m ∈ R and a ∈ R+. In fact, any bounded linear operator on
L2(R) which commutes with translations, positive dilations and anticommutes with
the reflection f(·) 7→ f(−·) is a constant multiple of the Hilbert transform [29, p. 55].
Of course, these commutation properties will become important when defining complex
wavelet or shearlet systems, as they indicate that it will suffice to apply the Hilbert
transform solely to generator functions. But firstly, let us elaborate on the earlier
stated claim that the Hilbert transform interchanges sine and cosine waves.

Remark 2.3.2 (The Hilbert transform interchanges sine and cosine). Let f ∈ L1(R)∩
L2(R) with f being real-valued, then

(F−1f̂)(x) =
1

π

∫ ∞

0

Re(f̂(ξ)) cos(ξx)− Im(f̂(ξ)) sin(ξx)dξ (2.44)

and

(F−1Ĥf)(x) = 1

π

∫ ∞

0

Re(f̂(ξ)) sin(ξx) + Im(f̂(ξ)) cos(ξx)dξ. (2.45)
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Proof. We know that for each real-valued function, f̂ is Hermitian, i.e. f̂(ξ) = f̂(−ξ)
and hence compute

(F−1f̂)(x) =
1

2π

∫

R

f̂(ξ)eixξdξ

=
1

2π

∫ ∞

0
f̂(ξ) (cos(xξ) + i sin(xξ)) +

1

2π

∫ ∞

0
f̂(ξ) (cos(xξ)− i sin(xξ)) dξ

=
1

2π

∫ ∞

0
Re(f̂(ξ)) (cos(xξ) + i sin(xξ)) + Im(f̂(ξ)) (i cos(xξ)− sin(xξ)) dξ

+
1

2π

∫ ∞

0
Re(f̂(ξ)) (cos(xξ)− i sin(xξ))− Im(f̂(ξ)) (i cos(xξ) + sin(xξ)) dξ

=
1

π

∫ ∞

0
Re(f̂(ξ)) cos(ξx)− Im(f̂(ξ)) sin(ξx)dξ

and with the definition of the Hilbert transform in the frequency domain (2.41),

(F−1Ĥf)(x) =
1

2π

∫

R

−i sgn(ξ)f̂(ξ)eixξdξ

=
1

2π

∫ 0

−∞
if̂(ξ)eixξdξ − 1

2π

∫ ∞

0
if̂(ξ)eixξdξ

=
1

2π

∫ ∞

0
if̂(ξ) (cos(xξ)− i sin(xξ)) dξ − 1

2π

∫ ∞

0
if̂(ξ) (cos(xξ) + i sin(xξ)) dξ

=
1

2π

∫ ∞

0
Re(f̂(ξ)) (i cos(xξ) + sin(xξ)) + Im(f̂(ξ)) (cos(xξ)− i sin(xξ)) dξ

+
1

2π

∫ ∞

0
Re(f̂(ξ)) (−i cos(xξ) + sin(xξ)) + Im(f̂(ξ)) (cos(xξ) + i sin(xξ)) dξ

=
1

π

∫ ∞

0
Re(f̂(ξ)) sin(ξx) + Im(f̂(ξ)) cos(ξx)dξ

Motivated by the above computation and given the fact that the Hilbert transform
acts nicely on functions in L2(R), that is it commutes with scalings and translations,
we will - analogous to the Fourier modes - now consider so-called complex wavelets of
the form

ψc = ψ + iHψ. (2.46)

This construction, also denoted the ’complex signal’ of ψ, will allow us to decompose

the underlying wavelet ψ into an amplitude |ψc| and a phase Re
(
ψc

|ψc|

)
, that is,

ψ(x) = |ψc(x)|Re
(
ψc(x)

|ψc(x)|

)
(2.47)

for x ∈ R, where the amplitude serves as a slowly varying envelope and the oscillatory
behavior of ψ is encoded in the phase (for an illustration, see figure 2.11). Another in-
teresting observation is that the complex signal ψc only consists of positive frequencies,
that is ψ̂c(ξ) = 0 for almost every ξ < 0.
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Figure 2.11: The Mexican hat wavelet (black), its Hilbert transform (blue), and the
amplitude envelope induced by the corresponding complex wavelet, defined in equation
(2.46) (red). The Mexican hat wavelet is symmetric, hence its Fourier transform will be
real-valued, i.e. only cosine waves are present. By remark 2.3.2, the Hilbert transform
of the Mexican hat wavelet therefore only consists of sine waves and is hence odd-
symmetric (computed using the MATLAB Wavelet Toolbox).

Remark 2.3.3 (The complex signal has no negative frequencies). Let ψ ∈ L1(R) ∩
L2(R), then

ψ̂c(ξ) = F (ψ + iHψ) (ξ) =
{
2ψ̂(ξ) if ξ > 0

0 else
(2.48)

for almost every ξ ∈ R.

Proof. Using the Fourier domain definition of the Hilbert transform (see (2.41)), we
simply compute

F (ψ + iHψ) (ξ) = ψ̂(ξ) + iĤψ(ξ)
= ψ̂(ξ)(1 + sgn(ξ))

=

{
2ψ̂(ξ) if ξ > 0

0 else
.

We are now ready to define one-dimensional complex wavelet systems and the corre-
sponding transforms.

Definition 2.3.4 (One-dimensional discrete complex wavelet transform). Let ψ ∈
L2(R) be a real-valued wavelet associated with a multiresolution analysis (see definition
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2.1.9 and theorem 2.1.10), then the discrete complex wavelet system associated with ψ
is given by the set

{
ψc

j,m = ψj,m + i(Hψ)j,m : (j,m) ∈ Z× Z
}
, (2.49)

where H denotes the Hilbert transform (see definition 2.3.1) and the functions ψj,m and
(Hψ)j,m are defined as in theorem 2.1.10.

Furthermore, the corresponding one-dimensional discrete complex wavelet transfrom is
given by

f 7→
(
Wc

ψf
)
(j,m) = 〈f, ψcj,m〉, (2.50)

where f ∈ L2(R), j ∈ Z and m ∈ Z2.

Note that the analysis of square integrable functions via complex-valued transforms
similar to (2.50) has already been considered by Gabor [14], Grossmann and Morlet [30],
Kingsbury [31] and many others. A great introduction and comprehensive analysis of
the theory and applications of amplitude and sign decompositions induced by complex
wavelet transforms was given by Martin Storath in his PhD thesis [3].

Having defined complex wavelets, the next step is to generalize the Hilbert transform
to two dimensions and construct complex shearlets analogously. The most prominent
generalization of the Hilbert transform to higher dimensions is based on the Fourier-
based definition (2.41) and termed partial Hilbert transform.

Definition 2.3.5 (Partial Hilbert transform). Let ξ0 ∈ R2 \ {0} and f ∈ L2(R2), then
the partial Hilbert transform of f in direction ξ0 is given by

F(Hξ0f)(ξ) = −i sgn(〈ξ, ξ0〉)f̂(ξ), (2.51)

where sgn the sign function.

For a real-valued shearlet generator ψ ∈ L2(R2), we will therefore consider the complex
shearlet generator

ψc = ψ + iHξ0ψ (2.52)

with ξ0 ∈ R2 \ {0} (later, we will choose ξ0 to be (1, 0)T or (0, 1)T), which allows for
the same phase/amplitude decomposition we already observed in the one-dimensional
case (see equation (2.47)).

While the Fourier transform of complex wavelets induced by the one-dimensional
Hilbert transform vanishes at all negative frequencies, the same is true for the par-
tial Hilbert transform with respect to the half space defined by 〈ξ, ξ0〉 < 0.

Remark 2.3.6 (The two-dimensional complex signal has all frequencies contained in
a half space). Let ψ ∈ L1(R2) ∩ L2(R2) and ξ0 ∈ R2 \ {0} then

ψ̂c(ξ) = F (ψ + iHξ0ψ) (ξ) =

{
2ψ̂(ξ) if 〈ξ, ξ0〉 > 0

0 else
(2.53)

for almost every ξ ∈ R.
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Proof. Analogous to remark 2.3.3.

We have already discussed that in the one-dimensional case, the Hilbert transform
commutes with scalings and translations. For the partial Hilbert transform, we will
consider a more general result given by Storath in [3, p. 19].

Lemma 2.3.7 (The partial Hilbert transform commutes with linear invertible map-
pings). Let ξ0 ∈ R2 \ {0} and A : Rn → Rn be a linear and invertible mapping. Then
for any f ∈ L2(R2), A commutes with the partial Hilbert transform, that is

A(Hξ0f) = HAξ0(Af). (2.54)

Proof. See Storath [3, p. 19].

In particular, due to
sgn(〈ξ, λξ0〉) = sgn(〈ξ, ξ0〉)

for all coefficients λ > 0, it follows that

A(Hξ0f) = Hξ0(Af)

if ξ0 is an eigenvector of A associated with a positive eigenvalue. Hence,

Sk

(
1
0

)
=

(
1 k
0 1

)(
1
0

)
=

(
1
0

)
,

where Sk denotes the shear matrix defined in equation (2.34), implies that the partial
Hilbert transform H(1,0)T commutes with the shearing operator Sk for all k ∈ Z. So
the partial Hilbert transform commutes with all three actions performed on shearlet
generators, that is translations, scalings and shearings and we are ready to define
discrete cone-adapted complex shearlet systems and the associated transforms.

Definition 2.3.8 (Discrete cone-adapted complex shearlet transform). Let ψ, ψ̃ ∈
L2(R2) be real-valued shearlet generators and φ ∈ L2(R2) be a scaling function such
that SH(φ, ψ, ψ̃) (see definition 2.1.16) is a frame for L2(R2), then the discrete cone-
adapted complex shearlet system associated with φ, ψ and ψ̃ is given by the set

SHc(φ, ψ, ψ̃) = Φ(φ) ∪Ψc(ψ) ∪ Ψ̃c(ψ̃),

where

Φ(φ) =
{
φm = φ(· −m) : m ∈ Z2

}
,

Ψc(ψ) =
{
ψc

j,k,m = ψj,k,m + i(H(1,0)Tψ)j,k,m : j ∈ N0, |k| <
⌈
2
j
2

⌉
, m ∈ Z2

}
,

Ψ̃c(ψ̃) =
{
ψ̃c

j,k,m = ψ̃j,k,m + i(H(0,1)Tψ̃)j,k,m : j ∈ N0, |k| <
⌈
2
j
2

⌉
, m ∈ Z2

}
.

The functions ψj,k,m, (H(1,0)Tψ)j,k,m, ψ̃j,k,m and (H(0,1)T ψ̃)j,k,m are given as in definition
2.1.16.
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Furthermore, for f ∈ L2(R2) the corresponding discrete complex cone-adapted shearlet
transfrom is given by

f 7→
(
SHc

φ,ψ,ψ̃
f
)
(m′, (j, k,m), (j̃, k̃, m̃)) =

(
〈f, φm′〉, 〈f, ψc

j,k,m〉, 〈f, ψ̃c

j̃,k̃,m̃
〉
)
, (2.55)

with j, j̃ ∈ N0, k, k̃ ∈
{
−
⌈
2
j
2

⌉
, . . . ,

⌈
2
j
2

⌉}
and m′m, m̃ ∈ Z2.

