## The CoShREM Toolbox Parameter Guide

## Rafael Reisenhofer\*

| PARAMETERS OF THE SHEARLET SYSTEM |                                                                                                         |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|
| wavelet Eff Supp                  | Length of the effective support in pixels of the Mexican hat wavelet                                    |
| (see Figure 4)                    | $\psi$ used in the construction the generating shearlet $\psi^{\text{gen}}(x,y) =$                      |
| ,                                 | $\psi(x)\phi(y)$ , where $\phi$ is a Gaussian. The effective support is the interval                    |
|                                   | on which the values of $\psi$ significantly differ from 0. It is, however,                              |
|                                   | not a strictly defined property. A good choice for this parameter is                                    |
|                                   | often 1/8 of the image width. If the edges/ridges in the processed                                      |
|                                   | image are visible on a large scale, this value should be large relative                                 |
|                                   | to the width and height of the processed image.                                                         |
| gaussian Eff Supp                 | Length of the effective support in pixels of the Gaussian $\phi$ used in the                            |
| (see Figure 5)                    | construction of the generating shearlet $\psi^{\text{gen}}(x,y) = \psi(x)\phi(y)$ , where               |
|                                   | $\psi$ is a Mexican hat wavelet. Typically, this value is chosen to be                                  |
|                                   | roughly the half of waveletEffSupp. However, if the edges/ridges                                        |
|                                   | in the processed image consist of smooth curves, it can be chosen                                       |
|                                   | larger.                                                                                                 |
| scales Per Octave                 | Determines the number of intermediate scales for each octave. If                                        |
| (see Figure 6)                    | scalesPerOctave is set to $n$ , for each orientation, there will be $n$                                 |
|                                   | differently scaled shearlets within one octave. 2 is typically a good                                   |
|                                   | choice for this parameter.                                                                              |
| shearLevel (orientations)         | Determines the number of differently oriented shearlets on each scale.                                  |
| (see Figure 7)                    | If shearLevel is set to n, there will be $2^n + 2$ differently sheared                                  |
|                                   | shearlets on each scale, completing a 180° semi-circle. A sufficient                                    |
|                                   | choice for this parameter is typically 3.                                                               |
| alpha (orientations)              | This parameter can take any value between 0 and 1 and governs                                           |
| (see Figures 2 and 8)             | the degree of anisotropy introduced via scaling. Roughly speaking,                                      |
|                                   | it determines how much the Gaussian is squeezed relative to the                                         |
|                                   | wavelet, when scaling the generating shearlet. Formally, the $n$ -th                                    |
|                                   | octave is defined by $\psi_n(x,y) = \psi^{\text{gen}}(2^n x, 2^{\alpha n} y)$ . For $alpha = 0$ , the   |
|                                   | degree of anisotropy is maximized while for $alpha = 1$ , both directions                               |
| 0-1                               | are treated the same. The default choice is 0.5.                                                        |
| octaves                           | The number of octaves spanned by the shearlet system. When scales-                                      |
|                                   | PerOctave is greater than 1, this parameter can also take non-integer values. A standard choice is 3.5. |
|                                   | values. A standard choice is 5.5.                                                                       |

