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ABSTRACT

An issue in data analysis is that of incomplete data, for example a photograph with scratches or seismic data
collected with fewer than necessary sensors. There exists a unified approach to solving this problem and that
of data separation: namely, minimizing the norm of the analysis (rather than synthesis) coefficients with
respect to particular frame(s).There have been a number of successful applications of this method recently.
Analyzing this method using the concept of clustered sparsity leads to theoretical bounds and results, which
will be presented. Furthermore, necessary conditions for the frames to lead to sufficiently good solutions
will be shown, and this theoretical framework will be use to show that shearlets are able to inpaint larger
gaps than wavelets. Finally, the results of numerical experiments comparing this approach to inpainting to
numerous others will be presented.
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1. INTRODUCTION

Repairing holes in objects is an important problem in both the analog and the digital realm. Conservators,
who mend scratches and other damage to paintings, call the process inpainting. This term is now also applied
to the process of filling in missing gaps in digital images and even audio. A certain sparsity-driven approach
to inpainting, which will be outlined in this paper, bridges the gap between the analog (continuous) and
digital (discrete) domains. It has been theoretically shown in [KKZ13, KKZ11] that this approach, using
shearlets in a particular way to inpaint a particular continuous-domain model inspired by a common problem
in seismology, outperforms using wavelets. In what follows, a number of different inpainting methods will
be applied to a selection of different types of holes in different types of images in the discrete domain.
Analysis-side shearlet inpainting in general outperforms the other methods in these examples. The general
theoretical inpainting method of [KKZ13,KKZ11] will be presented in Section 2. Both wavelets and shearlets
are then used with this method to inpaint a particular model inspired by seismic data. Shearlets are shown
to outperform. Other inpainting approaches such as non-local means are discussed in Section 3. Finally,
Section 4 contains the results of numerical experiments comparing various approaches.

2. INPAIINTING VIA ANALYSIS-SIDE `1-MINIMIZATION

2.1 Notation

We first introduce the notation used in the paper. A collection of vectors Φ = {ϕi}i∈I in a separable Hilbert
space H forms a Parseval frame for H if for all x ∈ H,∑

i∈I
|〈x, ϕi〉|2 = ‖x‖2.
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With a slight abuse of notation, given a Parseval frame Φ, we also use Φ to denote the synthesis operator

Φ : `2(I)→ H, Φ({ci}i∈I) =
∑
i∈I

ciϕi.

With this notation, Φ∗ is called the analysis operator.

Given a space X and a subset A ⊆ X, we will use the notation Ac to denote X\A. Also, the indicator
function 1A is defined to take the value 1 on A and 0 on Ac.

2.2 Problem formulation

Given a Hilbert space H = HK ⊕HM , the (noiseless) inpainting problem can in general be posed as wanting
to find x0 ∈ H given knowledge of PKx

0, where PK is the orthogonal projection onto HK .

(Inp0) x? ∈ H subject to PKx
? = PKx

0.

This is clearly an underdetermined problem. Some other constraint must be introduced in order to solve the
problem. For example, very natural class of images to consider is that of cartoon-like images.

Definition 1. We define the space of cartoon-like images C to be

C = {f ∈ L2([0, 1]2) : f = f1 + f21Ω, f1, f2 ∈ C2, ∂Ω piecewise C2}.

That it, C consists loosely of smooth patches separated by piecewise smooth boundaries. So one might
reasonably assume that x0 is cartoon-like. Then the inpainting problem can be reposed as finding x0 ∈ C
given PKx

0.
(Inp1) x? ∈ C subject to PKx

? = PKx
0.

However, this problem is not very tractable in its current form. Sparsity-based approaches to problem
solving have been shown to be very successful in a number of different applications, particular in signal and
image processing (see, for example, [SMF10]). In this case, it has been shown [KL12,GK13] that particular
collections of vectors yield (almost) optimally sparse representations of cartoon-like images.

Definition 2. (GK13) A parameterization is a mapping of a discrete index set Λ to R+×T×R2 defined as
λ 7→ (sλ, θλ, xλ). Assume Λ has a parameterization. Let

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
denote the rotation matrix of angle θ and Da = diag(a,

√
a) the anisotropic dilation matrix with a > 0. A

family (mλ)λ∈Λ is called a family of parabolic molecules of order (P,M,N1, N2) if it can be written as

mλ(x) = 23sλ/4a(λ)(D2sλRθλ(x− xλ))

such that ∣∣∣∂β â(λ)(ξ)
∣∣∣ - min

(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
〈|ξ1|〉−N1〈ξ2〉−N2

for all |β| ≤ P . The implicit constants are uniform over λ ∈ Λ.