Figure 2.12: The upper right row shows a symmetric digital shearlet filter, its odd-
symmetric Hilbert transform and the absolute value of the corresponding complex
shearlet. Below, the respective coefficients - obtained from a digital complex shearlet
transform of the image shown on the left - are plotted (computed using ShearLab 3D
[23]).

As the absolute value of the Fourier transform is invariant under the Hilbert transform,
ψ ∈ L2(R2) satisfying the shearlet admissibility condition 2.33 implies that Hξ0ψ is
an admissible shearlet as well. Furthermore, it holds for any classical shearlet (see
definition 2.1.15) that its Hilbert transform is again a classical shearlet and if a cone-
adapted shearlet system SH(φ, ψ, ψ̃) is a frame for L2(R2) according to theorem 2.1.17,
then so is SH(φ,H(1,0)Tψ,H(0,1)T ψ̃).

Finally, as it was already mentioned in figure 2.11, by virtue of interchanging cosines
and sines, any symmetric shearlet generator ψ ∈ L2(R2) will have an odd-symmetric
Hilbert transform Hξ0ψ and we will make good use of this symmetry relationship when
considering complex shearlet transforms for the task of edge detection in section 4.1.

For an illustration of coefficients computed using a complex discrete cone-adapted
shearlet transform, please refer to figure 2.12.
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Chapter 3

Complex Shearlet Transforms and the

Visual Cortex

At the beginning of the previous chapter, we have claimed that at the early stages of
human visual processing, some kind of time-frequency decomposition is performed. In
this chapter, we will briefly examine the neurophysiological evidence supporting this
claim. That is, we will give a short introduction into what is known about the shape
and structure of the receptive fields1 of neurons in the primary visual cortex (V1).

The first breakthrough concerning the description of the receptive fields of V1 neurons
was made in 1960 when Nobel prize winners Hubel and Wiesel quite accidently discov-
ered that neurons in V1 respond to moving elongated bars of light rather than blobs
and that their response highly depends on the orientation of such bars [32]. In their
experiments, electrodes measured the firing rate of neurons in the primary visual cortex
of a cat who was exposed to visual stimuli presented via a slide projector. While at
first, they failed to elicit any significant responses, they eventually discovered that when
changing the slides, the thereby induced shadow line caused measurable excitations in
the neurons connected to the electrode. After successfully continuing their experiments
with accordingly adapted stimuli, they made another interesting discovery. While for
some neurons, elongated light bars at the right orientation had an excitatory effect
throughout their entire receptive field, for others, the light bars seemed to act excita-
tory only in the center of their receptive field but antagonistic when moving through
the outer regions of their receptive field (i.e. the neurons started firing after the light
bars had passed, see figure 3.1). That is, some neurons reacted to elongated light bars
within their receptive field invariant to the precise location of the bars while the re-
sponse of others was indeed sensitive to translations. Hubel and Wiesel conjectured
that translation invariant neurons combined the responses of translation dependent
neurons and hence termed the former complex cells and the latter simple cells.

1The receptive field of a neuron is the area for which the neuron will respond to stimuli. For cells
in the primary visual cortex, this is typically a portion of the visual field whereas for sensory neurons,
the receptive field is a region of the human body.
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Figure 3.1: While the response of the complex cell is invariant to the exact location
of the light bar, a light bar placed on the outer regions of the receptive field of the
simple cell acts inhibitory and a light bar placed in the center of the receptive field of
the simple cell acts excitatory.

If one wants to model the functional behavior of the primary visual cortex, the fact that
V1 neurons are orientationally selective already suggests the use of transforms based
on possibly anisotropic atoms, such as the shearlet transforms defined in the previous
chapter. Furthermore, it was shown that neurons in the primary visual cortex are not
only orientationally sensitive but also selective with respect to spatial frequencies [33],
suggesting a multiscale approach. In fact, already in 1985, Daugman successfully fitted
two-dimensional Gabor wavelets of the form

ψ(x, y) = e−π(x−x0)
2α2+(y−y0)2β2

e−2πi(u0(x−x0)+v0(y−y0), (3.1)

to experimentally measured receptive fields of V1 neurons [34], where the parameters
(x0, y0) determine the location, the parameters (α, β) the level of anisotropicity and
the parameters (u0, v0) the spatial frequency and the orientation of ψ (see figure 3.2).

Furthermore, since Adelson and Bergen in 1985 proposed using the magnitude response
of complex-valued filters constructed from Hilbert transform pairs of even- and odd-
symmetrical linear filters to measure motion energy [35], approximating the response
of complex cells in the primary visual cortex in such a way has become a common prac-
tice. Finally, it should be noted that Polat and Norcia in 1998 collected experimental
evidence that orientation information is pooled in V1 over considerable distances along
the axis of the preferred orientation of neurons in the primary visual cortex [36], sug-
gesting a high sensitivity with respect to strongly anisotropic features.

While this short compendium of neurophysiological findings does not imply that a com-
plex discrete shearlet transform as given in definition 2.3.8 is carried out in the human
visual cortex, the fact that V1 neurons are known to be orientationally selective, sensi-
tive to spatial frequencies and that the primary visual cortex is sensitive to anisotropic
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Figure 3.2: Gabor wavelets of the form (3.1) fitted to experimentally measured re-
ceptive fields of V1 simple cells (taken from [34]).

features at the very least suggests that assuming a connection on a functional level is
a valid approach.
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Chapter 4

Applications

In this chapter, we will examine two applications of the complex discrete shearlet
transforms defined in section 2.3, namely edge detection and image quality assessment.
As it was already stated at the beginning of chapter 2, our main intuition why applying
complex shearlet transforms in such tasks might be an idea worth pursuing is the
assumption that - at least on a functional level - they provide a good model for the
behavior of certain neurons in the primary visual cortex.

4.1 Edge Detection

The history of both the mathematical analysis of edges and their computational de-
tection is long and has brought forward many models and algorithms. One of the
most prominent methods developed by Canny in 1986 [37] is essentially based on the
idea that edges are characterized by large gradients when considering images to be
differentiable functions. Multiscale approaches based on wavelets have been proposed
by Mallat and Zhong [38] while the use of magnitude responses of complex wavelet
transforms was already considered by Tu, Hwang and Ho in 2005 [39]. A contrast
invariant approach to edge detection based on the concept of phase congruency, which
will be discussed in detail in section 4.1.1, was introduced by Kovesi in 1999 [4, 40]
and further improved by Storath in his PhD thesis [3], while a similar concept using
so-called monogenic wavelets (i.e. complex wavelets based on the Riesz transform) was
introduced by Felsberg and Sommer [41]. Furthermore, a multiscale approach based
on band-limited shearlets was proposed by Yi, Labate, Easley and Krim in 2009 [42].

In most edge detection algorithms, it is assumed that points lying on an edge can be
found by looking for local maxima of the absolute value of the gradient1. Naturally,
such an approach requires the image to be differentiable, which is typically enforced
by beforehand convolving it with a Gaussian kernel. While on the plus side, this will

1For a more elaborate edge model based on the connection between the boundary of a geometric
object and the wavefront set of its associated function, see Storath [3, p. 56ff.].
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Figure 4.1: For edge detection, we will assume images to be of a cartoon-like nature,
as is the image depicted on the left. Our goal is to assert a value ranging from 0 to 1 to
any pixel, such that 1 indicates the presence of an edge and 0 a smooth neighborhood.
In particular, we want this value to be independent of the intensity of contrast between
two regions separated by an edge. The image to the right shows a handmade desirable
outcome of such an algorithm where black equals 1 and white equals 0.

inhibit an algorithms sensitivity to noise, to a certain extent, it will also decrease the
sharpness of edges present in the image.

In chapter 2, we have exhaustively made the case that discrete shearlet transforms
are in some sense optimal for analyzing cartoon-like image functions (see definition
2.1.2 and theorem 2.1.18), a class of functions we assume to provide a good model for
natural images. Following this line of thought, we will again consider images to be of a
cartoon-like nature and hence define edges simply as the (possibly piecewise) C2-smooth
boundary curves, separating two smooth regions, as given in the definition of cartoon-
like image functions. Hence, to us, edges will be characterized by the geometrical
structure induced by a boundary curve and not by the amount of contrast between
the two regions the curve separates, as it is the case in gradient-based methods. That
is, the algorithm we have in mind should be invariant to changes in contrast, as long
as they leave the shape of the separating boundary curves intact. Furthermore, it
should be noted that the definition of cartoon-like image functions does not account
for point singularities, or in general, types of discontinuities which are not separating
two regions but only ripping through an otherwise smooth function, like a single line
drawn trough a picture. When going to the digital realm, this means that an edge
detection algorithm based on the cartoon-like image model might not be very sensitive
to structures only extending over very few pixels, like lines or points.

Also, we would like our algorithm to give us the possibility of discriminating between
edges of a very sharp and clear nature on the one hand and edges with a less structured
geometry on the other hand. To sum this up, for a given image, we will look for a
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computational rule asserting a value ranging from 0 to 1 to each point on the real
plane (or the pixel domain in the digital case), where a value close to 1 indicates the
presence of an edge, whereas a value close to 0 indicates a smooth neighborhood. This
value should hence depend on features describing the structure and geometry of an
edge, namely the smoothness of the separating boundary curve and the smoothness of
the regions it separates but it should be invariant to contrast, that is, to the step size
between two neighboring regions.

Eventually, we will derive such a rule by considering the different behavior of coefficients
associated with symmetric and odd-symmetric shearlets aligned with an edge when
going up the ladder of scales. But before, we will examine Kovesi’s application of
phase congruency to edge detection, which significantly inspired the complex shearlet-
based algorithm developed later and already provides us with a contrast invariant way
of detecting features in images.

4.1.1 Phase Congruency

Let us consider a real-valued function f ∈ L2(−π, π), then by theorem 2.1.5, we know
that f can be written as

f(x) =
1

2π

∑

n∈Z

〈f, ein·〉einx

for almost every x ∈ [−π, π]. Let us denote cn = 〈f, ein·〉 and consider the polar form,
i.e. cn = |cn| eiϕn , where ϕn denotes the respective phase angle. We get

f(x) =
1

2π

∑

n∈Z

|cn| eiϕneinx

=
1

2π

∑

n∈Z

|cn| ei(nx+ϕn)

=
1

2π

∑

n∈Z

|cn| (cos(nx+ ϕn) + i sin(nx+ ϕn))

=
1

2π

∑

n∈Z

|cn| cos(nx+ ϕn)

=
|c0|
2π

+
1

π

∑

n∈N+

|cn| cos(nx+ ϕn)

as f is real-valued. Hence, at each point x, each term of the Fourier reconstruction
is associated with an angle nx + ϕn, which depends on the reconstructed function f
via the phase angle of the complex-valued inner product 〈f, e·in〉. It was observed by
Morrone et al. [43, 44] that at the location of features like jump-discontinuities, the
values nx+ϕn are roughly the same for all n ∈ N+ and proposed the following measure
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termed phase congruency

PC(x) = max
µ∈[0,2π]

∞∑
n=1

|cn| cos(nx+ ϕn − µ)

∞∑
n=1

|cn|
, (4.1)

where cn and ϕn are defined as above.

