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Abstract

We present a novel approach to the detection and characterization of edges, ridges, and blobs
in two-dimensional images which exploits the symmetry properties of directionally sensitive an-
alyzing functions in multiscale systems that are constructed in the framework of α-molecules.
The proposed feature detectors are inspired by the notion of phase congruency, stable in the
presence of noise, and by definition invariant to changes in contrast. We also show how the
behavior of coefficients corresponding to differently scaled and oriented analyzing functions can
be used to obtain a comprehensive characterization of the geometry of features in terms of local
tangent directions, widths, and heights. The accuracy and robustness of the proposed measures
are validated and compared to various state-of-the-art algorithms in extensive numerical experi-
ments in which we consider sets of clean and distorted synthetic images that are associated with
reliable ground truths. To further demonstrate the applicability, we show how the proposed
ridge measure can be used to detect and characterize blood vessels in digital retinal images
and how the proposed blob measure can be applied to automatically count the number of cell
colonies in a Petri dish.

1 Introduction

The correct localization of the significant structures in an image as well as the precise characteri-
zation of their geometry are two eminent tasks in digital image processing with an overwhelming
number of applications. Since the advent of digital image processing, a large body of research has
been devoted to the development and analysis of algorithms for the detection and characterization
of features such as edges, ridges, and well-defined two-dimensional shapes. Surprisingly, in many
practical situations, even highly optimized implementations of popular methods such as the Canny
edge detector [21], approaches that are based on directionally sensitive filters [40], or even multiscale
systems of anisotropic functions [74] are not always capable of reliably identifying the features in
question. This is often the case for images which are heavily distorted by noise, in which different
features are strongly overlapping, or where the geometry of the considered features is characterized
by a high variation and irregularities such as corner points. It is also worth noting that feature
detection in general is a task where, despite recent advances, computers are still often outperformed
by humans.
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A main difficulty researchers face when developing methods for feature detection is to identify
universal and computationally tractable properties that are characteristic of or even unique to
points at which a certain feature is localized. In the case of edge detection, the first and most
basic observation was that edges are typically associated with changes in contrast and can thus be
identified by considering points with large image gradients. This approach led to the development
of early edge enhancement filters such as the Roberts filter [63], the Prewitt filter [59], and the
Sobel filter [65], which are still widely applied today. However, any procedure merely considering
the magnitude of gradient filters as an indicator is highly sensitive to noise and variations in
image illumination. Two famous and influential descriptors which already made a big step towards
capturing the structural nature of edges were proposed in the 1980’s by Marr and Hildreth [54]
and Canny [21]. Marr and Hildreth observed that edges coincide with zero-crossings in the second
directional derivative of the image intensities while Canny developed an algorithm for edge detection
which identifies points at which the image gradient reaches a local maximum. The Canny edge
detector is also based on a gradient filter, and the Marr-Hildreth-operator applies a discrete Laplace
filter. However, both methods are not just evaluating whether a magnitude exceeds a certain
threshold but consider local structural properties by testing for zero-crossings and local maxima.

A dimensionless approach to identifying features such as edges and ridges may be found in the
so-called local energy model, which was proposed in the late 1980’s and postulates that the loca-
tion of features coincides with points in an image for which the Fourier components are maximally
“in phase” [56, 57, 70]. Dimensionless here means that the values yielded by the measure are not
describing a physical quantity such as image intensities. To precisely calculate the degree of phase
congruency, it is necessary to optimize a certain value over inputs from a continuous interval for
every point in an image. This computationally highly inefficient procedure was later significantly
simplified by Kovesi, who showed that an equivalent measure can be formulated in terms of con-
volutions with differently scaled and oriented complex-valued wavelet filters [45, 46]. The resulting
phase congruency measure yields a contrast-invariant feature detector that simultaneously detects
edges and ridges and can be efficiently implemented to process digital images. It was one of the in-
spirations for the measures for edge, ridge, and blob detection presented here and will be explicitly
defined later.

In recent years, multiscale systems of analyzing functions developed in the field of applied
harmonic analysis have become increasingly successful in efficiently representing, approximating,
and analyzing two-dimensional digital images. In particular, systems that are based on anisotropic
scaling such as curvelets [19, 20], shearlets [51, 49], or contourlets [28] yield provably in-a-sense
optimal error decay rates when approximating certain classes of digital images that are governed by
curvilinear and anisotropic structures. These constructions have been considered in a wide range of
applications in digital image processing including edge and feature detection [74, 50, 31, 43]. Grohs
et al. recently introduced the so-called α-molecules framework, which allows for a unified treatment
of the analysis of most multiscale systems developed in the field of applied harmonic analysis [35].
In the present work, we derive measures for the detection of edges, ridges, and blobs that are
inspired by the notion of phase congruency but realized by making full use of the flexibility of
modern construction principles for anisotropic analyzing functions provided within the framework
of α-molecules.

Saying that the Fourier components are in phase at the location of an edge basically means that
locally the considered function is purely defined by odd-symmetric sine components while all even-
symmetric cosine components vanish. In the first step, we will derive a novel edge measure that
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utilizes this observation by testing for the local symmetry properties of a function by considering
differently scaled and oriented odd- and even-symmetric analyzing functions constructed in the
α-molecule framework. This measure can then be generalized to detect ridges by interchanging the
roles of the odd- and even-symmetric molecules and taking into account the width of the feature.
We further show how, with a few modifications regarding the measure and the construction of
analyzing functions, similar principles can be applied to the case of blob detection. Each analyzing
function in a multiscale system considered in this work is associated with a specific pair of scaling
and orientation parameters and thus conveys not only information about the location of features
but also about their geometry in terms of feature width and orientation. Finally, we demonstrate
how this information can be utilized to obtain measures for local tangent directions, widths, and
heights, that yield detailed information about the geometry of an image.

1.1 Contributions

Earlier variants of the edge measure derived in Section 3.2 and the ridge measure derived in Sec-
tion 3.3 that are based on complex-valued shearlets have already been published previously by the
authors of the present work and their co-authors [44, 60, 62]. The main contribution of this work
is to provide a comprehensive derivation and description of the proposed measures and bring them
into the framework of α-molecules which provides enough flexibility to allow for a unified treatment
of the cases of edge, ridge, and blob detection. In particular, we demonstrate in Theorem 3.1 that
by considering tensor products of derivatives of the one-dimensional Gaussian and their Hilbert
transforms, one can obtain a large class of well-behaved α-molecules that also provide the neces-
sary symmetry properties. We further show in Section 3.4 that local symmetry properties may be
used in a related manner to yield a blob measure. We specifically derive functions that estimate
the local tangent orientations of edge contours and ridge centerlines, local diameters of ridges and
blobs, and the local contrast of a feature; these are summarized in Section 3.5.

To evaluate the strengths and weaknesses of the proposed measures in comparison with other
state-of-the-art methods for feature detection, we performed extensive numerical experiments with
respect to synthetic images with reliable ground truths, which may be found in Section 4. This
section also contains a figure of merit to measure success of edge detection that is less forgiving of
false positives than Pratt’s figure of merit (PFOM) [1]. To further demonstrate the applicability
of the proposed framework, we consider the application of the ridge measure in the context of
retinal image analysis in Section 5.1 and show how the proposed blob measure can be applied for
automatically counting the number of cell colonies in a Petri dish in Section 5.2.

We have also developed a Matlab toolbox that implements all of the proposed measures for
two-dimensional digital images. The implementation strategies are briefly explained in Section S-
2 of the Supplemental Materials, and the toolbox can be downloaded from http://www.math.

uni-bremen.de/cda/software.html.

2 Related Work

We begin by giving a short review of the most important tools and concepts that will later be used
to derive the respective edge, ridge, and blob measures.
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2.1 α-Molecules

Active research in the fields of time-frequency analysis and applied harmonic analysis led to the
development of a wide variety of function systems and techniques that yield efficient multiscale
representations for different classes of functions and signals. Building on results and ideas from
classical Fourier analysis and the work of pioneers like Alfred Haar [37], prominent examples include
wavelets [25] but also systems based on anisotropic scaling such as ridgelets [17, 18], curvelets
[19, 20], shearlets [51, 49], and contourlets [28], which were developed to address weaknesses of the
traditional wavelet transform when dealing with anisotropic features such as edges or ridges that
can appear in two- or higher-dimensional signals.

In spite of various differences in their construction and their approximation behavior for dif-
ferent classes of signals, many of the aforementioned function systems are constructed by applying
translation, scaling, and rotation or shear operators to generator functions, which typically need to
satisfy a certain admissibility condition. In [35], so-called α-molecules were introduced to provide
a unifying framework that includes different constructions of multiscale representations in order to
enable the transfer of results from one theory to another, to allow for a categorization of multiscale
representations with respect to the approximation behavior and also to facilitate the construction
of novel systems.

Systems of α-molecules are constructed by translating, scaling, and rotating members of a pos-
sibly infinite set of generator functions, where the latter two operations are performed by applying
scaling matrices

As,α =

(
s 0
0 sα

)
, s > 0, α ∈ [0, 1], (1)

and rotation matrices

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ T, (2)

to the argument of a generator function, where T =
[
−π

2 ,
π
2

)
. Note that the parameter α in (1)

controls the degree of anisotropy and interpolates between isotropic scaling (α = 1), which is used
in the definition of wavelet-based systems, and fully anisotropic scaling (α = 0), as applied in the
definition of ridgelets.

For a fixed parameter α ∈ [0, 1], a single α-molecule is thus defined by its corresponding gener-
ator and a point (s, θ, y) in the parameter space

P := R>0 × T× R2, (3)

where s is a scaling, θ a rotation, y a translation parameter, and R>0 denotes the positive real
numbers.

Let Λ be an index set and α ∈ [0, 1] be fixed. A family of functions (mλ)λ∈Λ is called a system of
α-molecules of order (L,M,N1, N2) with L,M,N1, N2 ∈ N0 ∪{∞}, if each molecule can be written
as

mλ(x) = s
(1+α)/2
λ g(λ) (Asλ,αRθλ(x− yλ)) , (4)

where (sλ, θλ, yλ) ∈ P is a point in the α-molecule parameter space and the corresponding generator
g(λ) ∈ L2(R2) satisfies∣∣∣∂ρĝ(λ)(ξ)

∣∣∣ . min
{

1, s−1
λ + |ξ1|+ s

−(1−α)
λ |ξ2|

}M
· (1 + |ξ|2)

−N1
2 · (1 + (ξ2)2)

−N2
2 (5)
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for all |ρ| ≤ L, where . means that there exists a constant C > 0 such that the left hand side is
smaller than the right hand side times C for all points in the considered domain. If one or more
of the parameters L, M , N1, and N2 equal ∞, then (5) is interpreted to hold for arbitrarily large
values of the respective parameter(s).

The authors of [35] aimed to provide a maximum amount of flexibility by allowing each molecule
of an α-molecule system to be based on a different generator in order to allow shears to be replaced
by rotations. In practice, however, systems of α-molecules are often constructed from only a small
number of generators. For instance, wavelet orthonormal bases of L2(R2) are typically based on
four generators, while so-called cone-adapted shearlet systems (see, e.g., [49]) only require three
different generators. Note that in the latter case, due to the application of shear matrices instead
of rotation matrices, the elements of a cone-adapted shearlet system can not directly be expressed
in the form (4). However, it can be shown that certain cone-adapted discrete shearlet systems are
equivalent to an α-molecule system that is based on an infinite number of generators, all of which
satisfy Condition (5) [35].