With some light constraints on Λ, P , M , N1, and N2 and assuming that a family of parabolic molecules
(mλ)λ∈Λ is a frame, then the frame has an almost optimal best N -term approximation rate for cartoon
images [GK13]. The concept of parabolic molecules was introduced as a means of explaining a number of
similar results that had been proving concerning two classes of systems, curvelets and shearlets. Here we
will focus on Parseval frames of shearlets. The canonical shearlet systems are called cone-adapted shearlets
[GKL06].
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Definition 3. The cone-adapted shearlet system SH(φ, ψ, ψ̃) generated by φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is
the union of {φ(· − `) : ` ∈ Z2}, {23j/4ψ(SkA2j · −`) : j ≥ 0, |k| ≤ d2j/2e, ` ∈ Z2}, and {23j/4ψ̃(S̃kÃ2j · −`) :
j ≥ 0, |k| ≤ d2j/2e, ` ∈ Z2}, where

Aa =

(
a 0
0
√
a

)
and S` =

(
1 `
0 1

)
.

.

The shearing and anisotropic dilations have the effect of moving the supports of the Fourier transform of
the two generating shearlets in a way that decomposes the frequency domain in an almost polar manner, as
illustrated in Figure 1 It is known that, modulo some smoothness conditions, cone-adapted shearlet systems

Figure 1. Shearlet tiling of the frequency plane

are parabolic molecules [GK13]. Given this new machinery, we could state the inpainting problem as

(Inp2) x? = Φc?, c? = argminc‖c‖1 subject to PKΦc = PKx
0.

However, we will instead state it as

(Inp) x? = argminx‖Φ∗x‖1 subject to PKx = PKx
0.

There are a number of reasons why we would consider (Inp2) [synthesis-side inpainting ] instead of (Inp)
[analysis-side inpainting ]. An important feature of Parseval frames is that for all x ∈ H, ΦΦ∗x = x.
However, for all Parseval frames which are not bases, there are infinitely many such c which satisfy Φc = x.
So numerical instabilities could arise when attempting to solve (Inp2). Furthermore, the analysis sequence
Φ∗x minimizes the `2 norm over all possible synthesis coefficients c. Namely,

Φ∗x = argmin‖c‖2 subject to c ∈ `2, x = Φc.

Thus, (Inp) may also be regarded as a mixed `1 − `2 problem [KT09]. One may view the optimization
problem in (Inp) as a relaxation of the cosparsity problem

x? = argminx‖Φ∗x‖0 subject to PKx = PKx
0.

Theoretical results concerning cosparsity may be found in [NDEG11,NDEG13]. Finally, (Inp) is similar to
the algorithmic approaches to inpainting found in [KKZ11] and [Kut03].

Although we motivated the formulation of the statement of (Inp) using cartoon-like images and shearlets,
it works well whenever the desired object x0 ∈ H belongs to a class which has a sparse representation with
respect to a Parseval frame Φ.

There is a similarly motivated formulation of the inpainting problem using one-step thresholding of the
analysis coefficients in [KKZ11]. For the sake of brevity, we omit it here.
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2.3 Theoretical guarantees

We now introduce two important notions, δ-clustered sparsity and cluster coherence, which in some sense
measure whether or not a particular Parseval frame Φ is appropriate to use in (Inp).

Definition 4. Fix δ > 0. Given a Hilbert space H with a Parseval frame Φ = {ϕi}i∈I , x ∈ H is δ-clustered
sparse in Φ (with respect to Λ ⊆ I) if

‖1ΛcΦ
∗x‖1 ≤ δ.

Definition 5. Let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j}j∈J lie in a Hilbert space H and let Λ ⊆ I. Then the
cluster coherence µc(Λ,Φ1; Φ2) of Φ1 and Φ2 with respect to Λ is defined by

µc(Λ,Φ1; Φ2) = max
j∈J

∑
i∈Λ

|〈ϕ1i, ϕ2j〉|.

Cluster coherence was introduced in [DK13] to apply to the geometric separation problem and may be
seen as a further development of mutual coherence [DH01] and earlier notions of coherence adapted to the
clustering of frame vectors [DE03,Tro04,BGN08]. Cluster coherence and clustered sparsity were first used in
conjunction with the inpainting problem in [KKZ11,KKZ13]. These notions may be used to show theoretical
guarantees of successful inpainting.