To give an example, let us again consider the step function f = 1[−π,0), defined on the
interval [−π, π]. As we have already computed in example 2.1.8, the Fourier coefficients
are given by cn = 〈1[−π,0), e

in·〉 = 2i
n

if n is odd and cn = 0 if n is even. Hence, for n
odd and positive, we have cn = |cn| ei

π
2 . That is, at x = 0, the values

nx+ ϕn = ϕn =
π

2

are the same for all odd integers, implying phase congruency at this location. This is
illustrated in figure 4.2.

Figure 4.2: The left plot shows the functions |cn| cos(·n + ϕn) for n ∈ {1, 3, 5, 7},
where cn = 〈1[−π,0), e

·in〉 and ϕn denotes the phase angle of cn. The right plot displays
the sum of the functions shown left. Please note that the phase congruency at 0 on
the left coincides with the formation of a jump discontinuity at 0 on the right.

While phase congruency is indeed a contrast invariant measure, finding the angle
µ ∈ [0, 2π] for which (4.1) attains its maximum is a tedious task. Note that by
computing (4.1), one tries in fact to observe the local effects of the ratio between
sine and cosine waves of the same frequency, as given by the phase angle ϕn. Due
to the already discussed nature of the Fourier modes however, this phase angle is an
inherently unlocalized property. Hence, it should be no surprise to us that an easily
computable estimate of the phase congruency measure can be defined by considering
complex wavelets, which are not only localized but whose complex-valued coefficients
also encode the local relationship between sine and cosine.

These considerations lead us directly to the complex wavelet-based phase congruency
estimate introduced by Kovesi in [40].
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Definition 4.1.1 (Complex wavelet-based phase congruency measure). Let f ∈ L2(R),
J ∈ N, and ψc

aj ,x be complex wavelets scaled by the parameter aj ∈ R+ and centered
around x ∈ R given by

ψc

aj ,x = ψaj ,x + iHψaj ,x,
where

ψaj ,x = a
− 1

2

j ψ

( · − x

aj

)

with ψ ∈ L2(R) being a real-valued symmetric wavelet and Hψ being its odd-symmetric
Hilbert transform (see section 2.3). Then, the one-dimensional complex wavelet-based
phase congruency estimate of f at the point x ∈ R is defined as

PCψc(f, x) =

∣∣∣∣∣
J∑
j=1

〈f, ψc

aj ,x
〉
∣∣∣∣∣

J∑
j=1

∣∣∣〈f, ψc
aj ,x〉

∣∣∣+ ǫ

, (4.2)

where ǫ > 0 prevents division by zero.

Note that the symmetry condition imposed on ψ implies that ψ̂ will be purely real-
valued, that is, ψ will be constructed solely from cosine waves, whereas Hψ only
consists of sine waves. Hence, assuming perfect phase congruency at a point x, we

have 〈f, ψc
aj ,x〉 =

∣∣∣〈f, ψc
aj ,x〉

∣∣∣ eiϕ for some fixed angle ϕ ∈ [0, 2π] and all j ∈ N and get

PCψc(f, x) =

∣∣∣∣∣
J∑
j=1

〈f, ψc
aj ,x

〉
∣∣∣∣∣

J∑
j=1

∣∣∣〈f, ψc
aj ,x〉

∣∣∣

=

|eiϕ|
J∑
j=1

∣∣∣〈f, ψc
aj ,x

〉
∣∣∣

J∑
j=1

∣∣∣〈f, ψc
aj ,x

〉
∣∣∣

= 1.

Naturally, the more the phase angles differ on various scales j, the more the complex-
valued coefficients 〈f, ψc

aj ,x〉 will cancel each other out, moving PCψc(f, x) closer to
zero.

Hence, PCψc(f, x) is a contrast invariant measure ranging from 0 to 1 and thus already
satisfies two of the desiderata stated at the beginning of section 4.1. Furthermore,
by considering two-dimensional complex wavelets not only on different scales but -
similarly to the shearlet case - also with different orientations, definition 4.1.1 can
readily be generalized to the two-dimensional case [40].
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Definition 4.1.2 (Two-dimensional complex wavelet-based phase congruency mea-
sure). Let f ∈ L2(R2), J ∈ N, K ∈ N and ψc

aj ,ϕk,x
be complex wavelets scaled by the

parameter aj ∈ R+, rotated by ϕk ∈ [0, 2π] and centered around x ∈ R2 given by

ψc

aj ,ϕk,x
= ψaj ,ϕk,x + iHψaj ,ϕk,x,

where

ψaj ,ϕk,x = a−1
j ψ

(
Rϕk

· − x

aj

)

with ψ ∈ L2(R2) being a real-valued symmetric wavelet, Hψ being its odd-symmetric
Hilbert transform (see section 2.3) and a rotation matrix

Rϕk =

(
cos(ϕk) − sin(ϕk)
cos(ϕk) sin(ϕk)

)
.

Then, the two-dimensional complex wavelet-based phase congruency estimate of f at
the point x ∈ R2 is defined as

PC2D

ψc (f, x) =

K∑
k=1

∣∣∣∣∣
J∑
j=1

〈f, ψc
aj ,ϕk,x

〉
∣∣∣∣∣

K∑
k=1

J∑
j=1

∣∣∣〈f, ψc
aj ,ϕk,x

〉
∣∣∣+ ǫ

, (4.3)

where ǫ > 0 prevents division by zero.

Please note that for implementing the phase congruency measure just defined, Kovesi
proposes to use two-dimensional polar-separable Gaussian wavelets considered on four
scales (i.e. J = 4) and with six possible orientations (i.e. K = 6) separated by
30◦ [40]. Furthermore, a MATLAB function computing the two-dimensional complex
wavelet-based phase congruency measure can be downloaded from [45].

It would seem that by replacing complex wavelets with complex shearlets and rotations
with shearings, the phase congruency measure given in definition 4.1.2 could easily be
generalized to shearlets. One might even think that due to the superiority of shearlets
over wavelets regarding the representation of two-dimensional geometric features, a
shearlet-based phase congruency measure would provide better and sharper localiza-
tions of features in images. Sadly, while in principle the described generalization is of
course possible, figure 4.3 illustrates that using complex shearlets for phase congruency
measurements does not bring any improvements. In fact, the contrary is true.

The main reason why - against our first intuition - shearlets are inferior to wavelets
with respect to phase congruency measurements is that phase congruency only indicates
the presence of geometrical features but is in itself not a geometrical property. The
objective of the complex wavelet-based formula (4.3) is to estimate the local behavior of
the Fourier atoms when changing the freqeuncy and it succeeds in doing so by iteratively
considering only small portions of the frequency plane, given by the essential frequency
support of the complex wavelets ψc

aj ,ϕk,x
. When applying shearlets, on the other hand,
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Figure 4.3: We compare the complex wavelet-based phase congruency measure (see
definition 4.1.2) to its complex shearlet-based counterpart. With both the natural
and the artificial image, the wavelet-based phase congruency measure provides a much
more precise display of the significant features present in the images. Note that in
both methods, soft thresholding was applied to the values |

∑J
j=1〈f, ψc

aj ,ϕk,x
〉| in the

numerator of equation (4.3) for the purpose of noise reduction. For more details on
phase congruency and noise, see [40, p. 8]. (computed using Peter Kovesis’s phasecong2
method [45] and ShearLab 3D [23])

anisotropic scaling will cause the frequency support of the complex shearlet atoms to
be increasingly elongated (see figure 2.9), resulting in much coarser phase congruency
estimates.

In the following two sections, we will develop a more geometry-driven edge detection
algorithm, which - in the spirit of the phase congruency measure - will also be con-
trast invariant and based on the interplay of real-valued symmetric atoms and their
odd-symmetric Hilbert transforms. Again, we first consider the one-dimensional case,
that is, the detection of jump singularities in piecewise smooth functions by applying
complex wavelets.

4.1.2 Detection of Singularities With Pairs of Symmetric and
Odd-Symmetric Wavelets

Our goal is to derive a computational rule which, given a piecewise smooth function
f ∈ L2(R) (see definition 2.1.1), asserts a value ranging from 0 to 1 to any point in
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the interval [0, 1] in accordance with the desiderata laid out at the beginning of this
chapter. That is, a value close to 1 should indicate the presence of a discontinuity, a
value close to 0 should indicate a smooth neighborhood and the assignment of these
values should be independent of the amount of contrast, i.e. the jump size.

To develop an intuition, let us again consider a simple step function f = c1[0, 1
2
)+d1[ 1

2
,1]

defined on the unit interval with coefficients c, d ∈ R (for an illustration, see figure 4.4).
Let furthermore ψeven ∈ L1(R) ∩ L2(R) be a real-valued and even-symmetric wavelet
such that its odd-symmetric Hilbert transform Hψeven also belongs to L1(R). While
g ∈ Lp(R) implies Hg ∈ Lp(R) for 1 < p < ∞, it should be noted at this point
that an integrable function does not necessarily have an integrable Hilbert transform.
It is, however, a necessary condition for Hψeven ∈ L1(R) that ψeven has a vanishing

mean value [46, p. 211f.], which is implied by the continuity of ψ̂even and the wavelet
admissibility condition (see equation (2.18)). Furthermore, we assume that ψeven is
normalized with respect to the L1-norm and set ψodd = Hψeven

‖Hψeven‖L1
, that is,

‖ψeven‖L1 =

∫

R

|ψeven(x)| dx = 1 and ‖ψodd‖L1 =

∫

R

∣∣ψodd(x)
∣∣ dx = 1.

We now denote

ψeven
a,x (·) = a−1ψeven

( · − x

a

)
and ψodd

a,x (·) = a−1ψodd

( · − x

a

)
(4.4)

for a scaling parameter a ∈ R+ and a translation parameter x ∈ R. Note that contrary
to the systems of wavelets considered so far, the functions ψeven

a,x and ψodd
a,x are normalized

in L1 and not in L2.

Let us now examine the behavior of coefficients associated with even- and odd-
symmetric wavelets aligned with the jump singularity, that is, we will consider 〈f, ψeven

a, 1
2

〉
and 〈f, ψodd

a, 1
2

〉 for different choices of a ∈ R+. First, we take a look at ψeven
a, 1

2

.

〈f, ψeven

a, 1
2

〉 =
∫

R

(
c1[0, 1

2
)(x) + d1[ 1

2
,1](x)

)
ψeven

a, 1
2

(x)dx

=
c

a

∫ 1

2

0

ψeven

(
x− 1

2

a

)
dx+

d

a

∫ 1

1

2

ψeven

(
x− 1

2

a

)
dx

= c

∫ 0

− 1

2a

ψeven (x) dx+ d

∫ 1

2a

0

ψeven (x) dx

= (c+ d)

∫ 0

− 1

2a

ψeven (x) dx.

Furthermore, we know that ψeven has a vanishing mean value, that is
∫

R

ψeven(x)dx = 0,
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Figure 4.4: Differently scaled symmetric and odd-symmetric wavelets located at a
jump discontinuity. All wavelets have the same L1-norm, namely 0.25.

which, due to symmetry, implies that

∫ 0

−∞

ψeven (x) dx = 0.

Thus, we get

〈f, ψeven
a, 1

2

〉 = (c+ d)

(∫ 0

−∞

ψeven (x) dx−
∫ − 1

2a

−∞

ψeven (x) dx

)

= −(c+ d)

∫ − 1

2a

−∞

ψeven (x) dx.