Condition (5) requires the generators of an α-molecule to satisfy certain time-frequency local-
ization properties, where the parameter L describes the degree of spatial localization, M is the
number of directional vanishing moments and N1 and N2 describe the smoothness of a generator.

The transform of a function f ∈ L2(R2) with respect to an α-molecule system (mλ)λ∈Λ ⊂ L2(R2)
can be defined via the L2-inner product:

(T f)(g(λ), sλ, θλ, yλ) = 〈f,mλ〉 = s
(1+α)/2
λ

∫
R2

f(x)g(λ) (Asλ,αRθλ(x− yλ))dx. (6)

In the remainder of this paper, we will often refer to the values 〈f,mλ〉 as the coefficients of an
α-molecule-based transform of a signal f .

2.2 Edge and Ridge Detection Via Phase Congruency

Two classes of feature detection algorithms served as the inspiration for the methods in this pa-
per: phase congruency and shearlet-based methods. For a more detailed exposition about the
development of feature detection based on phase congruency, see [61, Section 4.2.2]. The key idea
underlying using phase congruency to detect features is that the inner products of even- or odd-
symmetric functions centered at even- or odd-symmetric features have certain traits, like having
similar values, or having similarly large values. The original phase congruency measures used
complex exponentials as the analyzing functions [3, 57, 56, 70, 45]. However, such an approach
attempts to define a local property based on the coefficients of the discrete Fourier transform,
which – when viewed independently – only provide information about which frequency components
are present in a signal but not where they occur. A possible solution was given by Kovesi, who
proposed extracting the local phase congruency by using sets of differently scaled complex-valued
wavelets [45]. Similar to the use of sines and cosines in the local energy approach, the real and
imaginary parts of these wavelets formed Hilbert transform pairs, with the real part being even-
and the imaginary part being odd-symmetric. By considering multiple scalings, Kovesi was able
to combine phase information from different parts of the frequency domain and to eventually de-
rive a dimensionless and easy-to-compute complex wavelet-based phase congruency measure for a
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one-dimensional function f ∈ L2(R) and a location x, namely

PCψc(f, x) =

∣∣∣∣ ∑
a∈A
〈f, ψc

a,x〉L2

∣∣∣∣∑
a∈A

∣∣〈f, ψc
a,x〉L2

∣∣+ ε
, (7)

where ψc ∈ L2(R) is a complex-valued wavelet with certain symmetry properties, A ⊂ R>0 a

set of scaling parameters, ψc
a,x = a−

1
2ψ
( ·−x
a

)
(i.e. ψc centered at x and scaled by a) and ε > 0

prevents division by zero. The quantity PCψc(f, x) approaches 1 if the phases of the local frequency
components are in congruency and approaches 0 if they are widely spread. More details about
the generalization of this measure to two dimensions and its implementation may be found here
[45, 46, 47].

The measure (7) can effortlessly be computed and is by construction contrast-invariant. Features
such as edges and ridges are picked up solely by the traces their structure leaves in the phases of
the frequency representation of a signal rather than the local magnitude of contrast. Furthermore,
as Kovesi points out in his original work, it is an interesting property of the phase congruency
measure that it does not distinguish edges and ridges.

While contrast-invariance is indeed a highly desirable feature in many edge and ridge detection
tasks, localizing a property of the frequency components in the time representation of a signal comes
at a price. Indeed, it was already observed in [67] and [60] that replacing isotropic wavelets with
anisotropically scaled analyzing functions in (7) deteriorates the detection of features in images
rather than improving it. This should come as a surprise, as one would assume that anisotropically
scaled elements would be better suited for detecting typically anisotropic features such as edges or
ridges. Finding a way to bring together the intuitions behind the phase congruency measure PCψc

and modern constructions of anisotropic analyzing functions was in fact one of the main factors
motivating the present work.

2.3 Derivative of Gaussian Wavelets

In order to detect features by testing for local symmetry properties, we require even- and odd-
symmetric real-valued functions with good localization in both the time and the frequency domain.
Throughout this paper, we call a function f even-symmetric, if it satisfies f(x) = f(−x) for all x,
odd-symmetric, if it holds for all x that f(x) = −f(−x), and symmetric if one of the above is true.

In the remainder of this work, we will consider two simple tools to construct one-dimension-
al even- and odd-symmetric generators with these properties, namely taking derivatives of the
Gaussian as well as applying the so-called Hilbert transform. We note that such functions have
already appeared in the literature in other multi-scale edge and ridge detection algorithms [53, 68,
43]. A comprehensive discussion of the harmonic analysis used in this section may be found in [12].
Note that throughout this paper, we denote the Fourier transform of a function f ∈ L1(Rd) with
f̂(ξ) =

∫
R f(x)e−2πi〈x,ξ〉`2 dx and consider the usual extension to L2(Rd). For k ∈ N0, let us denote

the k-th derivative of the unnormalized Gaussian by

Gk(x) = (−1)kHk(x)e−x
2

= (−1)kHk(x)G0(x), (8)

where Hk is the k-th Hermite polynomial (see, e.g., [69]). Given standard results from harmonic
analysis, it follows that

Ĝk(ξ) = (2πiξ)k
√
πe−π

2ξ2
. (9)
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Due to G0 being even-symmetric, the k-th derivative Gk is odd-symmetric if k is odd and even-
symmetric if k is even. Consequently, Ĝk is purely imaginary for odd k and purely real if k is
even. Furthermore, the Gaussian lies in the Schwartz space of rapidly decreasing functions. That
is, the Gaussian is infinitely differentiable and all of its derivatives decay faster than the inverse
of any polynomial. With the zero-mean property Ĝk(0) =

∫
RGk(x)dx = 0, this implies that Gk

satisfies the wavelet admissibility condition (see, e.g., [25]) for any integer k > 0. Note that, due to
the zero-mean property, the functions Gk are orthogonal to constant functions and the associated
wavelet coefficients are hence invariant under the addition of constants.

The Hilbert transform is a bounded linear operator on L2(R) and defined for functions f ∈ L2(R)
by

Ĥf(ξ) = −i sgn(ξ)f̂(ξ), (10)

where sgn denotes the sign function. It is easy to see from (10) that if f̂ is purely real, Ĥf is
purely imaginary and vice versa. This implies that for any even-symmetric function f , its Hilbert
transform Hf is odd-symmetric, while any odd-symmetric function will become even-symmetric
under the Hilbert transform. Further, the Hilbert transform leaves the magnitude of the Fourier
transform invariant. In particular, this implies that the zero-mean property as well as the wavelet
admissibility condition are preserved by the Hilbert transform and that for any function f ∈ L2(R),
it holds that ‖f‖2 = ‖Hf‖2. Note that the latter does not hold for the L1-norm, where for a
Schwartz function f , Hf ∈ L1 if and only if it has the zero-mean property. Two examples of
even- and odd-symmetric wavelets based on derivatives of the Gaussian are plotted along with
their respective Hilbert transforms in the Supplementary Materials (see Figures S-1a, and S-1b).

2.4 Maximum Point Estimation From Discrete Samples

Each two-dimensional analyzing function within a system of α-molecules is associated with a certain
scaling and rotation parameter. These parameters can be used to obtain first estimates of the local
tangent direction and width of a feature by considering the most significant analyzing function
(i.e. the member of a system of functions yielding the largest coefficient). To obtain more precise
measurements, we consider a refinement procedure which allows us to estimate the maximum point
of a function defined in the continuum from only a few discrete samples.

Let f ∈ C2(R), {xn}Nn=1 ⊂ R be a strictly increasing sequence of N ∈ N sampling points (i.e.
xn < xn+1 for all 1 ≤ n ≤ N − 1) and denote

n∗ = argmax
n≤N

f(xn). (11)

If 1 < n∗ < N , the function f has at least one local maximum point in the interval [xn∗−1, xn∗+1],
which is in real-world applications often taken as a best guess for the global maximum point of
f . One method of refining the estimate xn∗ for a local maximum point is to assume that f can be ap-
proximated on [xn∗−1, xn∗+1] by the unique parabola fit through the points (xn∗−1, f(xn∗−1)),(xn∗ , f(xn∗)),
and (xn∗+1, f(xn∗+1)), that is

f(x) = c2(x− xn∗)2 + c1(x− xn∗) + c0, for x ∈ {xn∗−1, xn∗ , xn∗+1}. (12)

The maximum point of the parabola (12), denoted as x∗, can now be computed by

x∗ = xn∗ −
c1

2c2
. (13)
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(a) Exact argmax = 1.058
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Figure 1: (a): A C2-function and its maximum point in the interval [−2, 2]. (b): An estimate xn∗

of the maximum point obtained from sampling the function at 17 different points. (c): A refined
estimate x∗ of the maximum point obtained from fitting a parabola through xn∗ and its nearest
neighbors.

This approach appears in [74], where it is used to refine orientation estimation in a certain shearlet-
based algorithm. A short review of this and other methods for estimating maximal points from
discrete samples in the context of edge and line detection may be found in [8].

Figure 1 illustrates how (13) can be used to yield refined estimates of local maxima from a
finite number of samples. In this paper, we will use (13) to improve on estimates of local tangent
orientations and widths of features from finite samples of coefficients associated with differently
scaled and oriented α-molecules.

3 Symmetric Molecule-Based Feature Detection

In this section, we will estimate the likelihood of a certain feature being centered at a point y ∈ R2

in the image domain for a given image f ∈ L2(R2) by considering the transform of f with respect to
systems of even- and odd-symmetric α-molecules. We will furthermore demonstrate how additional
information about the detected features, namely the local tangent orientations of edges and ridges
as well as local widths (diameters) of ridges and blobs and heights (contrasts) can be extracted.
Formally, we will define three mappings that serve as feature detectors:

an edge measure E(f, y) : L2(R2)× R2 → [0, 1], (14)

a ridge measure R(f, y) : L2(R2)× R2 → [0, 1], (15)

and a blob measure B(f, y) : L2(R2)× R2 → [0, 1]. (16)

Furthermore, we will define functions that extract local properties of a feature centered at a given
point in the image domain, namely

tangent orientation measures Ox(f, y) : L2(R2)× R2 →
[
−π

2
,
π

2

)
, x ∈ {E,R}, (17)

local width measures Wx(f, y) : L2(R2)× R2 → R>0, x ∈ {R,B}, (18)

and local height measures Hx(f, y) : L2(R2)× R2 → R, x ∈ {E,R,B}. (19)

The measures E(f, y), and HE(f, y) will be defined in Section 3.2; R(f, y), WR(f, y), and HR(f, y) in
Section 3.3; B(f, y), WB(f, y), and HB(f, y) in Section 3.4; and OE(f, y), and OR(f, y) in Section 3.5.
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Before turning to the derivation of the measures in (14) to (19), we would like to explain
the basic principle of symmetric molecule-based feature detection in the one-dimensional setting,
which we emphasize is distinct from phase congruency, although it is inspired by it. Figure 2a
depicts what we consider an ideal one-dimensional edge, namely a step discontinuity preceded and
followed by two distinct constant functions. An ideal ridge, which could be described as a short
constant function interrupting a constant baseline, is shown in Figure 2b. The features plotted in
Figures 2a and 2b are both centered at the point 1/2 and the main question we aim to answer is
how this point could be discriminated from its neighborhood and, in general, from other points not
lying in the center of a ridge, an edge, or another kind of feature. Note that the notions of ridges
and blobs coincide in the one-dimensional setting.