 $<sup>{\</sup>rm *reisenhofer@math.uni-bremen.de}$ 

| PARAMETERS OF THE EDGE AND RIDGE MEASURES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| minContrast<br>(see Figure 1)             | Specifies the minimal contrast for an edge/ridge to be detected. This parameter can also be seen as a soft threshold. That is, in the CoShREM toolbox, the complex shearlet-based edge measure is implemented as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | $\mathrm{E}(f,x) = \frac{\left \sum\limits_{a \in A} \langle f, \psi_{a,x}^{\mathrm{odd}} \rangle\right  - \sum\limits_{a \in A} \left \langle f, \psi_{a,x}^{\mathrm{even}} \rangle\right }{\left A\right  \max\limits_{a \in A} \left \langle f, \psi_{a,x}^{\mathrm{odd}} \rangle\right } - \frac{\min Contrast}{\max\limits_{a \in A} \left \langle f, \psi_{a,x}^{\mathrm{odd}} \rangle\right },$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | where $A \subset \mathbb{R}$ is a set of scaling parameters implicitly defined by octaves and scales PerOctave. For a 0-255 grayscale image, a standard choice for this parameter is 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| offset                                    | This parameter defines a scaling offset between the even- and odd-symmetric shearlets measured in octaves. If $offset = x$ , the first even-symmetric shearlet used for the computation of the complex shearlet-based edge measure is already $x$ octaves above the first odd-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                           | symmetric shearlet considered. In the case of the ridge measure, the converse is true. $offset = 1$ is often a good choice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| scalesUsedForPivotSearch (see Figure 3)   | This parameter defines which scales of the shearlet system are considered for determining the orientation for which the complex shearlet-based edge/ridge measure is computed at a specific location. It can take the values 'all', 'highest', 'lowest' and any subset $B \subset \{1, \ldots, scalesPerOctave \cdot octaves\}$ . The default choice is 'all'. If $scalesUsedForPivotSearch$ is unequal to 'all', the computation of the complex shearlet-based edge measure changes to $ E(f,x) = \frac{\left \sum\limits_{a \in A} \langle f, \psi_{a,x}^{\text{odd}} \rangle\right  - \sum\limits_{a \in A} \left \langle f, \psi_{a,x}^{\text{even}} \rangle\right }{\left A\right  \max\limits_{a \in B} \left \langle f, \psi_{a,x}^{\text{odd}} \rangle\right } - \frac{\min Contrast}{\max\limits_{a \in B} \left \langle f, \psi_{a,x}^{\text{odd}} \rangle\right }, $ |
|                                           | $ A \max_{a\in B}\left \langle f,\psi_{a,x}^{\mathrm{odd}}\rangle\right  \qquad \max_{a\in B}\left \langle f,\psi_{a,x}^{\mathrm{odd}}\rangle\right ,$ where $A\subset\mathbb{R}$ is a set of scaling parameters implicitly defined by octaves and scalesPerOctave and B is defined by scalesUsedForPivotSearch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| POST PROCESSING PARAMETERS                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| edge/s                                    | processing converts the results of the complex shearlet-based ridge measure to a binary image. Only pixels where the complex et-based edge/ridge measure is greater than thinningThreshold will luded. A good choice is typically 0.1 or 0.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

This following figures aim to illustrate the effects different parameter have on the constructed shearlet system and on the detection of edges/ridges. To this end, we consider a shearlet system obtained from parameters

 $wave let {\it Eff Supp:}$ 70  ${\it gaussian Eff Supp:}$ 25 scales Per Octave:2

shearLevel (orientations):3

0.5alpha: octaves:3.5

minContrast:

 $\textit{offset} \colon$ 

1

'all' scales Used For Pivot Search:

for images of size  $512 \times 512$  and vary each parameter independently.