Obviously, the last term tends to 0 as a gets smaller, but from a practical perspective,
even more is true. Given a wavelet with sufficient decay properties in the time domain
or a wavelet having compact support, for all scales typically considered in a digital
implementation, the wavelet coefficients will almost be 0 at the location of a jump
discontinuity separating two constant functions. Of course, this will also be true for
wavelet coefficients located inside a neighborhood, in which the analyzed function is
smooth. To distinguish between these cases, we will now consider the behavior of the
coefficients associated with ψodd

a, 1
2

.
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Repeating the above computation yields

〈f, ψodd
a, 1

2

〉 = c

∫ 0

− 1

2a

ψodd (x) dx+ d

∫ 1

2a

0

ψodd (x) dx

= (c− d)

∫ 0

− 1

2a

ψodd (x) dx. (4.5)

Let us now assume that for ψodd, the integral over one half of the real line does not
vanish, i.e. we denote

Cψodd =

∫ 0

−∞

ψodd(x)dx

and assume
∣∣Cψodd

∣∣ > 0. Then, equation (4.5) can be written as

〈f, ψodd
a, 1

2

〉 = (c− d)Cψodd − (c− d)

∫ − 1

2a

−∞

ψodd(x)dx.

Again, the last term will go towards 0 for small a and similar to the symmetric case,
assuming ψodd to have a nice decay behavior or even compact support implies that the
coefficients 〈f, ψodd

a, 1
2

〉 will be almost exactly the jump size times Cψodd at the location

of a jump discontinuity separating two constant functions for all practically relevant
values a.

In conclusion, we can assume that at the location of a jump discontinuity, the coeffi-
cients associated with the even-symmetric wavelets remain close to zero on all scales
of practical interest, while the coefficients associated with the odd-symmetric wavelets
stay constant but non-zero. This observation motivates the singularity measure based
on pairs of even-symmetric and odd-symmetric wavelets given below.

Definition 4.1.3 (A singularity measure based on pairs of even-symmetric and odd-
-symmetric wavelets). Let ψeven ∈ L1(R) ∩ L2(R) be a real-valued even-symmetric
wavelet and ψodd ∈ L1(R) ∩ L2(R) be a real-valued odd-symmetric wavelet such that

Cψodd =

∫ 0

−∞

ψodd(x)dx 6= 0,

and ‖ψeven‖L1 = ‖ψodd‖L1 = 1. Let furthermore J ∈ N and (aj)j∈{1,...,J} ⊂ R+ be a
sequence of scaling parameters. Then, for f ∈ L2(R) and a point x ∈ R, a singularity
measure is given by

S̃ψeven,ψodd(f, x) =

∣∣∣∣∣
J∑
j=1

〈f, ψodd

aj ,x
〉
∣∣∣∣∣−

J∑
j=1

∣∣∣〈f, ψeven

aj ,x
〉
∣∣∣

J max
j∈{1,...,J}

∣∣∣〈f, ψodd
aj ,x

〉
∣∣∣+ ǫ

, (4.6)
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where ǫ > 0 prevents division by zero and

ψeven

aj ,x
(·) = a−1

j ψeven

( · − x

aj

)
,

ψodd

aj ,x
(·) = a−1

j ψodd

( · − x

aj

)
,

for a scaling parameter aj ∈ R+ and a translation parameter x ∈ R.

To ensure a mapping ranging from 0 to 1, we finally set

Sψeven,ψodd(f, x) = max
{
S̃ψeven,ψodd(f, x), 0

}
. (4.7)

A closer look at the numerator in equation (4.6) reveals that large coefficients associated
with odd-symmetric atoms on different scales are considered as evidence for the pres-
ence of a singularity while large coefficients associated with even-symmetric wavelets
count as counter-evidence. Keeping in mind the idea that wavelet- or shearlet-based
atoms can serve as functional models of certain cells in the primary visual cortex,
this means that in the context of singularity detection, the odd-symmetric wavelets
can be seen as excitatory cells whereas the even-symmetric wavelets assume the role
of inhibitory cells. Finally, the denominator in equation (4.6) enforces our intuition
that the coefficients associated with odd-symmetric atoms not only should be large but
also need to stay constant when changing the scale and thereby provides the desired
contrast invariance.

While our considerations started with wavelets forming a Hilbert transform pair, we
do not require this quite special relationship in definition 4.1.3. The Hilbert transform
is a useful tool for constructing pairs of even-symmetric and odd-symmetric wavelets
having the same frequency support but beyond that, there is no reason why Hilbert
transform pairs should in any sense be optimal for this specific measure. So far, the best
results have been achieved with a pair of one even-symmetric and one odd-symmetric
real-valued wavelet generator, which is associated with a tight frame2 for L2(R) and
was proposed by Selesnick and Abdelnour in [47].

Two examples of singularity detections using the measure (4.6) are given in figure 4.5.
The first example, analyzing a piecewise polynomial function, demonstrates that the
measure is indeed invariant different jump sizes and provides a precise localization of
singularities. In the second example, in which we analyze a piecewise smooth function,
our singularity measure is compared to the discrete signature proposed by Storath in
[3, p. 79ff.], which is conceptually closely related to the phase congruency measure
(4.2). While our method provides a much sharper localization of jump singularities,
it is indeed completely non-sensitive to cusps, which might be considered a disadvan-
tage. However, one can argue that when moving to the two-dimensional setting and
considering only images of a cartoon-like nature, cusps or point singularities are not
the things one is looking for when trying to detect edges.

2That is, the frame bounds (see equation (2.2)) A and B are equal.
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Figure 4.5: The singularity measure (4.6) is applied to a piecewise polynomial func-
tion and a piecewise smooth function with J = 5 and ψeven and ψodd forming a pair
of generator wavelets associated with a tight frame for L2(R) as proposed in [47]. For
the piecewise smooth function, we also compare our measure to the discrete signature
introduced by Storath in [3], where the discrete signature values are taken directly from
[3, p. 85]. Both analyzed functions were computed with [9].

4.1.3 Edge Detection With Pairs of Symmetric and Odd-
Symmetric Shearlets

In pursuit of our original goal of developing an algorithm for edge detection, we will
now generalize the singularity measure given in definition 4.1.3 to two dimensions by
applying pairs of even-symmetric and odd-symmetric shearlet generators. Since in
the two-dimensional realm, we will have to deal with anisotropic singularities, it seems
natural to consider a value similar to (4.6) for each direction by a shearlet system based
on the chosen generators. However, this raises the question of how to condense this
finite sequence of values into one single coefficient. While we can easily dispose of the
idea of taking some kind of mean, as this would to a certain extent demand the presence
of not only one but many edges, there are at least two reasonable approaches of selecting
just one value associated with a specific direction. One simple and very intuitive way
to go would certainly be to maximize over all considered directions. In praxis, however,
it turned out that more satisfying results can be achieved by preselecting a principle
direction, which can be determined by the largest coefficient in magnitude associated
with an odd-symmetric shearlet. That is, for each point in the two-dimensional plane,
we will maximize over the absolute values of all coefficients associated with an odd-
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symmetric shearlet and choose the direction of the corresponding shearlet to be the
principle direction. It should be noted that this approach slightly undermines our goal
of deriving a contrast invariant computational rule, as such a preselecting process will
cause high-contrast edges to locally dominate low-contrast edges. On the plus side,
however, this will also significantly improve the localization of corner points.

Another issue to be resolved is the fact that when considering discrete shearlet systems,
the number of different directions (i.e. the number of differently sheared shearlets)
does not remain constant over all scales. Typically, shearlet atoms associated with
high-frequency regions in the frequency plane are much more elongated than their
low-frequency counterparts, which causes an increased number of differently sheared
atoms on higher scales (compare the relationship between the parameters k and j in
the definition of a discrete cone-adapted shearlet system). We will deal with this by
limiting the number of eligible directions to the number of differently sheared atoms
on the lowest scale considered. In return, this means that for each eligible direction, it
might be necessary to consider more than one shearlet on higher scales. In this case,
we will simply choose the shearlet associated with the largest coefficient in magnitude.

For simplicity, the following definition of a shearlet-based edge measure will only use
shearlets associated with the horizontal frequency cones (see definition 2.1.16). In any
actual implementation, the shearlets belonging to the vertical frequency cones have to
be included analogously.

Definition 4.1.4 (An edge measure based on pairs of even-symmetric and odd-sym-
metric shearlets). Let ψeven ∈ L1(R2)∩L2(R2) be a real-valued even-symmetric shearlet
associated with the horizontal frequency cones and ψodd ∈ L1(R2) ∩ L2(R2) be a real-
valued odd-symmetric shearlet associated with the horizontal frequency cones such that

Cψodd =

∫ 0

−∞

∫

R

ψodd(x, y)dydx 6= 0, (4.8)

and ‖ψeven‖L1 = ‖ψodd‖L1 = 1. Let furthermore Jmin, Jmax ∈ N0 with Jmin ≤ Jmax and
denote

ψeven

j,k,x = 2
3j
2 ψeven (SkAj(· − x)) ,

ψodd

j,k,x = 2
3j
2 ψodd (SkAj(· − x))

for j ∈ {Jmin, . . . , Jmax}, |k| ≤
⌈
2
j
2

⌉
and x ∈ R2, where shear matrices Sk and scaling

matrices Aj are given as in definition 2.1.16. Then, for f ∈ L2(R2) and a point x ∈ R2,

a principle direction k∗ψeven,ψodd(f, x) ∈
{
−
⌈
2
Jmin

2

⌉
, . . . ,

⌈
2
Jmin

2

⌉}
is given by

k∗ψeven,ψodd(f, x) = argmax

k̃∈

{

−

⌈

2
Jmin

2

⌉

,...,

⌈

2
Jmin

2

⌉}

max
j∈{Jmin,...,Jmax},

k∈

{

−

⌈

2
j
2

⌉

,...,

⌈

2
j
2

⌉}

,
∣

∣

∣

∣

∣

k̃−k

⌈

2
Jmin

2

⌉⌈

2
j
2

⌉

−1
∣

∣

∣

∣

∣

≤ 1

2

∣∣〈f, ψodd

j,k,x〉
∣∣ (4.9)
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and an edge measure sensitive to edges not differing more than 45◦ from a perfectly
vertical position is defined as

Ẽψeven,ψodd(f, x) =

∣∣∣∣∣
Jmax∑
j=Jmin

〈f, ψodd

j,kj ,x
〉
∣∣∣∣∣−

j=Jmax∑
j=Jmin

∣∣∣〈f, ψeven

j,kj,x
〉
∣∣∣

(Jmax − Jmin + 1) max
j∈{Jmin,...,Jmax}

∣∣∣〈f, ψodd

j,kj,x
〉
∣∣∣+ ǫ

, (4.10)

where ǫ > 0 prevents division by zero and

kj = argmax

k∈

{

−

⌈

2
j
2

⌉

,...,

⌈

2
j
2

⌉}

,
∣

∣

∣

∣

∣

k∗
ψeven,ψodd

(f,x)−k

⌈

2
Jmin

2

⌉⌈

2
j
2

⌉

−1
∣

∣

∣

∣

∣

≤ 1

2

∣∣〈f, ψodd

j,k,x〉
∣∣ . (4.11)

To ensure a mapping ranging from 0 to 1, we finally set

Eψeven,ψodd(f, x) = max
{
Ẽψeven,ψodd(f, x), 0

}
. (4.12)

Please note that the arguments of the maxima in equations (4.9) and (4.11) are not
necessarily unique, which can for instance be dealt with by randomly selecting one of
the arguments associated with a maximum.