Proposition 6. (KKZ13) Fix δ > 0 and suppose that x0 is δ-clustered sparse in Φ. Let x? solve (Inp).
Then

‖x? − x0‖2 ≤
2δ

1− 2µc(Λ, PMΦ; Φ)
.

Both clustered sparsity and cluster coherence depend on the chosen set of indices Λ. However, Λ is merely
a tool to determine when Φ is a good dictionary for inpainting and explicit knowledge of it is not necessary
to recover missing data. In fact, one may reword Proposition 6 as

Proposition 7. Fix δ > 0 and suppose that x0 is δ-clustered sparse in Φ for at least one index set Λ. Let
x? solve (Inp). Then

‖x? − x0‖2 ≤ min
Λ

{
2δ

1− 2µc(Λ, PMΦ; Φ)
: µc(Λ, PMΦ; Φ) < 1/2, ‖1ΛcΦ

∗x‖1 ≤ δ
}
.

A heuristic explanation of the proposition is as follows: If Φ is a “good” dictionary to use, then there
is a small set of analysis coefficients, enumerated by a Λ, which contain most of the information of x0 (i.e.,
‖1ΛcΦ

∗x‖1 ≤ δ) and those elements of Φ which capture that information do not fall too much into the hole
of missing data (i.e., µc(Λ, PMΦ; Φ) is small). Again, there are similar theoretical guarantees for inpaininting
using one-step thresholding (see [KKZ11]).

2.4 A comparison of shearlets and wavelets

It was already mentioned above that shearlets (nearly) optimally sparsely represent cartoon-like images. It is
known that wavelet representations of natural images are compressible [Cev09], but they do not approximate
cartoon-like images as well as shearlets [KL12]. This would lead one to believe that Parseval frames of
shearlets would inpaint more successfully than wavelets. In a particular model, this can be shown to be true.
Certain one dimensional wavelets are associated with two different kinds of functions, a scaling function Φ
and a mother wavelet ψ. These functions are commonly used to create two dimensional wavelet systems.

Definition 8. A 2D wavelet system is defined to be

{Φ(· − `) : ` ∈ Z2} ∪ {2jψι(2j · −`) : j ≥ 0, ` ∈ Z2, ι ∈ {v, h, d}},

where Φ(x) = φ(x1)φ(x2), ψv(x) = φ(x1)ψ(x2), ψh(x) = ψ(x1)φ(x2), and ψd(x) = ψ(x1)ψ(x2).
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Wavelet systems are formed using isotropic dilation and translations while shearlet systems are formed
using anisotropic dilation, shearing, and translations. The anisotropy allows shearlets to better pick up
curvilinear features.

We now present a quick summary of the model that shearlets provably asymptotically inpaint better than
wavelets. For the ease of exposition, many of the details have been omitted. They may be found in [KKZ13].
Since cartoon-like images are governed by edges, the image to be inpainted is a masked linear singularity.
The distribution wL acting on Schwartz functions g ∈ S ′(R2) is defined by by

〈wL, g〉 =

∫ ρ

−ρ
w(x1)g(x1, 0)dx1,

where w is a smooth weight and and ρ > 0. Essentially, the weight w sets up the linear singularity that is
smooth in the vertical direction, while the value of ρ corresponds to the length of the singularity. We mask
the linear singularity (weighted distribution) wL with the mask

Mh = {(x1, x2) ∈ R2 : |x1| ≤ h}, h > 0.

The observed signal is
f = 1R2\Mh

· wL,
which is depicted in Figure 2 We decompose wL by the same subbands Fj , wL 7→ wLj = wL ∗ Fj , denote

Figure 2. wL masked by Mh

h = hj , and set
fj = 1R2\Mhj

· wLj .

Let {ψλ}λ denote a particular wavelet Parseval frame (defined in [KKZ13]) and {ση}η a particular shearlet
Parseval frame. Then we can rewrite (Inp as

Wj = argminW̃j
‖(〈W̃j , ψλ〉)λ‖1 s.t. fj = 1R2\Mhj

· W̃j

for wavelet-based inpainting and

Sj = argminS̃j‖(〈S̃j , ση〉)η‖1 s.t. fj = 1R2\Mhj
· S̃j

for shearlet-based inpainting. Now we can state the main result of [KKZ13].

Theorem 9. For hj = o(2−j) (this is critical in thresholding case) as j →∞,

‖Wj − wLj‖2
‖wLj‖2

→ 0, j →∞.