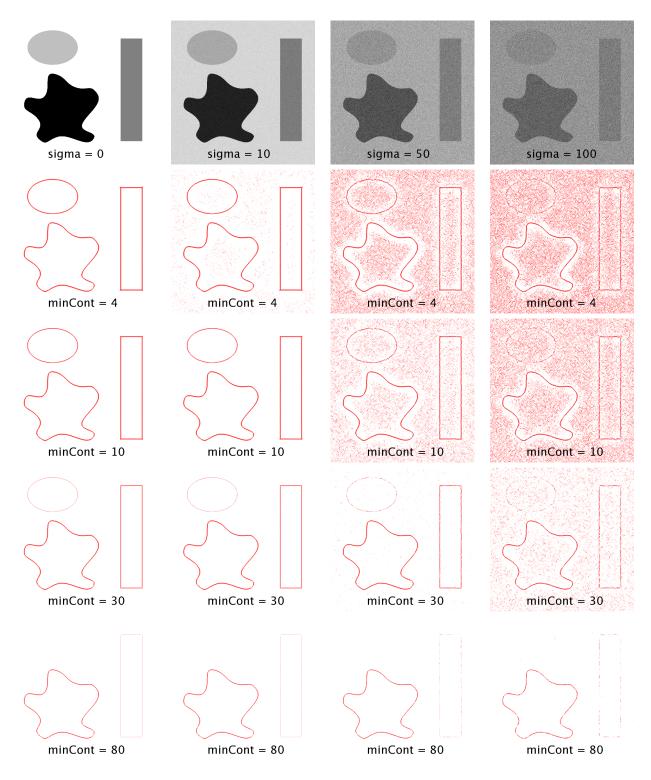



Figure 1: The relationship between *minContrast* and increasing levels of Gaussian noise.

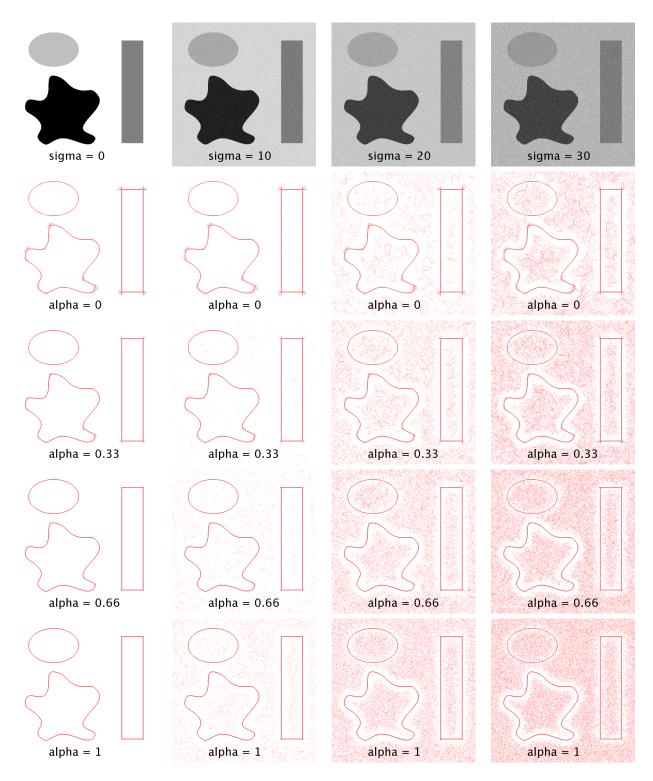



Figure 2: The relationship between alpha and increasing levels of Gaussian noise. Please note that to enhance the effect of different alphas, gaussianEffSupp was changed to 70.



Figure 3: The relationship between scalesUsedForPivotSearch and increasing levels of Gaussian noise.