One way of looking at this problem is to observe that the function plotted in Figure 2a is odd-
symmetric around 1/2, while the function shown in Figure 2b is even-symmetric around 1/2. For
edges, we can additionally observe a certain kind of self-similarity. When restricting the function
plotted in Figure 2a to any neighborhood around the point 1/2 and then scaling it back to the full
interval [0, 1], the function will remain unchanged. Ridges on the other hand are not defined by a
single step-discontinuity but by two step-discontinuities which are in close proximity of each other.
Any ridge can thus be associated with a width (i.e. the distance between its step-discontinuities)
and is not invariant under the restricting and rescaling operation described above. In the one-
dimensional setting, we will only deal with the case of edge detection but this issue will be taken
into consideration when defining the two-dimensional ridge measure in Section 3.3.

To summarize: In order to detect edges, we aim to test each point in the domain of a function for
the scale-invariant symmetry and self-similarity properties described in the preceding paragraph.
If a point is at the location of an edge, restrictions of the analyzed function to reasonably small
neighborhoods around this point should look roughly the same and, in particular, be odd-symmetric
when centered at the analyzed point. A simple and efficient way of testing for these properties is to
consider the coefficients associated with differently scaled even- and odd-symmetric wavelets that
are centered around the point of interest.

Figures 2c and 2d show three differently scaled versions of the odd-symmetric first and the even-
symmetric second derivative of the Gaussian (cf. (8) and (9)), all of which are L1-normalized to
one. Figures 2e and 2f depict the corresponding inner products with the idealized one-dimensional
edge as a function of the translation parameter t. For the remainder of this paper, we shall call
inner products of a function f with an even-symmetric wavelet or α-molecule the even-symmetric
coefficients of f and the inner products with an odd-symmetric wavelet or α-molecule the odd-
symmetric coefficients. Independently of scale, the even-symmetric coefficients shown in Figure 2f
go to zero at the location of the step-discontinuity, as the even-symmetric wavelets are orthogonal
to the locally odd-symmetric function centered at the point 1/2. Furthermore, the odd-symmetric
coefficients all peak in the point 1/2 with a maximum value of approximately 1/2. This is due to
the fact that the jump size of the singularity is one and because the first derivative of the Gaussian
is positive on R<0. Consequently, the integral of the L1-normalized first derivative of the Gaussian
over R<0 is 1

2 .
In summary, Figure 2 illustrates that at the location of an ideal edge, L1-normalized symmetric

wavelets show scale invariant behavior in the sense that odd-symmetric coefficients remain constant
and locally maximal (with respect to translation) under scaling, while even-symmetric coefficients
remain fixed at zero. In particular, this behavior is invariant of the jump size of the singularity
and thus unaffected by changes in contrast.
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(a) Ideal 1D edge (b) Ideal 1D ridge/blob (c)

(d) (e) (f)

Figure 2: (a): An idealized one-dimensional edge. (b): An idealized one-dimensional ridge/blob.
(c): Three different L1-normalized dilates of the first derivative of the Gaussian centered at 1/2.
(d): Three different L1-normalized dilates of the second derivative of the Gaussian centered at 1/2.
(e): Inner products of the dilates of the first derivative of the Gaussian with an ideal edge plotted
as a function of the shift parameter t. (f): Inner products of the dilates of the second derivative of
the Gaussian with the ideal edge.

To translate the above observations into an edge measure for functions in L2(R), we first use
the derivatives of the Gaussian and the Hilbert transform defined in Section 2.3 to define sets of
odd- and even-symmetric L1-normalized wavelets:

Ψe =

{
G2k

‖G2k‖1
: k ∈ N

}
∪
{
HG2k−1

‖HG2k−1‖1
: k ∈ N

}
⊂ L2(R) ∩ L1(R),

Ψo =

{
G2k−1

‖G2k−1‖1
: k ∈ N

}
∪
{
HG2k

‖HG2k‖1
: k ∈ N

}
⊂ L2(R) ∩ L1(R).

Note that ‖HGk‖1 < ∞ for all k ∈ N is a consequence of Gk being a Schwartz function and the

zero-mean property Ĝk(0) = 0. To see this, one can split the integral of the Fourier representation

HGk(x) =
∫
R ĤGk(ξ)e

2πixξdξ at the origin and apply integration by parts to show that HGk is
dominated by Cx−2 for some C > 0 and hence in L1(R).

Let ψo ∈ Ψo, ψe ∈ Ψe, a > 1 be fixed, J = {jn}NJn=1 ⊂ Z be an increasing sequence of NJ ∈ N
scaling parameters and denote L1-normalized dilates and shifts of the generating wavelets ψo and
ψe with

ψo
j,y(x) = ajψo(aj(x− y)), ψe

j,y(x) = ajψe(aj(x− y)), (20)

for scaling parameters j ∈ J and translation parameters y ∈ R. Note that f 7→ ajf(aj ·) defines
an isometric mapping of L1. As already discussed earlier in the case of the first derivative of the

10



Gaussian, the odd-symmetric coefficient at the location of an ideal edge is, independently of scaling,
fully determined by the jump size of the discontinuity and the integral of the generating wavelet
ψo over R≤0. To be precise, the value

Kψo =

∫ 0

−∞
ψo(x)dx, (21)

is equal to the odd-symmetric coefficients at the location of an ideal edge with jump size one. With
a soft-thresholding parameter β > 0 that corresponds to the minimal jump size that is required
for the detection of an edge and a fixed scaling offset for the even-symmetric wavelets je ∈ R>0, a
one-dimensional edge measure for a function f ∈ L2(R) and y ∈ R is given by

Ĕ
1D

(f, y) =

∣∣∣∣∣∑j∈J〈f, ψo
j,y〉

∣∣∣∣∣− ∑j∈J
∣∣∣〈f, ψe

j−je,y〉
∣∣∣− βNJKψo

NJ max
j∈J

{∣∣∣〈f, ψo
j,y〉
∣∣∣}+ ε

, (22)

where ε > 0 prevents division by zero. The measure Ĕ
1D

is bounded above by one but to ensure a
mapping to [0, 1], we finally set

E1D(f, y) = max{0, Ĕ1D
(f, y)}. (23)

For example, if a function g has an ideal edge at a point y∗ with jump size s, then all odd-symmetric
coefficients will virtually1 be equal to Kψo times the jump size s, and all even-symmetric coefficients

will be zero. That is, when disregarding ε, the measure Ĕ
1D

(g, y∗) reduces to

Ĕ
1D

(g, y∗) =
NJsKψo − βNJKψo

NJsKψo
= 1− β

s
, (24)

illustrating that the jump size of edges that can be detected by the measure E1D is indeed bounded
below by the parameter β.

The term βKψo in (22) can also be seen as a soft-thresholding parameter that is applied to all
odd-symmetric coefficients and thereby implicitly denoises the analyzed signal f . In practice, the
parameter β is typically chosen as a function of the expected level of noise present in a given signal
or image.

Apart from the lower bound on s introduced by β, the measure E1D is by construction contrast-
invariant. Due to normalization with respect to the odd-symmetric coefficient with the greatest
magnitude, E1D is independent of the jump size of the discontinuity associated with an edge. In
particular, regardless of the jump size, E1D will be close to one at the location of an ideal edge
and only diminish at a point y if the analyzed function has even-symmetric components around y,
or if the odd-symmetric coefficients at y have a strong variance with respect to scaling. E1D thus
provides a continuous measure of the structural similarity of the neighborhood of a given point
with an ideal edge, which sets it categorically apart from most gradient-based approaches to edge
detection that are measuring jump sizes.

1Note that the derivatives of the Gaussian are not compactly supported in the time domain and that an ideal
edge that separates two different constant functions covering the whole real line is not in L2(R) (cf. Figure 2a).

11



(a) Input signal (b) 1D edge measure with je = 0 (c) 1D edge measure with je = 2

Figure 3: (a): A piecewise polynomial function perturbed with additive Gaussian white noise
(computed using [30]) . (b): The one-dimensional edge measure (23) with parameters ψo = G1

‖G1‖1 ,

ψe = HG1
‖HG1‖1 , a = 2, NJ = 4, β = 0.03 and je = 0. (c): The one-dimensional edge measure (23)

with a scaling offset je = 2 (other parameters are the same as in 3b).

Broadly speaking, the odd-symmetric coefficients in (22) serve as evidence in favor of – while
the even-symmetric coefficients serve as evidence against – the presence of an edge at a given
location. To suppress the emergence of false positives in the extended neighborhood of an actual
edge, it has proven useful to consider even-symmetric wavelets that have lower frequencies than
their odd-symmetric counterparts, which can be achieved by setting the scale offset parameter
je to any real value greater than 0. By doing so, the even-symmetric coefficients have a slower
decay on the left and right side of an edge and can thereby better suppress the faster decaying
odd-symmetric coefficients in the neighborhood of an edge. The effect of the scale offset parameter
is illustrated in Figure 3, which visualizes the one-dimensional edge measure E1D computed on a
piecewise polynomial signal with additive Gaussian noise. The odd- and even-symmetric wavelets
were chosen to be the first derivative of the Gaussian and its Hilbert transform, that is ψo = G1

‖G1‖1
and ψe = HG1

‖HG1‖1 . All numerical results in this manuscript were in fact obtained by considering
even- and odd-symmetric generators that form Hilbert transform pairs, that is, up to normalization
ψo = Hψe. Such pairs of wavelets also play an important role in the dual-tree complex wavelet
transform [64]. One advantage of considering Hilbert transform pairs is that the respective functions
only differ with respect to their symmetry properties in the sense that they differ by a 90◦ phase
shift but have the same magnitude response in the Fourier domain. The other parameters were
selected as follows: a = 2, NJ = 4, β = 0.03, je = 0 for the plot in Figure 3b and je = 2 for the
plot in Figure 3c.

The main difference between edges and ridges is that edges are locally odd-symmetric features
while ridges are locally even-symmetric features. Thus, to obtain a one-dimensional ridge measure,
it almost suffices to simply switch the roles of the even- and odd-symmetric wavelets in (22).
However, due to the fact that ridges, in contrast to edges, are associated with widths, the even-
symmetric coefficients are not scaling invariant at the location of an ideal ridge as it is the case for
odd-symmetric coefficients at the location of an ideal edge. As the one-dimensional edge measure
was mainly derived to illustrate the general concept behind this work, a ridge measure will only be
rigorously defined for the two-dimensional case in Section 3.3.
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(a) 2D edge (b) 2D ridge (c) 2D blobs

Figure 4: Examples of ideal features in the two-dimensional setting.