For hj = o(2−j/2) as j →∞,
‖Sj − wLj‖2
‖wLj‖2

→ 0, j →∞.

Thus, shearlets are able to asymptotically inpaint over wider masks than wavelets.

5



3. REVIEW OF OTHER INPAINTING METHODS

The main inpainting methods in the literature may be categorized as being sparsity-based, variational, and
patch-based. Sparsity-based methods involve a combination of harmonic analysis with convex optimization
which may be viewed as (Inp), (Inp2), or something inbetween, possibly using a union of Parseval frames as
a sparsifying dictionary, which is regularized (see, for example, [CCS10, DJL+12, ESQD05]). For example,
the minimization task in [ESQD05] is

x? = x?1 + x?2, (x?1, x
?
2) = argminx1,x2

‖Φ∗1x1‖1 + ‖Φ∗2x2‖1 + λ‖PM (x0 − x1 − xn)‖22 + γTV{x2},

where Φ1 is a Parseval frame consisting of parabolic molecules, Φ2 is an oscillatory Parseval frame like DCT,
Gabor, or wavelet packets, and λ, γ > 0 are parameters. The algorithm used is based on the block-coordinate-
relaxation method. When numerically testing shearlet-based analysis-side inpainting against other methods
in Section 4, we will actually employ something much simpler (but still get good results) – namely, we use
basic iterative thresholding on the analysis coefficients generated using dual shearlet frames constructed by
two of the authors [KL].

Image processing literature is filled with a multitude of variational methods. Any list of papers will be
incredibly incomplete, so we only mention a few [BBC+01, BBS01, BSCB00, CS02]. The book [Wei98] also
contains an overview of PDE-based image processing. The core idea of variational-based inpainting is that
information is propagated from the boundary of the holes along isophotes (edges) in the image to fill them
in. For example, a common variational approach is to numerically solve the PDE

∂I

∂t
= ∇⊥I · ∇4I,

where I is the image intensity inside the region to be inpainted, ∇ is the gradient, ∇⊥ is the perpendicular
gradient (−∂y, ∂x), and 4 is the Laplace operator. Many of the methods are inspired by real physical
processes, like diffusion, osmosis, and fluid dynamics. It is interesting to note that there is a way to interpret a
particular type of total variational inpainting as a limit of a certain type of analysis-side inpainting [CDOS12].

In patch- or exemplar-based inpainting, information is also propagated from the edge(s) of the missing
data inward. However, in contrast to the variational approaches, the hole is iteratively filled using patches
or averages of patches from other parts of the image. Specifically, in non-local means inpainting, the value
of a reconstructed target pixel is a linear combination of values from patches with the coefficients of the
combination determined by a weighted similarity function. Some examples of exemplar-based inpainting are
[CPT04,LMM11,WO08,BCM06].

4. NUMERICAL RESULTS

In this section, we present a number of examples comparing various inpainting methods. In most cases,
analysis-side iterative thresholding with shearlets outperforms the other methods, even though it is a prim-
itive algorithm. To promote fair comparisons, the various parameters were not “tweaked;” that is, the
shearlet-based inpainting was implemented the same in each example. In Figure 3, blocks of size 32 × 32
pixels were removed from a grayscale Barbara image. The blocks were inpainted using the methods from
[KL] and also [ESQD05]. The signal to noise ratio (SNR) for the former is 27.82 dB and the latter is 27.82
dB. This is surprising because as parabolic molecules, shearlets and curvelets share a number of performance
guarantees. However, the results concerning parabolic molecules hold true asymptotically with a constant,
so it is feasible that in practice one dictionary could outperform the other.

Figure 4 shows pictorially what one would expect given Theorem 9. Namely, when using iterative thresh-
olding to inpaint an image which consists almost completely of curvilinear features, shearlets outperform
wavelets. This figure first appeared in [KKZ13].

In Figure 5, 32 × 32 blocks are masked out as in Figure 3, but the starting image is RGB rather than
grayscale. Four inpainting methods are compared. Exemplar-based inpainting (article [CPT04], implemen-
tation [Bha]), non-local means inpainting (article [BCM06], implementation [NLM]), TV inpainting (article
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Figure 3. (Upper Left) Original image (Upper Right) 32 × 32 missing blocks (Lower Left) Curvelets+Local cosine
(26.22 dB) [ESQD05] (Lower Right) Shearlets (27.82 dB)

[GO], implementation [Get]), and shearlet-based iterative thresholding. The first three methods were applied
directly to the color image, while the shearlet-based inpainting was performed channel by channel. Even
though the shearlet method involves inpainting the image three times (one for each channel), the correspond-
ing run time was faster than the other methods. Further, the SNR is the best. Visually, the image inpainted
with shearlets also looks the best, with the main problem area being the chin, but none of the inpainting
methods successfully inpainted the chin.