Furthermore, if Eψeven,ψodd(f, x) is close to 1 for a given function f ∈ L2(R2) and x ∈ R2,
the value k∗ψeven,ψodd(f, x) can be used to approximate the tangential direction of the
detected edge in the point x, as depicted in figure 4.6, where first results of a digital
implementation of the measure (4.10) are shown. The shearlets ψodd and ψeven used
in this implementation were constructed from tensor products of an even-symmetric
scaling function and the even- and odd-symmetric wavelets already used in the one-
dimensional case and proposed in [47]. These wavelets not only have compact support
and exhibit a high degree of localization, they also are associated with highpass filters of
even length, which ensures that we can take full advantage of their symmetry properties
in the digital realm. Finally, it should be noted that for the examples shown in figures
4.6 and 4.7, mild soft-thresholding was applied for noise removal, that is, equation
(4.10) was changed to

Ẽψeven,ψodd(f, x) =

∣∣∣∣∣
Jmax∑
j=Jmin

〈f, ψodd
j,kj,x

〉
∣∣∣∣∣−

j=Jmax∑
j=Jmin

∣∣∣〈f, ψeven
j,kj ,x

〉
∣∣∣− (Jmax − Jmin + 1)T

(Jmax − Jmin + 1) max
j∈{Jmin,...,Jmax}

∣∣∣〈f, ψodd
j,kj ,x

〉
∣∣∣+ ǫ

,

where for grayscale images with values ranging from 0 (black) to 255 (white), T was
set to 2

∣∣Cψodd

∣∣ ≈ 0.466.

While in figure 4.7, the edge measure (4.12) is compared to the phase congruency
estimate proposed by Peter Kovsi in [40] and the famous Canny edge detector [37],
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Figure 4.6: The shearlet-based edge measure defined in 4.1.4 applied to one artificial
and one natural test image. The second column shows a grayscale plot of the values
of (4.12) with white = 1 and black = 0 and parameters Jmin = 1 and Jmax = 3.
The third column shows the approximated tangential directions as given by the values
k∗ψeven,ψodd(f, x) (see equation (4.9)), where bright red indicates a perfect horizontal and

light blue a perfect vertical alignment (computed using ShearLab 3D [23]).

maybe one of its most interesting properties is illustrated in figure 4.8. In some sense,
edges aren’t objects themselves, but merely the structures arising at the borders of two
distinct but neighboring regions. That is, an edge can be considered the manifestation
of a transition from one geometrical object to another. So far in our considerations,
we have always assumed these transitions to be of a very sharp nature, that is, we
have modeled them as jump singularities. In practice however, for instance when
analyzing parts of a photograph which are not in focus, such transitions can also be
of a continuous or smooth nature. As can be seen in figure 4.8, the shearlet-based
edge measure is in fact capable of discriminating between different kinds of transitions
without loss of localization.
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Figure 4.7: We compare the shearlet-based edge measure from definition 4.1.4 to the
phase congruency estimate proposed by Kovesi [40] and the Canny edge detector [37].
The respective images were computed using ShearLab 3D [23], the phasecong2 method
from [45] and the MATLAB Image Processing Toolbox.
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Figure 4.8: The shearlet-based edge measure (see definition 4.1.4) can discriminate
between sharp and smooth transitions without loss of localization. While for a point x
neighboring the jump singularity on the left, the values Eψeven ,ψodd(f, x) (see equation
(4.12)) are almost exactly 1, the shearlet-based edge measure gradually decreases as the
transitions get smoother. Still, all three ’edges’ are detected with perfect localization
(computed using ShearLab 3D [23]).
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4.2 Image Quality Assessment

The second application we consider is using discrete complex shearlet transforms for
computing image quality assessments. That is, when given a pair of images where
one is a somehow distorted version of the other, we will try to determine the loss of
image quality as subjectively perceived by a human observer via a comparison of the
coefficients associated with discrete complex shearlet transforms of both images. That
such an image quality assessment is not trivial at all from a computational perspective
is illustrated in figure 4.9. In this example, the Lenna-image is perturbed once with
Gaussian white noise and once with a black square, covering parts of the eyes and
the nose. While the mean squared error (MSE) is approximately the same for both
distorted images, obscuring important features of a face will certainly result in a much
higher degree of subjectively perceived quality loss than uniformly adding Gaussian
noise. In general, any distortion of an area containing highly structured information
important to a human observer, such as clearly shaped objects or body parts will have a
much stronger effect on the perceived image quality than distortions that are restricted
to texture-like areas like a water surface or a gravel road.

Figure 4.9: While the mean squared error is approximately the same for both dis-
torted images, the perturbance on the right certainly has a much more severe impact
on the subjectively perceived image quality.

The task laid out in the paragraph above is also denoted full-reference image quality
assessment, as we always assume that both the perturbed and the undistorted refer-
ence image is available for analysis. One of the most significant potential applications
of such quality assessments is the field of image compression, where the question as
to which parts of an image can be subjected to a high degree of which kind of com-
pression without severely effecting the subjectively perceived image quality is of great
importance. However, the obvious problem accompanying any approach to the com-
putational assessment of image quality is the question of how one can measure the
validity and success of such a method. Given the subjective nature of a human image
quality assessment, it will typically be highly dependent on factors like prior personal
experiences, cultural influences or the current mood, which are extremely difficult to
control for.

The standard approach, which will also be adopted in this section, to at least rudi-
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mentary evaluate the accuracy of a computational rule providing full-reference image
quality assessments is to compare it to so-called mean opinion scores experimentally
collected for large databases of differently distorted images by combining thousands
of image quality assessments provided by human test subjects. Examples of such
databases include the Tampere Image Database 2008 [48] and the LIVE Image Qual-
ity Assessment Database [49], both of which will be used in the numerical analysis
following later in this section.

Our motivation for applying discrete complex shearlet transforms to compute image
quality assessments again is the assumption that such transforms are a means of repro-
ducing parts of the functional behavior of the human visual system. That is, we hope
that the changes of the coefficients of a discrete complex shearlet transform induced by
the distortion of an image are approximating how this distortion is perceived by the
primary visual cortex. But first, we will examine one of the current state of the art
methods for computational image quality assessment, the so-called structural similarity
index (SSIM).

4.2.1 Structural Similarity Index (SSIM)

The SSIM was introduced in 2004 by Wang et al. [5] with the ambition of providing
a full-reference image quality metric better fitting the behavior of the human visual
system than the then and up to now widely used mean squared error. The fundamental
idea behind the SSIM is that the human visual system is highly adapted to extract
structural information and hence correspondingly sensitive to the degradation of struc-
tures induced by distortions. A characteristic, which can definitely not be reproduced
by computing the mean squared error, as illustrated in figure 4.9.

To locally measure the structural similarity of two discrete images at a point x ∈ Z2,
the SSIM considers the discrete Euclidean inner product of vectors given for each image
by a predefined window placed around x. While structural information in images is
generally independent of the level of luminance and the level of contrast, the same will
not be true for locally computed inner products. Hence, the SSIM does not consider
the original pair of images for measuring structural similarity but first normalizes them
with respect to luminance and contrast, where for luminance normalization, the local
mean is subtracted and for contrast normalization, the images are divided by the
local standard deviation. That is, the local mean of the images used for computing
the structural similarity is always zero while their local standard deviation is one,
which eventually results in the computation of the local correlation coefficient. Finally,
measures for the local structural similarity, the local contrast similarity and the local
luminance similarity are combined to form the structural similarity index defined below.

Definition 4.2.1 (Structural similarity index (SSIM), as in [5]). Let images f, g ∈
ℓ2(Z2), exponents α, β, γ > 0 and weights w ∈ ℓ2(Z2) be given such that

∑
n∈Z2

w(n) = 1.
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Then, the structural similarity index (SSIM) at a point x ∈ Z2 is defined as

SSIM(f, g, x) = [lf,g(x)]
α[cf,g(x)]

β[sf,g(x)]
γ, (4.13)

where a local luminance similarity measure l is given by

lf,g(x) =
2µf(x)µg(x) + C1

µf(x)2 + µg(x)2 + C1
, (4.14)

a local contrast similarity measure c is given by

cf,g(x) =
2σf (x)σg(x) + C2

σf (x)2 + σg(x)2 + C2

, (4.15)

and a local structural similarity measure s is given by

sf,g(x) =
σf,g(x) + C3

σf(x)σg(x) + C3
, (4.16)

with the statistical measures µf , σf and σf,g defined as

µf(x) =
∑

n∈Z2

w(n)f(n− x), (4.17)

σf(x)
2 =

∑

n∈Z2

w(n) (f(n− x)− µf(x))
2 , (4.18)

σf,g(x) =
∑

n∈Z2

w(n) (f(n− x)− µf(x)) (g(n− x)− µg(x)) (4.19)

and with constants C1, C2, C3 > 0 prohibiting instability when the respective denomina-
tor would be close to zero and typically chosen as a function of the dynamic range of
the images f and g.

Finally, assuming that both the support of g and f is finite, the global structural simi-
larity index is given by

SSIM(f, g) =
1

N

∑

x

SSIM(f, g, x), (4.20)

where N is the number of indexes taken by x and x typically runs through the indexes
of a rectangle fully containing the support of both f and g.

Examples of the structural similarity maps induced by equation (4.13) and the struc-
tural similarity index (4.20) for three different types of distortions are given in figure
4.10, where the window w was chosen to be a discrete two-dimensional Gaussian filter
of size 11 × 11 with a standard deviation of 1.5 and all three exponents occuring in
equation (4.13) were set to 1, i.e. α = β = γ = 1. Comparing these results with
the corresponding mean squared errors clearly shows that the SSIM is less sensitive to
changes in contrast and discriminates whether structural information is preserved in
the presence of noise or not.
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Figure 4.10: The structural similarity maps induced by equation (4.13) and the re-
spective strucutal similarity indexes (see equation (4.20)) are compared to the mean
squared error for three different types of distortions. While in the case of uniformly
distributed Gaussian noise the MSE cannot discriminate between the different effects
caused by the addition of noise on different parts of the image, the SSIM clearly rec-
ognizes that the essential structures forming the boat and the sails have mostly been
preserved. Furthermore, the SSIM is considerably less sensitive to changes in contrast,
as shown in the third example. The structural similarity maps and indexes were com-
puted using the ssim_index method, obtained from [50] and all images were taken
from the Tampere Image Databse 2008 [48].
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Furthermore, it should be noted that the SSIM obeys certain technical conditions
one would typically expect from a meaningful image quality metric. It follows from
the commutativity of the multiplication that the SSIM is symmetric and due to the
construction of the luminance similarity measure (4.14), the contrast similarity measure
(4.15) and the structural similarity measure (4.16), the SSIM is bounded above by 1.
Additionally, the SSIM is 1 if and only if the compared images are in fact equal. These
properties were first noted in [5] and are summarized in the remark below.