3.1 Symmetric α-Molecules for Edge, Ridge, and Blob Detection in 2D

We now generalize the one-dimensional edge measure E1D to edges, ridges, and blobs in the two-
dimensional setting (cf. Figure 4). With small adjustments, the symmetry and self-similarity
properties that characterize edges and ridges in the one-dimensional setting can also be utilized to
extract features from two-dimensional signals. A function describing a two-dimensional image is
locally odd-symmetric at a point lying on an edge with respect to the tangent of the edge contour.
On the other hand, the tangents of the contour of a ridge define axes of symmetry associated with
even-symmetry while a function is locally point symmetric at the center of a blob. In order to detect
two-dimensional edges and ridges, we will consider generating functions in L2(R2) ∩ L1(R2) that
are defined as tensor products of the Gaussian G0 with one-dimensional odd- or even-symmetric
wavelets from the sets Ψe and Ψo. This way, we will be able to test for, in a sense, one-dimensional
symmetry properties that are present in two-dimensional functions along specific directions. In the
case of blob detection, we will consider tensor products of two even-symmetric wavelets. To this
end, we define the sets

Ψe
2 =

{
c1c2π

− 1
2ψe(c1x1)G0(c2x2) : ψe ∈ Ψe, c1, c2 ∈ R>0

}
⊂ L2(R2) ∩ L1(R2), (25)

Ψo
2 =

{
c1c2π

− 1
2ψo(c1x1)G0(c2x2) : ψo ∈ Ψo, c1, c2 ∈ R>0

}
⊂ L2(R2) ∩ L1(R2) (26)

that contain two-dimensional wavelet generators that are based on even- and odd-symmetric one-
dimensional wavelets and the Gaussian G0, while the generators in

Ψ̃e
2 = {c1c2ψ

e(c1x1)ψe(c2x2) : ψe ∈ Ψe, c1, c2 ∈ R>0} ⊂ L2(R2) ∩ L1(R2) (27)

are even-symmetric and have vanishing moments in both dimensions. The parameters c1 and c2 can
be used to adjust the scale of the even- and odd-symmetric generators as well as their aspect ratio.
Examples of two-dimensional symmetric generators contained in eqs. (25) to (27) are depicted in
Figures S-1c to S-1e.

Analogous to the one-dimensional case, we require sets of differently scaled analyzing functions
to test for scale-invariant local symmetry properties. However, the local symmetry at the location
of a two-dimensional feature is typically only given with respect to a specific symmetry axis. Thus,
the analysis of two-dimensional signals cannot solely be based on differently scaled wavelet-like
functions but also requires a means of changing their preferred orientation. A natural way of
obtaining systems of dilations, rotations, and shifts of a single two-dimensional generator is to
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consider the α-molecule framework [35] briefly described in Section 2.1. Let α ∈ [0, 1] be fixed,

g ∈ Ψe
2 ∪ Ψo

2 ∪ Ψ̃e
2 be a symmetric generator, a > 1, J ⊂ Z be a set of scaling parameters, and

Θ ⊂
[
−π

2 ,
π
2

)
be a set of orientation parameters, then the corresponding system of L1-normalized

symmetric molecules (noting the L1-isometric dilation) is given by

SM(g, α, a, J,Θ) =
{
mj,θ,y(x) = aj(1+α)g(Aaj ,αRθ(x− y)) : j ∈ J, θ ∈ Θ, y ∈ R2

}
. (28)

If further for all |ρ| ≤ L with L,M,N1, N2 ∈ N0 ∪ {∞}

|∂ρĝ(ξ)| . min
{

1, a−j + |ξ1|+ a−j(1−α) |ξ2|
}M
· (1 + |ξ|2)

−N1
2 · (1 + (ξ2)2)

−N2
2 (29)

holds with the implicit constants independent of the choice of parameters j ∈ J , then we call
the associated set SM(g, α, a, J,Θ) a system of L1-normalized symmetric α-molecules of order
(L,M,N1, N2).

The parameter α describes the degree of anisotropy introduced to a system by the scaling matrix
Aaj ,α and should be chosen as a function of the expected level of noise and the regularity of the
structures that are to be detected. If a signal was perturbed with severe noise but the contours of
its edges or ridges are smooth, introducing a high degree of anisotropic scaling by choosing α close
to zero can significantly improve the detection performance. However, setting α close to zero can
lead to problems at locations where the contour of a feature is irregular and can thus not be well
approximated by a linear function. We emphasize that the elements in (28) are L1-normalized,
while classical systems of α-molecules are normalized with respect to the L2-norm.

The following proposition specifies the order of symmetric molecule systems obtained from
generators defined by eqs. (25) to (27) in terms of a localization parameter L, a vanishing moments
parameter M and smoothness parameters N1 and N2 (cf. (5)).

Theorem 3.1. Let k ∈ N and denote four types of generators by

g
(1)
k (x) = Gk(x1)G0(x2), g

(2)
k (x) = HGk(x1)G0(x2), (30)

g
(3)
k (x) = Gk(x1)Gk(x2), g

(4)
k (x) = HGk(x1)HGk(x2). (31)

Let α ∈ [0, 1], a > 1, J ⊂ Z be a set of scaling parameters, and Θ ⊂ [−π
2 ,

π
2 ) a set of rotation

parameters then it holds that SM(‖g(i)
k ‖
−1
1 g

(i)
k , α, a, J,Θ) is of order (L,max{0, k−L},∞,∞), where

L ∈ N0 ∪ {∞} for i ∈ {1, 3}, and L ∈ {0, . . . , k − 1} for i ∈ {2, 4}.

Proof. We need to verify that (29) holds. Let ρ ∈ N2
0 and observe that∣∣∣∂ρ1

1 (ξ1)ke−(ξ1)2
∣∣∣ =

∣∣∣P (ξ1)e−(ξ1)2
∣∣∣ . (|ξ1|k+ρ1 + |ξ1|max{0,k−ρ1}

)
e−(ξ1)2

, (32)

where P (ξ1) is a polynomial of degree k + ρ1 whose growth is asymptotically bounded by |ξ1|k+ρ1

and whose decay towards zero is asymptotically bounded by |ξ1|max{0,k−ρ1}. Let N1, N2 ∈ N0. We
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use that e−x
2
. (1 + |x|)−N for all N ∈ N0 and write∣∣∣∣∂ρĝ(1)

k (ξ)

∣∣∣∣ =
∣∣∣∂ρ ((2πiξ1)kπe−π

2(ξ1)2
e−π

2(ξ2)2
)∣∣∣ (33)

=
∣∣∣(2i)kπk+1

(
∂ρ1

1 (ξ1)ke−π
2(ξ1)2

)(
∂ρ2

2 e−π
2(ξ2)2

)∣∣∣ (34)

.
(
|ξ1|k+ρ1 + |ξ1|max{0,k−ρ1}

)
e−π

2(ξ1)2 · (1 + |ξ2|ρ2) e−π
2(ξ2)2

(35)

.
(
|ξ1|k+ρ1 + |ξ1|max{0,k−ρ1}

)
(1 + |ξ2|)ρ2 (1 + |ξ1|)−(N1+k+ρ1)(1 + |ξ2|)−(N1+N2+ρ2)

(36)

=
1 + |ξ1|k+ρ1−max{0,k−ρ1}

(1 + |ξ1|)k+ρ1−max{0,k−ρ1}
|ξ1|max{0,k−ρ1}

(1 + |ξ1|)max{0,k−ρ1}
(1 + |ξ1|)−N1(1 + |ξ2|)−(N1+N2) (37)

≤ min
{

1, |ξ1|max{0,k−ρ1}
}

(1 + |ξ1|)−N1(1 + |ξ2|)−(N1+N2) (38)

. min
{

1, a−j + |ξ1|+ a−j(1−α) |ξ2|
}max{0,k−ρ1}

(1 + |ξ|2)
−N1

2 · (1 + (ξ2)2)
−N2

2 , (39)

independently of the choice of parameters a > 1, j ∈ Z and α ∈ [0, 1]. This shows (29) and a

similar argument leads to the same properties for the generator g
(3)
k .

For g
(2)
k , we consider |ρ| < k, N1, N2 ∈ N0 and write∣∣∣∣∂ρĝ(2)

k (ξ)

∣∣∣∣ =
∣∣∣∂ρ (−i sgn(ξ1)(2πiξ1)kπe−π

2(ξ1)2
e−π

2(ξ2)2
)∣∣∣ (40)

=
∣∣∣(2i)kπk+1

(
∂ρ1

1 |ξ1| (ξ1)k−1e−π
2(ξ1)2

)(
∂ρ2

2 e−π
2(ξ2)2

)∣∣∣ , (41)

where ∂ρ1
1 |ξ1| (ξ1)k−1e−π

2(ξ1)2
only exists for ρ1 < k. By repeating the same steps as in the case of

ĝ
(1)
k , we can conclude that∣∣∣∣∂ρĝ(2)

k (ξ)

∣∣∣∣ . min
{

1, a−j + |ξ1|+ a−j(1−α) |ξ2|
}max{0,k−ρ1}

(1 + |ξ|2)
−N1

2 · (1 + (ξ2)2)
−N2

2 , (42)

independently of the choice of parameters a > 1, j ∈ Z and α ∈ [0, 1]. The same argument

can be used to show that SM(‖g(4)
k ‖

−1
1 g

(4)
k , α, a, J,Θ) is of order (L,max{0, k − L},∞,∞) for

L ∈ {0, . . . , k − 1}.

Theorem 3.1 illustrates that symmetric molecule systems based on derivatives of the Gaussian
are well-localized and smooth in the time domain while the number of vanishing moments increases
with the number of derivatives. However, Theorem 3.1 also shows that changing the symmetry
properties of a generator by applying the Hilbert transform reduces smoothness in the Fourier
domain and thus localization in the time domain.