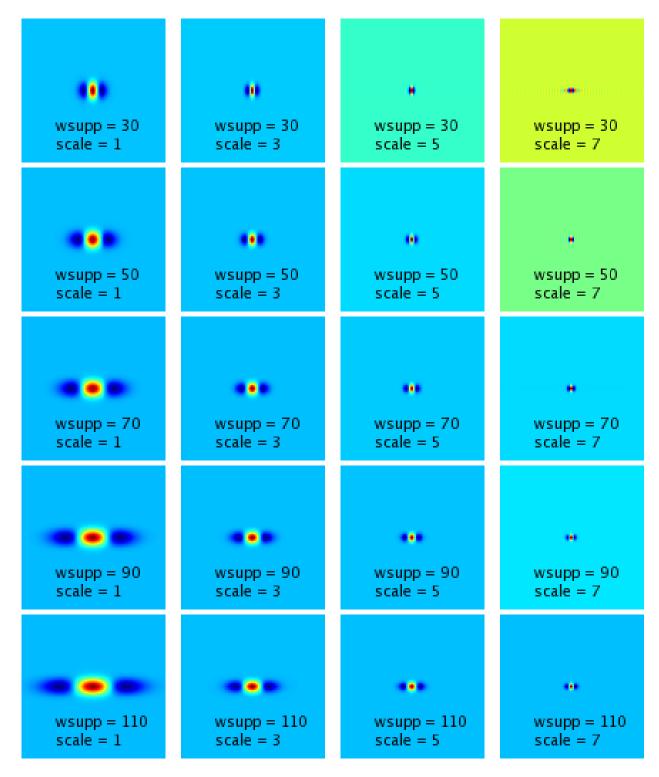



Figure 4: The relationship between wavelet Eff Supp and the even-symmetric elements of the constructed complex shearlet system.

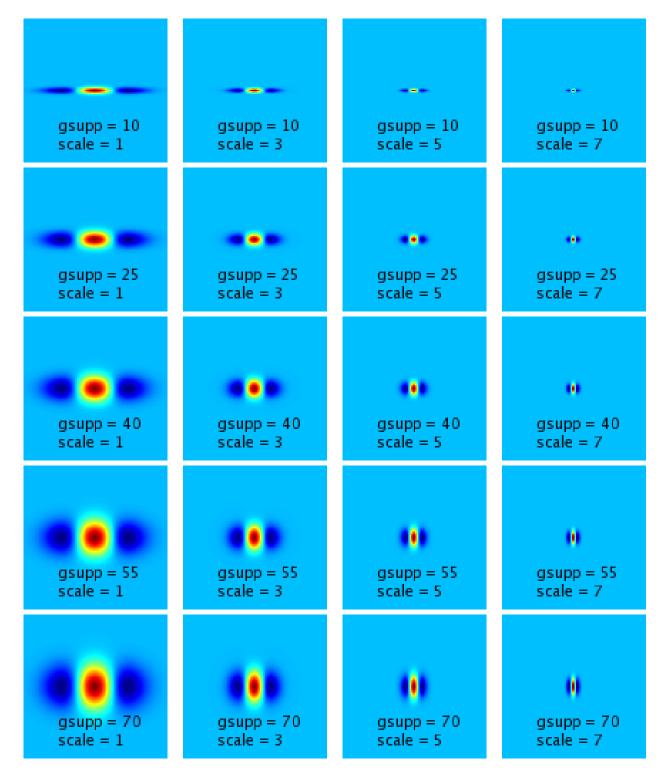



Figure 5: The relationship between gaussian EffSupp and the even-symmetric elements of the constructed complex shearlet system.

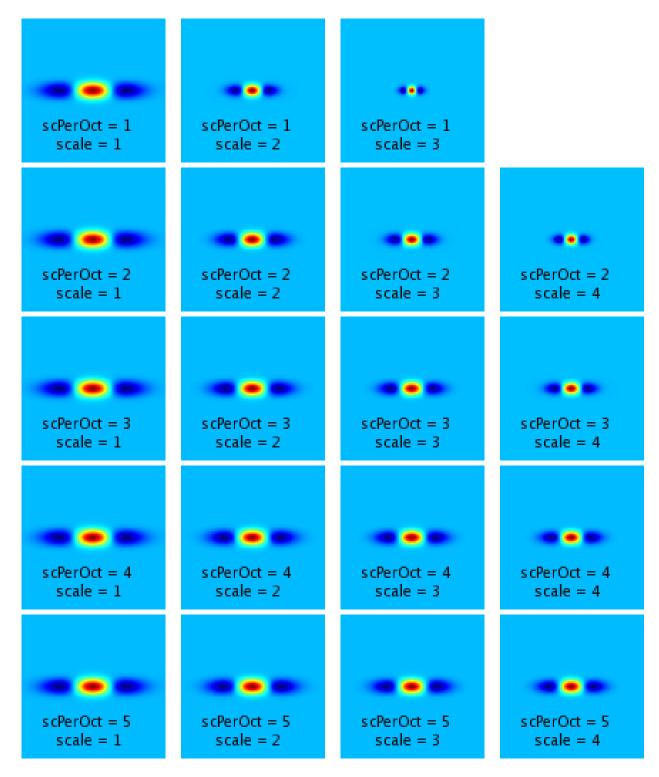



Figure 6: The relationship between *scalesPerOctave* and the even-symmetric elements of the constructed complex shearlet system.