Remark 4.2.2 (Propoerties of the SSIM). The structural similarity index given in
definition 4.2.1 is symmetric, bounded and has a unique maximum, that is, it satisfies

SSIM(f, g) = SSIM(g, f),

SSIM(f, g) ≤ 1,

SSIM(f, g) = 1 ⇔ f = g

for all f, g ∈ ℓ2(Z2) having finite support.

Proof. These observations are easy to verify and were first stated in [5].

While we have already stated that the individual characteristics of a test subject will
always influence the subjectively perceived loss in quality, it is important to recognize
that the same is true for the experimental setup in which subjective opinion scores are
being obtained. Specifically, the subjectively perceived image quality will also depend
on factors like the resolution of the images shown and the chosen viewing distance.
Hence, depending on these factors, it might be useful to consider a measure similar
to (4.13) for a number of several resolutions, thereby simulating different experimental
setups. Furthermore, such a multiscale approach would also make it possible to dis-
criminate between distortion-induced structural changes only visible on specific scales.
A thus motivated generalization of the SSIM termed multiscale structural similarity
index (MSSIM) was introduced in 2003 by Wang, Simoncelli and Bovik [6].

Definition 4.2.3 (Multiscale structural similarity index (MSSIM), as in [6]). Let J ∈
N, images f, g ∈ ℓ2(Z2), exponents α, βj, γj > 0 with j ∈ {1, . . . , J} and weights
w ∈ ℓ2(Z2) be given such that

∑
n∈Z2

w(n) = 1. Then, the multiscale structural similarity

index (MSSIM) is defined as

MSSIM(f, g) = [l(fJ , gJ)]
α

J∏

j=1

[c(fj , gj)]
βj [s(fj, gj)]

γj , (4.21)

where the images fj and gj are constructed by (j − 1) times convolving f (respectively
g) with a low-pass filter and applying a dyadic downsampling operator after each con-
volution and the luminance similarity measure l(·, ·), the contrast similarity measure
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c(·, ·) and the structural similarity measure s(·, ·) are defined as

l(f, g) =
1

N

∑

x

lf,g(x),

s(f, g) =
1

N

∑

x

sf,g(x),

c(f, g) =
1

N

∑

x

cf,g(x)

for f, g ∈ ℓ2(Z2) with lf,g(·), cf,g(·) and sf,g(·) defined as in 4.2.1 and N denoting the
number of indexes taken by x ∈ Z2, where x typically iterates through the indexes of a
rectangle fully containing the support of both f and g.

The exponents α, βj and γj in above definition can be seen as weights, defining the
assumed degree of influence of the different scales on the subjectively perceived image
quality. For a MSSIM considering five scales (i.e. J = 5), Wang et al. experimentally
measured the relative importance of each scale, resulting in a set of exponents given
by β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363 and
α = β5 = γ5 = 0.1333 (see [6, p. 11]). As a discrete complex shearlet transform
naturally induces a partition of a given image into several scales, we will later reuse
these parameters in our numerical experiments.

4.2.2 Complex Shearlet-Based Image Similarity Measure

We will now define a measure for the similarity of two given images based on the
coefficients of a discrete complex shearlet transform. As it was already stated, the
fundamental reason why such a shearlet-based approach might be worth considering
is the assumption that a complex shearlet transform provides a good model for the
functional behavior of certain parts of the primary visual cortex. However, another
intuition suggesting the application of shearlet-based systems in this context is given
by the observation that the coefficients associated with a discrete shearlet transform
do in fact encode information of both the local structure and the local contrast. The
locality directly follows from the localization properties exhibited by shearlets, while
the sensitivity to transient features induced by the underlying wavelet (see definition
2.1.15) in combination with the anisotropic nature of shearlets naturally causes shearlet
coefficients to be highly responsive to structures present in an image. The sensitivity
to contrast, finally, is just a consequence of the bilinearity of the L2-inner product.

That is, there seems to be a tight connection between the contrast similarity measure
c and the structural similarity measure s used in definition 4.2.1 and the coefficients
associated with a discrete shearlet transform. Additionally, similar to the multiscale
structural similarity index (see definition 4.2.3), any discrete shearlet transform natu-
rally partitions a signal into multiple scales. Hence, our definition of a shearlet-based
image similarity measure will mostly uphold the structure of the computational rules
given in definitions 4.2.1 and 4.2.3, with the exception that coefficients associated with
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a discrete complex shearlet transform will take the places of the statistical measures
µf , σf and σf,g.

However, before in such a way defining a complex shearlet-based image similarity mea-
sure, we need to decide on how to exactly use the complex-valued coefficients associated
with a discrete complex shearlet transform. We have seen in chapter 3 that so-called
complex cells play an important role in the primary visual cortex. Furthermore, it
can be assumed that small spatial shifts will only insignificantly affect the subjectively
perceived image quality, as long as the overall structure is preserved. Hence, in the
following definition, we will only use the magnitude response of a discrete complex
shearlet transform.

Please note that, for simplicity, the definition given below only includes shearlets as-
sociated with the horizontal frequency cones. The atoms associated with the vertical
frequency cones have of course to be included in any actual implementation.

Definition 4.2.4 (Complex shearlet-based image similarity measure). Let J ∈ N0,
images f, g ∈ L2(R2), a real-valued shearlet generator ψ ∈ L2(R2) associated with the
horizontal frequency cones and a scaling function φ ∈ L2(R2) be given and denote

ψc

j,k,x = 2
3j
4

(
ψ (SkAj(· − x)) + i(H(1,0)Tψ) (SkAj(· − x))

)
,

φx = φ(· − x)

for j ∈ {0, . . . , J}, |k| ≤
⌈
2
j
2

⌉
and x ∈ R2. Then, a complex shearlet-based image

similarity measure at a point x ∈ R2 and a scale j ∈ {0, . . . , J} is given by

Simψ,φ(f, g, j, x) =





∏

|k|≤

⌈

2
j
2

⌉

2|〈f,ψc

j,k,x〉||〈g,ψc

j,k,x〉|+C
|〈f,ψc

j,k,x〉|2+|〈g,ψc

j,k,x〉|2+C
if j > 0

2|〈f,φx〉||〈g,φx〉|+C

|〈f,φx〉|
2+|〈g,φx〉|

2+C
if j = 0

(4.22)

with a constant C > 0.

Now, let N ∈ N and (xi)i∈{1,...,N} ⊂ R2 be a finite sequence of sampling points, then
the complex shearlet-based image simiarity measure on a scale j ∈ {0, . . . , J} is given
by the geometric mean, that is

Simψ,φ(f, g, j) =

(
N∏

i=1

Simψ,ψ̃,φ(f, g, j, xi)

) 1

N

(4.23)

and with exponents αj > 0 for j ∈ {0, . . . , J}, the complex shearlet-based image simi-
larity of f and g is given by

Simψ,ψ̃,φ(f, g) =

J∏

j=0

Simψ,φ(f, g, j)
αj . (4.24)
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A closer look at (4.22) indeed reveals that the complex-valued shearlet coefficients
assume the role of the statistical measures used in the definition of the SSIM (see 4.2.1).
Another specificity of the above definition is that in equation (4.23), the geometric mean
is used instead of the arithmetic mean, which is applied in equation (4.20). The reason
behind this is the assumption that a small number of severe distortions, such as the
block artefacts shown in figure 4.10, has a much stronger influence on the subjectively
perceived image quality than a minor but globally occuring distortion, such as Gaussian
noise.

Examples of the image similarity maps induced by equation (4.22) and the complex
shearlet-based image similiarty measure (4.24) for three different types of distortions
are given in figure 4.11. For this example, the number of scales was set to J = 4,
the constant C, occuring in equation (4.22), was chosen to be 1000 and the exponents
from equation (4.24) were again taken from [6] and set to α0 = 0.1333, α1 = 0.2363,
α2 = 0.3001, α3 = 0.2856 and α4 = 0.0448. The reference image as well as the distorted
images were grayscale images with values ranging from 0 to 255 and taken from [48].
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Figure 4.11: We apply the shearlet-based image similarity measure defined in 4.2.4
to assess the loss of quality induced by three different kinds of distortions, which
were already considered in figure 4.10. Each row shows the similarity maps induced
by equation (4.22) for a different scale, with the scaling parameter j ranging from 1
to 3. As can be seen, uniformly distributed Gaussian noise is mostly visible on the
higher scales, while the measure (4.22) is basically invariant to contrast changes over
all considered scales (computed using ShearLab 3D [23] on images taken from [48]).

70



4.2.3 Numerical Results

We now compare the complex shearlet-based image similarity measure from definition
4.2.4 to the SSIM (see definition 4.2.1), the MSSIM (see definition 4.2.3) and six other
image quality metrics, namely the feature similarity index (FSIM), introduced by Zhang
et al. in [51], the information fidelity criterion (IFC), proposed by Sheikh, Bovik and de
Veciana in [52], the visual information fidelity criterion (VIF), also proposed by Sheikh
and Bovik in [53], the wavelet-based visual signal-to-noise ratio (VSNR), introduced
in [54] by Chandler and Hemami, the noise quality measure (NQM), introduced by
Damera-Venkata et al. in [55] and the classical peak signal-to-noise ratio (PSNR).

In order to compare the different full-reference image quality metrics listed above, we
will consider three image databases, which in total contain more than 2000 differently
distorted images and the respective reference files. For each distorted image in each
database, several quality assessments were experimentally collected from human test
subjects in a controlled environment. These subjective quality assessments were then
averaged and normalized to form a so-called mean opinion score (MOS). We now de-
mand that a meaningful full-reference image quality metric should be capable of serving
as a predictor for said mean opinion scores. To be precise, we will measure the success
of an image quality metric by comparing the ranking of the distorted images within one
database as given by a computational image quality metric to the ranking associated
with the mean opinion scores. The degree of correlation between these rankings will
then serve as a measure for the validity of the corresponding metric.

To compute the correlation of the rankings associated with an image quality metric
and the mean opinion scores provided by human test subjects, we will use the rank
order correlation coefficients defined below.

Definition 4.2.5 (Spearman’s rank order correlation coefficient (SROCC)). Let N ∈ N

and sequences X = (xi)i∈{1,...,N} ⊂ R and Y = (yi)i∈{1,...,N} ⊂ R. Let furthermore
rank: RN → RN be a function computing the ranks of the elements within a sequence,
that is

rank(X)i = #{j ∈ {1, . . . , N} : xj ≥ xi} −
#{j ∈ {1, . . . , N} : xj = xi} − 1

2
. (4.25)

Then, Spearman’s rank order correlation coefficient is given by

SROCC(X, Y ) =

N∑
i=1

(
rank(X)i − rank(X)

)(
rank(Y )i − rank(Y )

)

√
N∑
i=1

(
rank(X)i − rank(X)

)2
√

N∑
i=1

(
rank(Y )i − rank(Y )

)2
, (4.26)

where X denotes the arithmetic mean of the sequence X.