3.2 Edge Detection

In the neighborhood of a point y that lies on an ideal edge (cf. Figure 4a), the image is locally
odd-symmetric with respect to a symmetry axis defined by the tangent of the edge contour. The
measure E1D can thus be generalized to yield a two-dimensional edge measure by restricting the
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analysis to symmetric molecules whose direction of vanishing moments is orthogonal to the tangent
of the edge contour going through y. Let go ∈ Ψo

2, ge ∈ Ψe
2 be a pair of odd- and even-symmetric

generators, α ∈ [0, 1], a > 1, J = {jn}NJn=1 ⊂ Z be an increasing sequence of NJ ∈ N scaling
parameters, and Θ ⊂ T be a set of orientation parameters. For the remainder of this section,
we will denote elements from the symmetric molecule system SM(go, α, a, J,Θ) with mo

j,θ,y and
elements from the system SM(ge, α, a, J,Θ) with me

j,θ,y (cf. (28)). For an image defined by a

two-dimensional function f ∈ L2(R2), we first denote the most significant scaling and orientation
parameters at a point y ∈ R2 by

(j∗(y), θ∗(y)) = argmax
(j,θ)∈J×Θ

∣∣〈f,mo
j,θ,y〉

∣∣ . (43)

Then, with a soft-thresholding parameter β > 0 and a possibly non-integer scaling offset parameter
je ∈ R>0, a two-dimensional edge measure is given by

Ĕ(f, y) =

∣∣∣∣∣∑j∈J〈f,mo
j,θ∗(y),y〉

∣∣∣∣∣− ∑j∈J
∣∣∣〈f,me

j−je,θ∗(y),y〉
∣∣∣− βNJKψo

NJ

∣∣∣〈f,mo
j∗(y),θ∗(y),y〉

∣∣∣+ ε
, (44)

where ε > 0 prevents division by zero and Kψo (as defined in (21) for the one-dimensional wavelet ψo

appearing in the definition of go (25)) corresponds to the odd-symmetric coefficient at the location
of an ideal edge with jump-size one. As in the one-dimensional case, we finally set

E(f, y) = max{0, Ĕ(f, y)}, (45)

to ensure that the measure maps to [0, 1].
As we already pointed out during the derivation of the one-dimensional edge measure E1D(f, y)

earlier in this section (cf. (22)), the measure (44) is partly based on the observation that the
coefficients obtained from an odd-symmetric and L1-normalized analyzing function are invariant
to scaling if it is spatially and directionally aligned with an ideal edge. In this regard, we would
like to emphasize an interesting connection to other shearlet-based approaches to edge detection,
which utilize the special decay behavior of L2-normalized shearlets. It was shown in [36] that the
coefficents of band-limited shearlets at a point that lies on a smooth boundary curve, and whose
local tangent direction is aligned with the considered shearlet, decay with O(s−3/4) for s → ∞,
where s denotes the scaling parameter (cf. (4)). Similar results have also been shown in the case
of compactly supported shearlet generators [50]. This is related to the measures proposed here in
the sense that, when considering a two-dimensional generator ψ ∈ L1(R2) ∩ L2(R2) and parabolic
scaling (i.e., α = 1/2), it holds that

‖ψ
(
As,1/2 ·

)
‖L2

‖ψ
(
As,1/2 ·

)
‖L1

=
s−

3
4 ‖ψ‖L2

s−
3
2 ‖ψ‖L1

= s
3
4
‖ψ‖L2

‖ψ‖L1

, s > 0. (46)

In other words, considering L1- instead of L2-normalization precisely neutralizes the decay of shear-
let coefficients at points that lie on smooth boundary curves.

Further note that, since ‖mo‖L1 = 1 for all mo ∈ SM(go, α, a, J,Θ), the coefficient associated
with the most significant scale parameter j∗(y) at a point y can directly be related to the contrast
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(a) (b) (c)

Figure 5: (a): The radius rψe of a one-dimensional even-symmetric wavelet, as defined in (49). (b):
Three ideal one-dimensional ridges with different widths. (c): The inner products of ψe with the
ideal ridges plotted as a function of the scaling parameter a.

(i.e, the height) of an edge going through y. By considering Kψo (cf. (21)), which denotes the value
of an odd-symmetric coefficient at the location of an ideal edge with jump size one, we define the
local height measure for edges as

HE(f, y) =
〈f,mo

j∗(y),θ∗(y),y〉
Kψo

. (47)

3.3 Ridge Detection

For ridge detection, we can exploit the fact that in the neighborhood of a point that lies on the
centerline of an ideal ridge (cf. Figure 4b), the image is locally even-symmetric with respect to a
symmetry axis defined by the tangent of the centerline. A two-dimensional ridge measure can in
principle be obtained by simply interchanging the roles of the odd- and even-symmetric molecules
mo andme in the definition of the edge measure E(f, y). However, to fully retain contrast invariance,
it is necessary to also take into account the width of the ridge, that is, the distance between the two
jump singularities that define a ridge in an idealized setting. Contrary to the case of edge detection,
even-symmetric coefficients of L1-normalized molecules that are centered around the location of a
ridge are not invariant to scaling but depend on the scaling parameter as well as the width of the
respective ridge. This behavior is illustrated with respect to ridges of three different widths in
Figure 5.

For an even-symmetric generator ge ∈ Ψe
2, let us denote the coefficient at the location of an

ideal ridge whose tangent direction in y agrees with the orientation of ge and that has width 2r
and height 1 by

Kge(r) = Kψe(r) =

∫ r

−r
ψe(x)dx, (48)

where ψe is the one-dimensional even-symmetric wavelet associated with the two-dimensional gen-
erator ge (cf. (26)). We furthermore define the radius of ge as half of the width of the ideal ridge
which yields the most significant coefficient, that is,

rge = argmax
r∈R≥0

|Kge(r)| , (49)
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and extend this notion to arbitrarily shifted and rotated molecules by setting rme
0,θ,y

= rme
0,0,0

= rge .
The radius of a dilated molecule can directly be computed as a function of the scale parameter
and the underlying generator, that is, rme

j,θ,y
= a−jrme

0,0,0
= a−jrge . Note that in most practical

cases, the radius rge is equivalent to the distance between the origin and the first zero crossing of
the associated one-dimensional wavelet ψe (cf. Figure 5a).

Let ge ∈ Ψe
2, go ∈ Ψo

2 be a pair of odd-symmetric and even-symmetric generators, α ∈ [0, 1],
a > 1, J = {jn}NJn=1 ⊂ Z be an increasing sequence of NJ ∈ N scaling parameters, and Θ ⊂ T be a
set of orientation parameters. Furthermore let f ∈ L2(R2) be a two-dimensional image. Analogous
to the edge detection case, we denote the scaling and rotation parameters associated with the most
significant even-symmetric molecule at a point y ∈ R2 in the image plane by

(j∗(y), θ∗(y)) = argmax
(j,θ)∈J×Θ

∣∣〈f,me
j,θ,y〉

∣∣ . (50)

For each point y, we first estimate the width of an assumed ideal ridge whose centerline passes
through y and whose tangent direction at y agrees with the most significant orientation parameter
θ∗(y). We use j−(y) and j+(y) to denote the scaling parameters in the strictly increasing sequence J
that precede, respectively succeed, the most significant scale j∗(y). The width measure is obtained
by computing a refinement of the most significant scaling parameter as the maximum point of a
parabola fit through the points(

j, 〈f,me
j,θ∗(y),y〉

)
, j ∈ {j−(y), j∗(y), j+(y)}. (51)

Following (13), we define the local width measure as

WR(f, y) = 2
(
a
c1
2c2
−j∗(y)

rge

)
, (52)

where the values c1 and c2 are chosen according to (12). If j∗(y) is the first or last index in J ,
we set WR(f, y) = 2

(
a−j

∗(y)rge

)
. Under the assumption that an ideal ridge with width WR(f, y),

height 1, and a local tangent direction that agrees with θ∗(y) passes through y, we can directly
compute the associated even-symmetric coefficients of differently dilated molecules with rotation
parameter θ∗(y) and denote

Kge(f, j, y) = Kge

(
aj WR(f, y)/2

)
=

∫ aj WR(f,y)/2

−aj WR(f,y)/2
ψe(x)dx. (53)

Based on the estimated width WR(f, y), we can further define a measure that computes the height
of an assumed ideal ridge whose centerline passes through y as the ratio between the most significant
coefficient and the value Kge(f, j∗(y), y), that is,

HR(f, y) =
〈f,me

j∗(y),θ∗(y),y〉
Kge(f, j∗(y), y)

. (54)

A two-dimensional ridge measure can now be defined by carefully modifying the edge measure
E(f, y). To detect locally even-symmetric features instead of odd-symmetric ones, the roles of the
even-symmetric molecules me and odd-symmetric molecules mo need to be interchanged. While
the odd-symmetric coefficients at the location of an ideal edge are invariant to scaling, this is not
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the case for the even-symmetric coefficients at the location of an ideal ridge. This can be taken
into account by adjusting the normalizing factor for every scaling parameter j ∈ J using the values
HR(f, y)Kge(f, j, y), which correspond to the even-symmetric coefficients at the location of an ideal
ridge with width WR(f, y) and height HR(f, y). Finally, when using strongly oscillating generators,
even the sign of the even-symmetric coefficients at the location of an ideal ridge is not invariant to
scaling. This can be addressed by considering the expected sign sgn(HR(f, y)Kge(f, j, y)) for each
scale parameter when taking the sum of the even-symmetric coefficients. To simplify our notation,
we write h(f, j, y) = HR(f, y)Kge(f, j, y) and a two-dimensional ridge measure is now given by

R̆(f, y) =

∑
j∈J

sgn (h(f, j, y)) 〈f,me
j,θ∗(y),y〉 −

∑
j∈J

∣∣∣〈f,mo
j−jo,θ∗(y),y〉

∣∣∣− βNJ |Kge(f, j∗(y), y)|∑
j∈J

max
{∣∣∣〈f,me

j,θ∗(y),y〉
∣∣∣ , |h(f, j, y)|

}
+ ε

, (55)

where ε > 0 prevents division by zero, β > 0 is a soft-thresholding parameter, and jo ∈ R>0 denotes
the scaling offset between even- and odd-symmetric molecules. As in the case of edge detection, we
finally set

R(f, y) = max{0, R̆(f, y)}. (56)

3.4 Blob Detection

The measures E(f, y) and R(f, y) detect features that exhibit symmetry properties that are locally
defined by a singular symmetry axis, namely the normal of the tangent of an edge contour or the
centerline of a ridge. A similar approach can be used to detect features in two-dimensional images
that have less anisotropic symmetry properties in the sense that locally, the center of such features
is a point of symmetry for more than one or even all possible directions. Let us consider an idealized
blob as a filled square, which has four axes of even symmetry, or a filled circle, for which each line
that passes through its center is an axis of even symmetry (cf. Figure 4c).