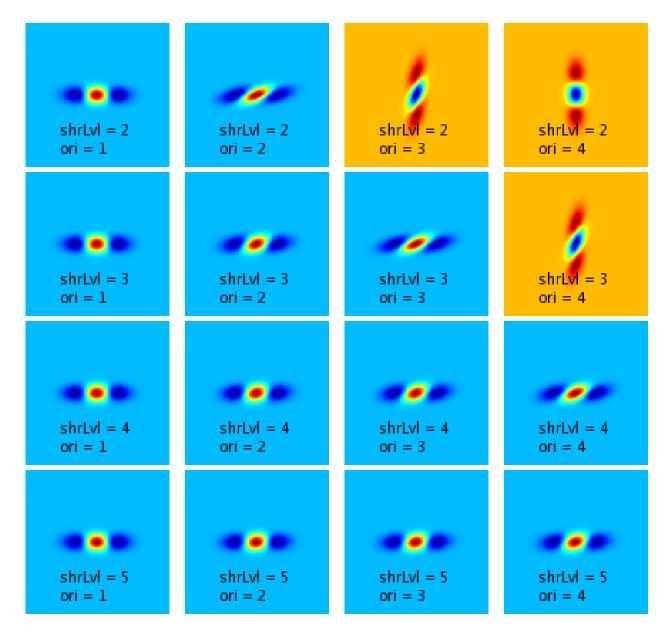



Figure 7: The relationship between *shearLevel* and the even-symmetric elements of the constructed complex shearlet system.

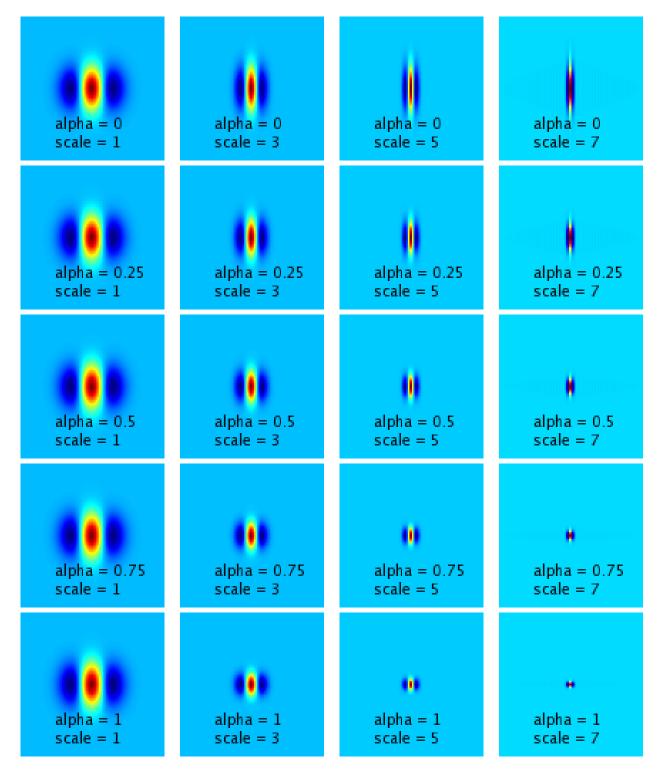



Figure 8: The relationship between *alpha* and the even-symmetric elements of the constructed complex shearlet system. Please note that to enhance the effect of different alphas, *gaussianEffSupp* was changed to 70.