32×32 blocks are also masked out in Figure 6, but these blocks, while they have approximately the same
density as the masked-out blocks in Figure 5, occur at random positions. The same inpainting methods as
above (exemplar-based, non-local means, TV, and shearlet) are compared. This is the only example in the
paper for which using the shearlet-based inpainting method does not outperform the other methods. The
reason that the shearlet-inpainted image appears so washed out is that values much larger than 255 occurred
in the “inpainted” version (the greenish spots). In order to display the image, it had to be normalized,
which caused the non-problematic pixels to appear faint. What is additionally interesting is that the green
spots appear in parts of the image that were not masked out. However, the run time is still shorter than
the TV and non-local means approaches, so perhaps changing the exit criteria of the code will improve the
performance.

Figure 7 contains seismic data taken from [Sei] which has been masked vertically, replicating missing
acquisition sensors. Apparent memory leaks in both the implementation of exemplar inpainting and TV
inpainting prevented a comparison of these methods on this image. Note that although the shearlet-based
inpainting has a better SNR than the non-local means inpainting, it took about 3 times longer to run.
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Figure 4. Top row, from left to right: original image, masked image inpainted with wavelets using iterative thresh-
olding, detail of the wavelet inpainting. Bottom row, from left to right: image with the masked-out parts marked in
black, masked image inpainted with shearlets using iterative thresholding, detail of the shearlet inpainting

Figure 5. Top row, from left to right: 512 × 512 RGB Lena, exemplar-based inpainting [CPT04,Bha] (t = 1723 s,
SNR = 20.306 dB), non-local means inpainting [BCM06,NLM] (t = 2038 s, SNR = 17.568 dB). Bottom row from
left to right: 32 × 32 masked out, TV approach [GO,Get] (t = 6869 s, SNR = 21.046 dB), shearlet-based iterative
thresholding (t = 911 s, SNR = 23.643 dB)

These results, coupled with the theoretical work, indicate that shearlet-based inpainting could be a very
powerful approach. The next step will be to streamline the code and make it available on Shearlab.org
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Figure 6. Top row, from left to right: 512 × 512 RGB Lena, exemplar-based inpainting [CPT04,Bha] (t = 783.79s,
SNR = 19.803 dB), non-local means inpainting [BCM06,NLM] (t = 6696.7 s, SNR = 16.750dB). Bottom row from
left to right: random 32 × 32 masked out, TV approach [GO,Get] (t = 10200 s, SNR = 19.995 dB), shearlet-based
iterative thresholding (t = 2015.1 s, SNR = 17.468 dB)

Masked image Shearlet
t= 1575.7 s, SNR = 13.525 dB

Figure 7. Top row, from left to right: seismic data, non-local means inpainting [BCM06,NLM] (t = 584.31 s, SNR
= 12.957 dB). Bottom row from left to right: vertical strips masked out, shearlet-based iterative thresholding (t =
1575.7 s, SNR = 13.525 dB)
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[BGN08] Lasse Borup, Rémi Gribonval, and Morten Nielsen, Beyond coherence: recovering structured
time-frequency representations, Appl. Comput. Harmon. Anal. 24 (2008), no. 1, 120–128. MR
2379118 (2009b:94017)

[Bha] Sooraj Bhat, Object removal by exemplar-based inpainting, Webpage,
http://www.cc.gatech.edu/~sooraj/inpainting/.

[BSCB00] M. Bertalmı́o, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, Proceedings of SIG-
GRAPH 2000, New Orleans, July 2000, pp. 417–424.

[CCS10] Jian-Feng Cai, Raymond H. Cha, and Zuowei Shen, Simultaneous cartoon and texture inpainting,
Inverse Probl. Imag. 4 (2010), no. 3, 379 – 395.

[CDOS12] Jian-Feng Cai, Bin Dong, Stanley Osher, and Zuowei Shen, Image restoration: Total variation,
wavelet frames, and beyond, J. Amer. Math. Soc. 25 (2012), 1033–1089.

[Cev09] Learning with compressible priors, 2009 2009.
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