To detect such blobs, we will use a generator g̃e ∈ Ψ̃e
2 that is defined by the tensor product of an

even-symmetric wavelet with itself (cf. (27)). Like a square, such a generator has by construction
four axes of symmetry and is invariant to rotations by an angle of π

2 . Let us denote the coefficient
at the location of an ideal square-shaped blob with side length (width) 2r and height 1 by

K̃g̃e(r) =

∫ r

−r

∫ r

−r
ψe(x1)ψe(x2)dx2dx1 = Kψe(r)2, (57)

and retain the definition of the radius of g̃e as half of the side length of the square-shaped blob
which maximizes its response, that is,

rg̃e = argmax
r∈R≥0

Kψe(r)2 = argmax
r∈R≥0

|Kψe(r)| . (58)

Let go ∈ Ψo
2 be an odd-symmetric generator, a > 1, J = {jn}NJn=1 ⊂ Z be an increasing sequence

of NJ ∈ N scaling parameters, and Θ ⊂ T be a set of orientation parameters. Due to the isotropic
nature of the features we aim to detect, and contrary to the cases of edge and ridge detection,
we set α = 1 and denote elements from the molecule system SM(g̃e, 1, a, J,Θ) with m̃e

j,θ,y and
elements from the system SM(go, 1, a, J,Θ) with mo

j,θ,y. For a two-dimensional image f ∈ L2(R2),
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we again denote the most significant pair of scaling and rotation parameters with respect to the
even-symmetric generator g̃e at a point y ∈ R2 with

(j∗, θ∗) = argmax
(j,θ)∈J×Θ

∣∣∣〈f, m̃e
j,θ,y〉

∣∣∣ . (59)

As in the case of ridge detection, the even-symmetric coefficients at the center of a blob are not
invariant to scaling but depend on both the scaling parameter j and the width of the respective
blob. For each point y, we again estimate the width of an assumed ideal blob by fitting a parabola
through the points (

j, 〈f, m̃e
j,θ∗(y),y〉

)
, j ∈ {j−(y), j∗(y), j+(y)}, (60)

where j−(y) denotes the predecessor and j+(y) the successor of j∗(y) in the sequence J and compute

WB(f, y) = 2
(
a
c1
2c2
−j∗(y)

rg̃e

)
, (61)

where the values c1 and c2 are chosen according to (12). Under the assumption that an ideal square-
shaped blob with width WB(f, y) and height 1 is centered on y, we can also directly compute the
associated even-symmetric coefficients of differently dilated molecules and denote

K̃g̃e(f, j, y) = K̃g̃e

(
aj WB(f, y)/2

)
= Kψe

(
aj WB(f, y)/2

)2
. (62)

The height of the blob can then be computed by

HB(f, y) =
〈f, m̃e

j∗(y),θ∗(y),y〉
K̃g̃e(f, j∗(y), y)

. (63)

We are now ready to define a measure for blob detection that can be understood as a generalization
of the ridge measure R(f, y) in the sense that we aim to detect features that are associated with
more than one axis of even symmetry. In particular, we will take into account that axes of even
symmetry induce rotation invariance. A perfect square, for instance, has four symmetry axes and
is invariant to rotations by π

2 , while a pentagon has five axes of even symmetry and is invariant
to rotations by 2π

5 . Let for each point y ∈ R2 in the image plane Θ∗(y) ⊂ Θ denote the subset
of rotation parameters that correspond to the expected rotation invariance properties of the blob
centered on y. The subset Θ∗(y) thus depends on the most significant rotation parameter θ∗(y)
and on the symmetry and rotation invariance properties of the specific shape we aim to detect.
Note that in the case of circles, Θ∗(y) = Θ independently of the most significant scale paramter
j∗(y) for all points y. With a soft-thresholding parameter β > 0 and a possibly non-integer scaling
offset jo ∈ R>0, the blob measure is given by

B̆(f, y) =

∑
j∈J

min
θ∈Θ∗(y)

{sgn(HB(f,y))〈f,m̃e
j,θ,y〉}−∑

j∈J
max

θ∈Θ∗(y)

{∣∣∣〈f,mo
j−jo,θ,y〉

∣∣∣}−βNJK̃g̃e (f,j∗(y),y)∑
j∈J

max
{
|〈f,m̃e

j,θ∗(y),y〉|,|HB(f,y)|K̃
g̃e

(f,j,y)
} , (64)

where ε > 0 prevents division by zero. We define

B(f, y) = max{0, B̆(f, y)}. (65)
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3.5 Estimation of Local Tangent Directions for Edges and Ridges

The width estimates WR(f, y) and WB(f, y) exploit the fact that even-symmetric generators from

the sets Ψe
2 and Ψ̃e

2 are themselves associated with a width which, in combination with the scale
parameter j, also determines the width of the elements in the associated system of symmetric
molecules. By considering the orientation parameter θ, a similar approach can be used to estimate
local tangent directions of anisotropic features such as edges or ridges. Let us first consider the
case of edges and a system SM(go, α, a, J,Θ) of odd-symmetric molecules with go ∈ Ψo

2, α ∈ [0, 1],
a > 1, an increasing sequence J = {jn}NJn=1 ⊂ Z of NJ ∈ N scaling parameters, and a clockwise

(or counter-clockwise) ordered sequence Θ = {θn}NΘ
n=1 ⊂ T of NΘ ∈ N orientation parameters

on the torus. Each odd-symmetric molecule mo
j,θ,y ∈ SM(go, α, a, J,Θ) (cf. (28)) has a preferred

orientation defined by the rotation parameter θ and the preferred orientation of the generator go.
At the location of an ideal edge, the odd-symmetric coefficient is maximized with respect to rotation
if the direction of the one-dimensional wavelet ψo used in the construction of the generator go is
orthogonal to the local tangent of the edge. For an image f ∈ L2(R2) and a point y ∈ R2, let us
again denote the most significant scaling and orientation parameters by

(j∗(y), θ∗(y)) = argmax
(j,θ)∈J×Θ

∣∣〈f,mo
j,θ,y〉

∣∣ . (66)

Analogous to the width measures WR(f, y) and WB(f, y), we can use θ∗(y) as a first approxima-
tion of the tangent direction of a potential edge going through the point y. Again, this approx-
imation can be refined by computing the maximum point of a parabola fit through the points(
θ−(y), 〈f,me

j∗(y),θ−(y),y〉
)

,
(
θ∗(y), 〈f,me

j∗(y),θ∗(y),y〉
)

, and
(
θ+(y), 〈f,me

j∗(y),θ+(y),y〉
)

, where θ−(y)

denotes the preceding and θ+(y) the succeeding orientation parameter of θ∗(y) in the sequence Θ.
The local tangent orientation can then be estimated by applying (13), that is,

OE(f, y) = θ∗(y)− c1

2c2
, (67)

where the values c1 and c2 are chosen as in (12). To obtain a function OR(f, y) that estimates
local tangent orientation of ridges, it suffices to replace the odd-symmetric generator go with an
even-symmetric generator ge ∈ Ψe

2.

4 Performance Evaluation on Synthetic Images

To evaluate the performance of the proposed measures, we first consider sets of synthetic digital
grayscale images for which the locations and properties of features are unambiguously defined. For
each type of feature, we created two test images of varying complexity that contain exemplary
instances of the respective feature. To test the stability of the proposed measures in adverse
conditions, we furthermore applied a combination of Gaussian and Poisson (shot) noise to each
test image with three different degrees of severity (no noise, medium noise, severe noise). The
Supplemental Materials contain visualizations of all six synthetic images, their distorted versions
as well as the corresponding ground truths in Section S-3 and an explanation of the Matlab
variables used in Section S-2.

In all cases, both the synthetic image and the ground truth are based on a geometry that was
defined semi-randomly on the unit square and then discretized on a grid of 768×768 pixels. Hence,
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the ground truth is not directly tied to the discrete digital image and therefore less likely to be
biased towards any of the different algorithms we consider in our numerical experiments. For all
three features, the feature location ground truth is stored as a binary image where white pixels
denote the contours of edges, centerlines of ridges, and centers of blobs, respectively. In the case of
edges and ridges, the ground truth also contains the orientation of the tangent for each pixel that
lies on the contour of an edge or the centerline of a ridge. The same holds for local feature widths in
the case of ridges and blobs. The height measures HR(f, y), and HB(f, y) are essentially defined as
functions of the width measures WR(f, y), and WB(f, y) (cf. (54), respectively (63)). The validity
of a height measure therefore almost exclusively depends on the precision of the associated width
measure. For brevity, the measures HR(f, y), and HB(f, y) were thus omitted from the numerical
evaluation.

We consider different metrics to evaluate the results obtained by a feature detection algorithm
with respect to the corresponding ground truth. For a given image, let Ngt denote the number of
pixels that are marked as feature points in the ground truth and Ndet the number of points that
were detected as feature points by the algorithm under evaluation. We denote the set of feature
points in the ground truth with Pgt = {pn}

Ngt

n=1 ⊂ N2 and the set of detected feature points with

Pdet = {qn}Ndet
n=1 ⊂ N2. Furthermore, let Ddet = {minp∈Pgt ‖q − p‖ : q ∈ Pdet} denote the set of all

Euclidean distances from pixel coordinates in Pdet to the set Pgt, and Dgt = {minq∈Pdet
‖p−q‖ : p ∈

Pgt} denote the set of all distances from points in Pgt to the set Pdet. A figure of merit that
evaluates how successful an algorithm was at correctly detecting the location of features can then
be defined by

FOM =
1

max{Ngt, Ndet}

Ngt∑
n=1

1

1 + γdn
2 , (68)

where dn ∈ D = Dgt ∪Ddet denotes the n-th largest element in the union of both sets of distances,
and γ > 0. All FOM-values reported in this section were computed with γ = 1

9 . Note that for
D = Ddet and accordingly adjusted summation bounds (i.e., replacing Ngt with Ndet), (68) yields
exactly the definition of Pratt’s figure of merit (PFOM) [1]. The main reason for using a slightly
adjusted version here is that the original definition of PFOM tends to be too forgiving of false
positives in the case that Ndet < Ngt.

For a fixed radius r > 0, we define the set of successfully detected points in the ground truth
(true positives) as Ptp = {p ∈ Pgt : minq∈Pdet

‖p − q‖ ≤ r} and let Ntp ∈ N denote the number of
points in Ptp. To evaluate width and tangent orientation measures, we compute the mean of the
set of absolute errors obtained by comparing the corresponding ground truth values at points in
Ptp with the values yielded by an algorithm at the nearest neighbors of the ground truth points in
the set Pdet. Formally, we define the mean absolute error (MAE) of an arbitrary measure M(f, y)
computed on a digital image f as

MAEM =
1

Ntp

Ntp∑
n=1

∣∣∣∣∣Mgt(f, pn)−M

(
f, argmin

q∈Pdet

‖pn − q‖

)∣∣∣∣∣ , (69)

where pn ∈ Ptp and Mgt(f, pn) denotes the ground truth of the estimated property at the pixel pn.
Note that in the case of tangent orientation measures, the error is computed on the torus. Finally,
we define the number of true positives (TP) and the ratio of successfully detected feature points
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(TPR) as

TP = Ntp, and TPR =
Ntp

Ngt
, (70)

respectively.
Throughout this section, the results of SymFD (the proposed algorithm) are not only compared

to the ground truth but also to the results of other well-known feature detection algorithms. An
overview of all considered algorithms is given in Table S-1 in the Supplementary Materials, which
lists for each method the types of features it can detect, the number of parameters of the algorithm
and the average time it took to process one synthetic digital image. The average processing time
was measured on an Intel Core i7-4790 CPU clocked at 3.60 GHz.

The parameters of each method were separately optimized for each test image and each noise
configuration. In the cases of edge and ridge detection, the optimization was carried out in terms
of the FOM-value. For blob detection, the goal was to maximize the number of correctly detected
blobs while keeping the number of false positives close to zero.

Note that SymFD also implements two post-processing steps, namely hard thresholding and
morphological thinning to obtain thinned binary feature maps. These steps, along with the overall
implementation details of SymFD, are explained in detail in Section S-2 in the Supplementary
Materials.

All Matlab scripts and configurations that were used to obtain the numerical results presented
in this section can be downloaded from http://www.math.uni-bremen.de/cda/software.html.