Definition 4.2.6 (Kendall’s rank order correlation coefficient (KROCC)). Let N ∈ N

and sequences X = (xi)i∈{1,...,N} ⊂ R and Y = (yi)i∈{1,...,N} ⊂ R. Let furthermore

Conc(X, Y ) =
{
(i, j) ∈ {1, . . . , N}2 : (xi − xj)(yi − yj) > 0

}
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denote the set of concordant pairs and

Disc(X, Y ) =
{
(i, j) ∈ {1, . . . , N}2 : (xi − xj)(yi − yj) < 0

}

denote the set of discordant pairs, then Kendall’s rank order correlation coefficient is
given by

KROCC(X, Y ) = 2
#Conc(X, Y )−#Disc(X, Y )

n(n− 1)
. (4.27)

Before finally stating the numerical results, we will give a short description of the
considered image databases. The Tampere Image Database 2008 (TID 2008) was de-
veloped by Ponomarenko et al. [48] and contains 24 reference color images of size
512×384, where each reference image was subjected to 17 different types of distortions
with 4 different degrees of severity, resulting in a total of 1700 distorted images. The
various types of distortions used for the TID 2008 are:

• Additive Gaussian noise (see figure 4.10)

• Additive Gaussian noise with different parameters for the three color components

• Spatially correlated noise

• Masked noise

• High frequency noise

• Impulse noise

• Quantization noise

• Gaussian blur

• Errors induced by an image denoising algorithm

• Errors induced by the JPEG compression algorithm

• Errors induced by the JPEG2000 compression algorithm

• JPEG transmission errors

• JPEG2000 transmission errors

• Non-eccentricity pattern noise

• Local block-wise distortions of different intensity (see figure 4.10)

• Intensity shifts (see figure 4.10)

• Contrast changes

For the numerical experiments, all images were converted to 8-bit grayscale images
with values ranging from 0 to 255 via the MATLAB rgb2gray function.

The second database used for our experiments is the LIVE image quality assessment
database, which was developed by Sheikh et al. an can be downloaded from [49]. The

72



LIVE database contains 29 colored reference images, typically of size 768× 512, and a
total of 779 distorted images, where 5 different types of distortions were applied with
varying degrees of severity. The number of distorted images is distributed between the
different distortion types as follows:

• Errors induced by the JPEG200 compression algorithm (169 images)

• Errors induced by the JPEG compression algorithm (175 images)

• Additive Gaussian noise (145 images)

• Gaussian blur (145 images)

• JPEG2000 transmission errors (145 images)

Again, for computing the considered image quality metrics, all images within the LIVE
database were converted to a grayscale with integer values ranging from 0 to 255 via
the MATLAB rgb2gray function.

Finally, the Cornell A57 database was developed by Chandler and Hemami, who also
introduced the VSNR metric (see [54]), and can be downloaded from [56]. It contains
just three 8-bit grayscale reference images with values ranging from 0 to 255 and
considers six different types of distortions:

• Quantization noise

• Additive Gaussian noise

• Errors induced by the JPEG compression algorithm

• Errors induced by the JPEG2000 compression algorithm

• Gaussian blur

These different distortion types are distributed over a total of 54 distorted images.

Table 4.1 now compares the performance of the shearlet-based image similarity measure
introduced in definition 4.2.4 to eight other image quality metrics for the Tampere
Image Database 2008, the LIVE image quality assessment database and the Cornell
A57 databsae using SROCC and KROCC values (see definitions 4.2.5 and 4.2.6). To
gain a better understanding of the performance of an image quality metric with respect
to a specific type of distortion, SROCC values were also computed for all respective
subsets of the TID 2008 and the LIVE database. These results are compiled in table
4.2 and in both tables, the best results are colored in red, the second best results are
colored in blue and the third best correlations are colored in green.

The results for the complex shearlet-based image similarity measure compiled in tables
4.1 and 4.2 were obtained with parameters J = 4, α0 = 0.1333, α1 = 0.2363, α2 =
0.3001, α3 = 0.2856, α4 = 0.0448 and a constant C = 1000 (compare definition 4.2.4).
While the exponents α0 to α4 were taken from [6], the constant C was set to 1000 after
comparing the image quality assessments of 17 differently distorted images from the
TID 2008 for about eight different choices of C. While this is certainly not a rigorous
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approach, it supports the idea that the success of an image quality metric should be
determined by the underlying concepts and not by the perfect choice of parameters.
The results of all other image quality metrics were copied from [51].

Table 4.1: SROCC and KROCC values of image quality metrics for three databases

Shear FSIM MSSIM SSIM VIF IFC VSNR NQM PSNR

TID 2008
SROCC 0.8566 0.8805 0.8528 0.7749 0.7496 0.5692 0.7046 0.6243 0.5245
KROCC 0.6633 0.6946 0.6543 0.5768 0.5863 0.4261 0.5340 0.4608 0.3696

LIVE
SROCC 0.9324 0.9634 0.9445 0.9479 0.9631 0.9234 0.9274 0.9086 0.8755
KROCC 0.7683 0.8337 0.7922 0.7963 0.8270 0.7540 0.7616 0.7413 0.6864

A57
SROCC 0.8309 0.9181 0.8394 0.8066 0.6223 0.3185 0.9355 0.7981 0.6189
KROCC 0.6399 0.7639 0.6478 0.6058 0.4589 0.2378 0.8031 0.5932 0.4309

Table 4.2: KROCC values of image quality metrics for specific distortion types

Shear FSIM MSSIM SSIM VIF IFC VSNR NQM PSNR

TID 2008

gaussian noise 0.9176 0.8566 0.8094 0.8107 0.8799 0.5817 0.7728 0.7679 0.9114

gaussian noise color 0.8943 0.8527 0.8064 0.8029 0.8785 0.5528 0.7793 0.7490 0.9068

spatial corr-noise 0.9063 0.8483 0.8195 0.8144 0.8703 0.5984 0.7665 0.7720 0.9229

masked noise 0.8629 0.8021 0.8155 0.7795 0.8698 0.7326 0.7295 0.7067 0.8487

high-freq-noise 0.9084 0.9093 0.8685 0.8729 0.9075 0.7361 0.8811 0.9015 0.9323

impulse noise 0.7754 0.7452 0.6868 0.6732 0.8331 0.5334 0.6471 0.7616 0.9177

quantization noise 0.9017 0.8564 0.8537 0.8531 0.7956 0.5911 0.8270 0.8209 0.8699

blur 0.9655 0.9472 0.9607 0.9544 0.9546 0.8766 0.9330 0.8846 0.8682

denoising 0.9611 0.9603 0.9571 0.9530 0.9189 0.8002 0.9286 0.9450 0.9381

jpg-comp 0.9608 0.9279 0.9348 0.9252 0.9170 0.8181 0.9174 0.9075 0.9011

jpg2000-comp 0.9784 0.9773 0.9736 0.9625 0.9713 0.9445 0.9515 0.9532 0.8300

jpg-trans-error 0.8827 0.8708 0.8736 0.8678 0.8582 0.7966 0.8056 0.7373 0.7665

jpg2000-trans-error 0.9051 0.8544 0.8525 0.8577 0.8510 0.7303 0.7909 0.7262 0.7765

pattern-noise 0.7228 0.7491 0.7336 0.7107 0.7608 0.8410 0.5716 0.6800 0.5931

block-distortion 0.8478 0.8492 0.7617 0.8462 0.8320 0.6767 0.1926 0.2348 0.5852

mean shift 0.6621 0.6720 0.7374 0.7231 0.5132 0.4375 0.3715 0.5245 0.6974

contrast 0.6787 0.6481 0.6400 0.5246 0.8190 0.2748 0.4239 0.6191 0.6126

LIVE

jpg2000-comp 0.9593 0.9717 0.9654 0.9614 0.9683 0.9100 0.9551 0.9435 0.8954

jpg-comp 0.9691 0.9834 0.9793 0.9764 0.9842 0.9440 0.9657 0.9647 0.8809

gaussian noise 0.9794 0.9652 0.9731 0.9694 0.9845 0.9377 0.9785 0.9863 0.9854

blur 0.9246 0.9708 0.9584 0.9517 0.9722 0.9649 0.9413 0.8397 0.7823

jpg2000-trans-error 0.9316 0.9499 0.9321 0.9556 0.9652 0.9644 0.9027 0.8147 0.8907
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Chapter 5

Discussion

While complex shearlets of the form (2.52) were already introduced by Storath in [3,
p. 28f.], the edge measure developed in section 4.1 and the image quality metric de-
fined in section 4.2 to my knowledge constitute the first applications of the associated
discrete transforms. Throughout this thesis and especially in chapter 3, we have moti-
vated both the construction and the use of complex shearlets with the assumption that
the associated transforms provide a model for the functional behavior of certain parts
of the primary visual cortex. That being said, it is important to keep in mind that
this assumption should not be mistaken for the claim that there actually are neurons
in the primary visual cortex, whose receptive fields are precisely shearlet-shaped or
the even stronger claim, that a population of neurons put together actually performs
a discrete complex shearlet transform, similar to 2.3.8. After all, within a discrete
shearlet system, the atoms are not so much defined by their own structure but by the
relationship induced via the anisotropic scaling matrix Aj (see definition 2.1.16) and
it would require a lot of courage to claim that the receptive fields of neurons in the
primary visual cortex are in fact connected the same way. Furthermore, while provid-
ing optimally sparse representations clearly constitutes a very desirable property for
any time-frequency decomposition, it might not be the only quality such a decomposi-
tion should have, to optimally prepare natural images for higher level processing. For
instance, when considering the task of object recognition, one of the most essential
feature of any algorithm clearly is a high degree of invariance towards spatial shifts,
rotations and structure-preserving deformations, as noted by Stéphane Mallat in [57],
where a complex wavelet-based scattering transform is proposed as a means of com-
puting image features for object recognition. It should be noted in this context, that
the introduction of a certain degree of shift invariance to the magnitude response of
a transform associated with a discrete complex shearlet system by combining Hilbert
transform pairs to construct complex-valued atoms is already a first step in this direc-
tion. Still, the relatively successful application of complex shearlet-based transforms in
tasks routinely carried out by the human visual system described in chapter 4 indeed
supports the claim that, at least on a functional level, there is a connection between
the time-frequency decomposition carried out by the primary visual cortex and the
decompositions associated with a discrete complex shearlet system.
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Having a closer look at the complex shearlet-based edge measure given in definition
4.1.4, it should become clear that there still are some unresolved issues and unanswered
questions. As it was already discussed, the shearlet-based edge measure is almost com-
pletely insensitive to point-like singularities, which might be considered a significant
drawback in many applications. On the other hand, this behavior is consistent with
the cartoon-like image model and the idea that an edge is not simply defined by a ran-
dom discontinuity but always associated with a structure arising at the border of two
distinct geometrical regions. Furthermore, contrary to our original ambition, the com-
plex shearlet-based edge measure is not entirely contrast independent, as the assumed
direction k∗ψeven,ψodd(f, x) is always preselected by choosing the direction associated with

the largest shearlet coefficient (in magnitude) located at x (see definition 4.2.4). While
doing so significantly improves to localization of corners, this approach also has the
adverse effect of high-contrast edges sometimes locally dominating neighboring low-
contrast edges (see for example the uncompleted line in the upper right corner of the
Lenna-image in figure 4.7). Also, a rigorous mathematical analysis of the behavior of
pairs of even- and odd-symmetric shearlets not only for jump discontinuities separating
constant functions but also for possibly smooth transitions between smooth regions is
still left to do. The same goes for a comprehensive comparison of the complex shearlet-
based edge measure with other edge detection methods, going beyond a simple display
of results as it was done in figure 4.7. However, even at this early stage of development,
the edge measure given in definition 4.1.4 exhibits an array of desirable features. In
contrast to most edge detection methods, it is almost contrast invariant and provides a
surprisingly precise localization of edges, while even without thresholding, the measure
returns zero with a high consistency at locations where no edge is present (see figure
4.5). Most notably, the localization of edges is as precise for smooth transitions as
it is for jump discontinuities, with the smoothness of the transition being encoded in
the value of Eψeven ,ψodd(f, x) (see equation (4.12) and figure 4.8). Furthermore, due to
the anisotropic nature of shearlets, the value k∗

ψeven,ψodd(f, x) provides a reliable esti-

mate of the tangential direction of an edge at the point x (see figure 4.6). Putting all
of this together, the complex shearlet-based edge measure provides an extensive and
reliable set of information about the locations and structures of edges present in an
image, which, to my knowledge, is indeed unique in its variety. Finally, I would again
like to emphasize that by considering the coefficients associated with odd-symmetric
shearlets as evidence for and the coefficients associated with even-symmetric shearlets
as evidence against the presence of an edge, the complex shearlet-based edge measure
is mimicking the concept of inhibitory and excitatory cells.