4.1 Edge Detection

The synthetic images for the evaluation the edge measure E(f, y) and the tangent orientation
measure OE(f, y) are based on shapes that are defined by closed smooth spline curves and polygons.
The main advantage of considering splines and polygons is that in both cases, with the exception
of corner points in a polygon, the tangent can easily be computed for every point on the respective
curve. The binary images that represent the feature location ground truth were obtained by marking
each pixel which intersects with any of the defined curves. Each polygon and each spline curve is
constructed from a finite sequence of points. These point sequences were predefined in the case of
synthetic image 1 and semi-randomly selected in synthetic image 2 . The shapes in both images
were filled using a range of constant values and different types of gradients to ensure a certain
amount of contrast variation. Furthermore, both images were overlaid with a smooth surface to
test the capability of an algorithm to properly distinguish between sharp and smooth transitions.
The synthetic images, their distorted versions, and the corresponding ground truths are compiled
in Figure S-3 in the Supplementary Materials.

We compare the performance of SymFD with results obtained from the Canny edge detector [21],
the Sobel edge filter [65], the phase congruency measure [45], and a shearlet-based edge detector [74],
which can be seen as a shearlet-based generalization of Canny. In the case of the Canny and Sobel
edge detectors, we applied the implementation provided by Matlab’s edge function. The phase
congruency measure was computed with the phasecong3 function [47] and an implementation of the
shearlet-based edge detector was kindly provided by the authors of [74]. A visual comparison of the
results yielded by the different methods when processing synthetic image 2 with severe distortions
may be found in Figure 6. The SymFD edge measure E(f, y) and the tangent orientation measure
OE(f, y) after post-processing are plotted in Figure S-6 in the Supplementary Materials in the case
of synthetic image 1 distorted with medium noise.
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Table 1: Edge Detection Performance on Synthetic Images

No Noise Medium Noise Severe Noise

FOM MAEOE
TPR FOM MAEOE

TPR FOM MAEOE
TPR

synthetic image 1

SymFD 0.91 1.79 ◦ 100 % 0.89 3.19 ◦ 100 % 0.72 4.46 ◦ 83 %

Shearlet [74] 0.85 3.78 ◦ 100 % 0.82 5.78 ◦ 98 % 0.64 8.71 ◦ 84 %

PhaseCong [45] 0.91 6.13 ◦ 100 % 0.85 8.48 ◦ 95 % 0.58 15.59 ◦ 72 %

Canny [21] 0.92 n/a 100 % 0.90 n/a 100 % 0.72 n/a 86 %

Sobel [65] 0.93 n/a 100 % 0.73 n/a 83 % 0.11 n/a 17 %

synthetic image 2

SymFD 0.90 4.55 ◦ 100 % 0.85 7.43 ◦ 96 % 0.64 13.28 ◦ 76 %

Shearlet [74] 0.85 6.58 ◦ 100 % 0.79 9.67 ◦ 96 % 0.55 13.32 ◦ 73 %

PhaseCong [45] 0.87 9.46 ◦ 97 % 0.72 12.11 ◦ 82 % 0.42 17.01 ◦ 52 %

Canny [21] 0.91 n/a 100 % 0.87 n/a 99 % 0.65 n/a 79 %

Sobel [65] 0.93 n/a 100 % 0.65 n/a 76 % 0.16 n/a 22 %

FOM: figure of merit, MAEOE : mean absolute error of the respective tangent direction measure,
TPR: true positive rate. Note that MAEOE is computed only with respect to points in the ground
truth that are sufficiently close to points detected by an algorithm. The ratio of considered points
is indicated by TPR.

The detection performance of the considered algorithms for both synthetic images and three
different levels of noise are summarized in Table 1. The edge detection performance was measured
in terms of the FOM. Estimates of the local tangent directions are compared to the ground truth
via the MAEOE

. Note that the TPR is equal to the percentage of ground truth feature points that
were used in the computation of the MAEOE

(cf. (69) and (70)). The radius defining the set of true
positives Ptp was set to three pixels. Note that out of the algorithms included in the evaluation, only
SymFD, the phase congruency measure, and the shearlet-based edge detector provide estimates of
tangent orientations.

4.2 Ridge Detection

Similar to the case of edge detection, we generated synthetic digital images that contain exemplary
ridges whose centerlines are based on smooth spline curves. The sequences of points defining the
spline curves were again predefined in synthetic image 3 and chosen in a semi-random fashion in
synthetic image 4 . To obtain ridges, the spline curves were thickened by a value ranging from
three to ten pixels. In the case of synthetic image 3 , the ridge-shapes were filled using different
constant values and different types of gradients, while in synthetic image 4 , all ridge-shapes are
filled with the same value. To test the capability of an algorithm to correctly differentiate between
edges and ridges, both synthetic images also contain filled shapes that are based on closed curves.
Furthermore, both images were overlaid with a smooth surface. Visualizations of the noise-free and
distorted versions of synthetic image 3 and synthetic image 4 as well as the corresponding ground
truths may be found in Figure S-4 in the Supplementary Materials.

Detection results for a noisy version of synthetic image 3 yielded by the ridge measure R(f, y),
the tangent orientation measure OR(f, y), and the width measure WR(f, y) are depicted in Figure 7.
The ridge detection performance of SymFD is furthermore compared with results obtained from
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Figure 6: Visual comparison of the detection results yielded by different edge detection methods.
Where applicable, the detected edge contour is shown in combination with estimates of the local
tangent directions.

the phase congruency measure [45], the vessel enhancement filter proposed by Frangi et al. [32],
and a widely used scale space-based ridge detection method proposed by Steger [66]. For the phase
congruency measure, we applied the same implementation already used during the evaluation of
different edge detection methods. An implementation of the Frangi vesselness measure may be
found on the Matlab Central File Exchange [48]. To obtain binary detection results, the feature
maps computed by the Frangi vesselness measure were further processed with the same thresholding
and thinning methods that are implemented in SymFD. For the Steger ridge detection method, we
used an implementation provided by a freely available ImageJ plugin [71].
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processing

3.1 px

6.55 px

10 px

3.1 px

6.55 px

10 px
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Figure 7: Detection of ridges, local tangent orientations, and ridge widths in a synthetic image. The
results were yielded by SymFD with parameters ψe = G2

‖G2‖L1
, ψo = HG2

‖HG2‖L1
, maxFeatureWidth =

10, maxFeatureLength = 15, α = 0.2, minFeatureWidth = 3, scalesPerOctave = 6,
nOrientations = 16, jo = 1, and β = 20. All ridges in the input have positive contrast. The
analysis is therefore restricted to locations y where the height measure is positive, i.e., HR(f, y) ≥ 0.
The input image is of size 768× 768 and was distorted by a combination of Gaussian and Poisson
noise.

The ridge detection performances of SymFD, the phase congruency measure, the Frangi vessel
enhancement filter, and the method proposed by Steger are summarized in Table 2. The similarity
between the ridge location ground truth and the map of feature points detected by a single algorithm
is again measured in terms of the FOM. Estimates of the local tangent directions and ridge widths
are compared to the ground truth via the MAEOR

and the MAEWR
, respectively. The radius

defining the set of true positives Ptp was set to three pixels. Similar to the evaluation of edge
detection methods, errors in width and tangent direction measurements are only computed for
feature points in the set Ptp. Out of the algorithms included in the evaluation, SymFD, the phase
congruency measure and the implementation applied to obtain the Frangi vesselness measure also
provide estimates of local tangent directions. Furthermore, only SymFD and the Steger ridge
detector yield estimates of local ridge widths. A visual comparison of the results yielded by the
different methods when processing synthetic image 4 with severe distortions may be found in
Figure S-7 in the Supplementary Materials.
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Table 2: Evaluation of four ridge detection methods on synthetic images.

No noise Medium noise Severe noise

FOM MAEWR
MAEOR

TPR FOM MAEWR
MAEOR

TPR FOM MAEWR
MAEOR

TPR

Synthetic image 3

SymFD 0.90 0.12 px 1.20 ◦ 100 % 0.89 0.26 px 2.15 ◦ 100 % 0.81 0.84 px 4.80 ◦ 94 %

Steger [66] 0.90 0.71 px n/a 100 % 0.85 1.31 px n/a 100 % 0.81 2.56 px n/a 98 %

Frangi [32] 0.80 n/a 1.24 ◦ 99 % 0.80 n/a 2.18 ◦ 99 % 0.20 n/a 3.26 ◦ 23 %

PhaseCong [45] 0.89 n/a 15.67 ◦ 99 % 0.81 n/a 31.39 ◦ 96 % 0.48 n/a 36.07 ◦ 52 %

Synthetic image 4

SymFD 0.88 0.55 px 4.18 ◦ 99 % 0.87 0.59 px 4.28 ◦ 98 % 0.84 0.77 px 5.12 ◦ 97 %

Steger [66] 0.88 1.12 px n/a 98 % 0.87 1.80 px n/a 99 % 0.83 1.85 px n/a 95 %

Frangi [32] 0.85 n/a 4.30 ◦ 98 % 0.85 n/a 4.55 ◦ 97 % 0.82 n/a 6.94 ◦ 97 %

PhaseCong [45] 0.81 n/a 25.71 ◦ 97 % 0.82 n/a 29.18 ◦ 96 % 0.64 n/a 33.55 ◦ 74 %

FOM: figure of merit, MAEWR , MAEOR : mean absolute error of the respective width and tangent
direction measures, TPR: true positive rate. Note that MAEWR and MAEOR are computed only with
respect to points in the ground truth that are sufficiently close to points detected by an algorithm.
The ratio of considered points is indicated by TPR.

4.3 Blobs

To evaluate the proposed blob measure B(f, y) and width estimates WB(f, y), we consider two
synthetic images that show aggregations of filled circles with varying diameters and contrasts.
Synthetic image 5 consists of 31 large circles with diameters ranging from 30 to 50 pixels while
synthetic image 6 contains a total of 200 small blobs whose diameters are between 7 and 13 pixels.
In both cases, the center points of the circles were semi-randomly selected in the sense that two
center points have at least a distance of 20 pixels in synthetic image 6 and 100 pixels in synthetic
image 5 . Noisy versions of synthetic image 5 and synthetic image 6 and the corresponding ground
truths are visualized in Figure S-3 in the Supplementary Materials.

The circle detection performance of SymFD is compared to the circular Hough transform [7, 27],
which can be computed in Matlab via the function imfindcircles. To compare detection results
of an algorithm with the ground truth, we consider the number TP of true positives with respect to
a radius of six pixels, as defined in (70), and the number FP of false positives. Here, FP is equal to
the number of detected blob center points which are not in the vicinity of an actual center of a blob.
That is, FP is equal to the number of elements in the set Pfp = {p1 ∈ Pdet : minp2∈Pgt ‖p1−p2‖ > 6}.
We further consider the mean absolute errors in terms of center point location and blob width
denoted by MAEctr and MAEWB

, respectively. The results of the numerical evaluation of the blob
detection performance of SymFD and the circular Hough transform are summarized in Table 3.

A visual comparison of the results yielded by SymFD and the circular Hough transform in the
cases of synthetic image 5 and synthetic image 6 distorted by severe Gaussian and Poisson noise is
presented in Figure 8, and SymFD blob detection results with width error map for synthetic image
6 distorted by medium noise are shown in Figure S-8 in the Supplementary Materials.

27



Table 3: Evaluation of two blob detection methods on synthetic images.