Turning to the complex shearlet-based image quality metric given in definition 4.2.4,
I think that, considering the relative simplicity of the proposed measure, the results
compiled in the tables 4.1 and 4.2 are quite promising. Especially the fact that, when
restricting the Tampere Image Database 2008 to a specific distortion, the shearlet-
based method outperforms all other metrics in many cases suggests that this approach
has some potential. However, for both other databases, the shearlet-based metric
is clearly inferior to some of the other computational rules and its overall results are
consistently outperformed by the feature similarity index (FSIM), introduced by Zhang
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et al. in [51]. It is interesting to note here, that the success of the FSIM is in fact
based on applying the phase congruency measure (see definition 4.1.2) for assessing the
importance of different parts of an image as perceived by the human visual system.
This suggests that the information discarded in definition 4.2.4 by only considering
the magnitude response of a complex-valued shearlet transform might be crucial for
correctly assessing the subjectively perceived image quality after all. While not yet
leading to an improved image quality metric, this was indeed the original motivation
for developing the shearlet-based edge measure, introduced in section 4.1.

77



78



Appendix A

Some Definitions and Formulas

Definition A.1.1 (Lp spaces). Let p ≥ 1 and d ∈ {1, 2}, then we denote

‖f‖p =
(∫

Rd
|f(x)|p dx

) 1

p

(A.1)

for f : Rd → C (even though we will almost exclusively consider real-valued functions)
and set

Lp(Rd) = {f : ‖f‖p <∞} , (A.2)

where Lp(Rd) with the norm defined above is a Banach space of equivalence classes.
Furthermore, for p = 2, the space Lp(Rd) is a separable Hilbert space with the inner
product given by

〈·, ·〉 : L2(Rd)× L2(Rd) → C : (f1, f2) 7→
∫

Rd
f1(x)f2(x)dx. (A.3)

Definition A.1.2 (ℓp spaces). Let p ≥ 1 and d ∈ {1, 2}, then we denote

‖f‖p =
(∑

n∈Zd

|fn|p
) 1

p

(A.4)

for a sequence f ⊂ C and set

ℓp(Zd) = {f : ‖f‖p <∞} , (A.5)

where ℓp(Zd) with the norm defined above is a Banach space.

Definition A.1.3 (Ck spaces). Let k ∈ N, then Ck(D) is the space of all k-times
continuously differentiable functions on the set D. If D is compact, a norm is given by

‖f‖Ck = sup
j≤k

sup
x∈D

∣∣f (j)(x)
∣∣ .
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Lemma A.1.4 (Best N -approximations with orthonormal bases). Let H be a sepa-
rable Hilbert space and (φi)i∈N ⊂ H an orthonormal basis of H, then the best N-term
approximation is equivalent to the N-term approximation associated with the N largest
coefficients in magnitude (see definition 2.1.3) and the error for f ∈ H is given by

‖f − fN‖ =
∥∥∥(〈f, φi〉)i∈I\IN

∥∥∥
ℓ2

where IN ⊂ N is the index set associated with the N largest coefficients in magnitude
and fN ⊂ H is the corresponding N-term approximation.

Proof. We know that f can be written uniquely as

f =
∑

i∈N

〈f, φi〉φi,

and that fN is of the form

fN =

N∑

i∈IN

ciφi,

where (ci)i∈IN ⊂ C is some finite sequence of coefficients. We compute by using Parse-
val’s identity

‖f − fN‖2 =
∥∥∥∥∥
∑

i∈N

〈f, φi〉φi −
∑

i∈IN

ciφi

∥∥∥∥∥

2

=

∥∥∥∥∥∥
∑

i∈IN

(〈f, φi〉 − ci)φi +
∑

i/∈IN

〈f, φi〉φi

∥∥∥∥∥∥

2

=
∑

i∈IN

|〈f, φi〉 − ci|2 +
∑

i/∈IN

|〈f, φi〉|2

=
∑

i/∈IN

|〈f, φi〉|2

=
∥∥∥(〈f, φi〉)i∈I\IN

∥∥∥
2

ℓ2
,

when choosing ci = 〈f, φi〉 for all i ∈ IN .

Definition A.1.5 (Meyer wavelet, originally defined in [17]). The Meyer wavelet ψ is
given by

ψ̂(ξ) =





(2π)−
1

2 ei
ξ
2 sin

(
π
2
ν( 3

2π
|ξ| − 1)

)
if 2π

3
≤ |ξ| ≤ 4π

3

(2π)−
1

2 ei
ξ
2 cos

(
π
2
ν( 3

4π
|ξ| − 1)

)
if 4π

3
≤ |ξ| ≤ 8π

3

0 else

,

where ν is a Ck or C∞ function satisfying

ν(x) =

{
0 if x ≤ 0

1 if x ≥ 1
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and
ν(x) + ν(1− x) = 1.

One possibility for choosing ν, given by Daubechies in [15, p.119], is

ν(x) = x4(35− 84x+ 70x2 − 20x3).

Definition A.1.6 (Lipschitz α continuity). A function f is said to be Lipschitz α
continuous over an interval [a, b] ⊂ R, if there exists a constant L ∈ R and α ≥ 0, such
that

|f(x)− f(y)| ≤ L |x− y|α

for all x, y ∈ [a, b].

A.1.1 Polynomial Depth Search

Let H be a separable Hilbert space and Φ = (φi)i∈I ⊂ H be a frame of H for some
index set I, i.e. Φ satisfies the frame condition (2.2) for H. This implies that for any
f ∈ H, a possibly infinite number of subsets If ⊂ I exists such that

f =
∑

i∈If

ciφi,

where (ci)i∈If is a sequence of coefficients. When obeying the restriction of polynomial
depth search, we will for each f ∈ H only consider index sets If ⊂ I, such that the n-th
entry of If was selected from the q(n) first entries of I, where q is some polynomial.
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Zusammenfassung

Im Rahmen der vorliegenden Arbeit werden ein Kantenerkennungsalgorithmus sowie
ein numerisches Bildqualitätsmaß mit Hilfe einer so genannten komplexen Shearlet
Transformation entwickelt. Die komplexe Shearlet Transformation kann als eine kom-
plexwertige Generalisierung der klassischen Shearlet Transformation gesehen werden,
welche 2005 von Kutyniok, Labate, Lim und Weiss [1] eingeführt wurde und in welcher
anisotrop skalierte, sowie gescherte Wavelet-basierte Basisfunktionen zur Zerlegung
zwei- oder mehrdimensionaler Signale verwendet werden. Einerseits konnte gezeigt
werden, dass Shearlet-basierte Transformationen optimal dünn besetzte Darstellun-
gen von Elementen einer bestimmten Klasse natürlicher Bilder ermöglichen [2], an-
dererseits besitzt die komplexe Shearlet Transformation im Absolutbetrag ähnlich der
Fourier Transformation ein gewisses Maß an Translationsinvarianz. Eine Eigenschaft,
welche auch von so genannten komplexen Zellen im primären visuellen Kortex gezeigt
wird. Dies motiviert die Annahme, dass komplexe Shearlet Transformationen auf einer
funktionalen Ebene unter Umständen ein nützliches Modell für Teile des menschlichen
visuellen Systems darstellen, was wiederum ihre Anwendungen für Methoden der Bild-
verarbeitung nahelegt.

In Kapitel 2 werden einige grundsätzliche Ergebnisse und Konzepte aus der Fourier
Analysis, der Wavelet-Theorie und der Shearlet-Theorie wiederholt, wobei die Kon-
struktion von Wavelets sowie Shearlets mit dem Ziel, optimal dünn besetzte Darstel-
lungen stückweise glatter Funktionen in ein und zwei Dimensionen zu konstruieren
motiviert wird. Der zentrale Part dieses Kapitels im Rahmen dieser Arbeit ist je-
doch die Einführung komplexwertiger Shearlet Transformationen. Nachdem zunächst
grundlegende Eigenschaften Hilbert Transformation in ein und zwei Dimensionen be-
sprochen werden, wird die komplexe Shearlet Transformation schließlich mit Hilfe von
Hilbert-Transformations-Paaren bestehend aus zwei Shearlet Generatoren definiert.

In Kapitel 3 werden kurz einige neurobiologische Erkenntnisse besprochen, welche die
Grundlage für unsere Annahme, dass komplexwertige Shearlet Transformationen auf
einer funktionalen Ebene ein vielversprechendes Modell bestimmter Teile des visuellen
Kortex sind, bilden.

In Kapitel 4, dem zentralen Teil dieser Arbeit, werden zwei auf komplexwertigen
Shearlet Transformationen basierende Methoden aus dem Bereich der Bildverarbeitung
motiviert, entwickelt und untersucht. Zunächst wird eine auf komplexen Shearlets
basierende Kantenerkennungsmethode definiert, welche eine hohes Maßan Kontrastin-
varianz aufweist, erstaunlich präzise Lokalisierungen von Kanten ermöglicht sowie auch
die Möglichkeit gibt, eine Approximation der tangentialen Richtung einer Kante in
einem bestimmten Punkt zu berechnen. Da die Entwicklung dieser Methode stark von
dem von Peter Kovesi eingeführten Phasenkongruenz-Maß [40] inspiriert ist, wird der
Definition unseres Algorithmus eine kurze Einführung in das Konzept der Phasenkon-
gruenz vorangestellt.
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In Abschnitt 4.2 schließlich wird ein Bildqualitätsmaß definiert, welches ebenfalls auf
einer komplexwertigen Shearlet Transformation basiert. Bei derartigen Bildqualitäts-
maßen werden jeweils Paare von Bildern verglichen, wobei ein Bild typischerweise
durch eine bestimmte Störung veränderte Version des anderen ist. Die Aufgabe eines
numerischen Bildqualitätsmaßes ist es nun, den durch einen solchen Vorgang von
einem menschlichen Betrachter subjektiv empfundenen Qualitätsverlust bestmöglich
vorherzusehen. Eine wichtige Anwendung solcher Maße findet sich im Bereich der
Bildkompressionsalgorithmen.

Die Arbeit endet mit einer kurzen Diskussion der in Kapitel 2 eingeführten Transfor-
mationen, sowie der in Kapitel 4 beschriebenen Methoden.
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