No noise Medium noise Severe noise

TP FP MAEctr MAEWB
TP FP MAEctr MAEWB

TP FP MAEctr MAEWB

Synthetic image 5 (31 blobs)

SymFD 31 0 2.16 px 2.62 px 31 0 2.16 px 2.95 px 31 0 2.09 px 3.13 px

Circular Hough [7, 27] 31 0 0.99 px 0.61 px 30 0 1.82 px 2.33 px 20 0 2.03 px 8.15 px

Synthetic image 6 (200 blobs)

SymFD 200 0 1.10 px 0.87 px 198 0 1.04 px 0.97 px 155 1 1.30 px 1.19 px

Circular Hough [7, 27] 200 0 0.88 px 0.56 px 194 3 0.99 px 1.04 px 47 1 1.10 px 1.66 px

TP: number of true positives, FP: number of false positives, MAEctr: mean absolute error with respect
to the location of center points, MAEWB : mean absolute error of the respective width measure. Note
that MAEctr and MAEWB are computed only with respect to points in the ground truth that are
sufficiently close to points detected by an algorithm.

5 Applications

Previous versions of E(f, y) and R(f, y) that are based on complex-valued shearlets [60, 44, 62]
were already successfully applied in different feature extraction tasks such as the detection and
characterization of flame fronts [62, 44], the detection of borders of tidal flats in the Wadden Sea
[44], the extraction of fracture-traces in rock masses [13], the detection of channel boundaries in
seismic data [41, 42], and the automated detection of the boundaries of touching cells in scanning
electron (SEM) images [55].

To further evaluate the applicability of the proposed measures, we consider two tasks which re-
quire the correct localization and characterization of certain morphological components in biomed-
ical images. In Section 5.1, we demonstrate how the width measure WR(f, y) and estimates of local
tangent directions yielded by OR(f, y) can be used in combination with the ridge measure R(f, y)
to obtain characterizations of the geometry of retinal blood vessels. In particular, the blood vessel
profiles yielded by SymFD are validated and compared to other state-of-the-art algorithms on the
publicly available REVIEW database [5]. In Section 5.2, we investigate the applicability of the blob
measure B(f, y) for automatically counting the number of grown cell colonies in a Petri dish.

5.1 Determining Widths and Orientations of Retinal Blood Vessels

Retinal imaging is one of only a few existing techniques which provides non-invasive observations of
the human circulatory system. Variations in the geometry of the retinal vasculature can furthermore
be linked to a wide range of ocular diseases and systemic diseases with a vascular component such
as diabetes [23, 11], Alzheimer’s disease [72], or high blood pressure [39]. In recent years, many
methods have been proposed for automatically extracting and analyzing the geometry of blood
vessels in digital retinal images [2, 58, 29].

To give an example of how SymFD can be applied in the context of retinal image analysis,
we consider the REVIEW retinal vessel reference dataset [5]. For each image in the REVIEW
database, three independent experts were asked to manually define vessel edge profiles on a number
of preselected segments. Each profile consists of a pair of opposite edge points that indicate the
boundaries of a blood vessel. A single profile thus not only contains information about the location
of a retinal blood vessel but provides a complete characterization in terms of the local width and
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Figure 8: Visual comparison of the detection results yielded by the measures B(f, y) and WB(f, y)
implemented in SymFD and the circular Hough transform.

the local normal direction of the centerline. Two examples of images in the REVIEW database are
shown along with manually marked vessel profiles in Figure S-9 in the Supplemental Materials.

The REVIEW database consists of four subsets of digital images that aim to provide meaningful
benchmarks for different types of challenges in retinal image processing. The high resolution image
set (HRIS) contains four images that show severe cases of diabetic retinopathy. Each image in the
HRIS data set has a resolution of 896 × 609 × 3 pixels but has previously been sub-sampled by
a factor of four such that, disregarding human error, the vessel widths are known to a precision
of a quarter of a pixel. The vascular disease image set (VDIS) contains eight retinal images of
size 1360× 1024× 3 that were randomly selected from a database of images of patients attending
a retinopathy clinic. The central light reflex image set (CLRIS) consists of only two images of a
resolution of 2160×1440×3 pixels that show early atherosclerotic changes in retinal vessels. Finally,
the kick point image set (KPIS) contains two sub-sampled images where the normal direction of
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the centerline of a given location was computationally determined from the neighboring pixels on
the centerline and the human observers where only asked to identify the kick-points determining
the width. In total, the REVIEW database contains 5066 manually marked vessel profiles.

The diameters of blood vessels that are visible in the images of the database roughly range from 2
to 20 pixels. To obtain a precise detection and characterization of both thin and wide blood vessels,
we use not a single pair but two pairs of systems of even- and odd-symmetric molecules that cover
different but overlapping regions in the frequency domain. Both pairs of systems are based on the
even-symmetric one-dimensional wavelet ψe = HG1

‖HG1‖L1
and the odd-symmetric wavelet ψo = G1

‖G1‖L1

and cover two octaves with scalesPerOctave = 4, α = 1, and nOrientations = 16. The first pair
of systems aims to detect of thin vessel and is defined by the parameters maxFeatureWidth1 = 8,
maxFeatureLength1 = 24, and minFeatureWidth1 = 2. The second pair is capable of detecting
vessels with a diameter of up to 24 pixels and is defined by the parameters maxFeatureWidth2 = 24,
maxFeatureLength2 = 72, and minFeatureWidth2 = 6. Each image in the database is processed
by computing the ridge measure R(f, y), the width measure WR(f, y) and the tangent direction
measure OR(f, y) for both pairs of systems of even- and odd-symmetric molecules with parameters
jo = 0, and β = 2. In each case, the computations are carried out solely on the green channel of
the processed RGB image, in which the blood vessels typically have the most significant contrast.
For every pixel location y, we keep the values yielded by the pair of systems associated with the
larger ridge measure R(f, y). We further restrict the analysis to ridges with negative contrast, that
is, to locations where HR(f, y) ≤ 0. As the width measure WR(f, y) is not only based on the
even-symmetric coefficient on the most significant scale but also on the coefficients with respect to
the preceding and succeeding scaling parameters, measurements where the first or last scales are
most significant are not considered. The obtained feature maps in the case of image 7 from the
VDIS dataset are plotted in Figures 9b to 9d.

To validate the obtained measurements, the width and tangent direction maps yielded by
SymFD are compared to the widths and orientations of the manually marked profiles. For each
vessel edge profile in the ground truth, we consider the difference with respect to the width measure
WR(f, y) and the orientation measure OR(f, y) at the nearest location y in a two-pixel radius for
which the ridge measure R(f, y) is greater than zero. If no such pixel exists, the corresponding
vessel edge profile counts as undetected. Visualizations of the tangent direction error and the width
error for measurements obtained from SymFD are visualized in the case of image 7 from the VDIS
dataset in Figures 9e and 9f. For the tangent orientation estimates OR(f, y), we compute the mean
absolute error MAEOR

on the torus with respect to all manually marked profiles for each of the
four subsets of images. The respective values along with the success rate SR, which denotes the
percentage of successfully matched vessel profiles, are reported in Table 4.

For the validation of the width measurements WR(f, y), we follow the procedure proposed in
[4, 9, 73] and consider the standard deviation SDWR

of differences between the measure WR(f, y)
and the ground truth vessel diameters instead of the mean absolute error. This way, the comparison
is independent of possibly different implicit definitions of vessel widths. We further compare SymFD
to a number of classical and state-of-the-art methods for the extraction of vessel diameters from
digital retinal images. In [75], vessel widths are obtained by fitting a one-dimensional Gaussian
(1DG) model to the vessel intensity profiles. A similar approach using a two-dimensional Gaussian
(2DG) model was proposed in [52]. The half height full width (HHFW) model defines the width
of a vessel as the distance between the points at which the vessel intensity profile reaches half of
the maximum intensity left and right of an assumed center point [15]. Gregson et al. proposed
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Figure 9: Width and orientation measurements of retinal blood vessels yielded by SymFD. The
input image is part of the VDIS dataset from the REVIEW retinal vessel reference database.

Table 4: Evaluation of Orientation Measurements on the REVIEW Database

VDIS KPIS HRIS CLRIS

MAEOR
SR MAEOR

SR MAEOR
SR MAEOR

SR

Human Observers

O1 2.69 ◦ 100 % 2.40 ◦ 100 % 2.82 ◦ 100 % 1.62 ◦ 100 %

O2 2.97 ◦ 100 % 2.52 ◦ 100 % 2.41 ◦ 100 % 1.61 ◦ 100 %

O3 3.47 ◦ 100 % 3.18 ◦ 100 % 2.70 ◦ 100 % 1.51 ◦ 100 %

Algorithm

SymFD 3.30 ◦ 99 % 2.74 ◦ 100 % 2.46 ◦ 100 % 2.93 ◦ 95 %

MAEOR : mean absolute error of the tangent direction measure, SR: success rate. Note that MAEOR

is computed only with respect to points in the ground truth that are sufficiently close to points
detected by an algorithm. The ratio of considered points is indicated by SR.

to obtain vessel widths by fitting a rectangle to the intensity profile such that the area under the
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Table 5: Evaluation of Width Measurements on the REVIEW Database

VDIS KPIS HRIS CLRIS

SDWR
SR SDWR

SR SDWR
SR SDWR

SR

Human Observers

O1 0.54 px 100 % 0.23 px 100 % 0.29 px 100 % 0.57 px 100 %

O2 0.62 px 100 % 0.21 px 100 % 0.26 px 100 % 0.70 px 100 %

O3 0.67 px 100 % 0.23 px 100 % 0.28 px 100 % 0.57 px 100 %

Algorithms

SymFD 1.20 px 99 % 0.41 px 100 % 0.60 px 100 % 1.44 px 95 %

ARIA [9] 0.95 px 99 % 0.29 px 100 % 0.32 px 100 % 0.95 px 100 %

ETOS [10] 0.80 px 100 % 0.36 px 100 % 0.45 px 100 % 0.53 px 100 %

ESP [4] 0.77 px 100 % 0.33 px 100 % 0.42 px 100 % 1.47 px 93 %

Graph [73] 1.43 px 96 % 0.67 px 99 % 0.57 px 100 % 1.78 px 94 %

Gregson [34] 1.49 px 100 % 0.60 px 100 % 2.84 px 100 % 2.84 px 100 %

HHFW [15] 0.88 px 78 % 0.39 px 96 % 0.93 px 88 % n/a 0 %

1DG [75] 2.11 px 100 % 0.40 px 100 % 4.14 px 100 % 4.14 px 99 %

2DG [52] 1.33 px 77 % 0.34 px 100 % 6.02 px 99 % 6.02 px 27 %

SDWR : standard deviation from the ground truth of the width measure, SR: success rate. Note
that SDWR is computed only with respect to points in the ground truth that are sufficiently
close to points detected by an algorithm. The ratio of considered points is indicated by SR.

rectangle is equal to the area under the intensity profile [34]. A graph-based edge segmentation
technique for measuring vessel widths was proposed in [73], while the extraction of segment profiles
(ESP) algorithm proposed in [4] is based on an active contour model. The automated retinal image
analyzer (ARIA) employs a wavelet-based approach for vessel segmentation which is followed by a
refinement of edge locations [9]. Finally, edge tracking based on orientation scores (ETOS) is an
algorithm that yields state-of-the-art vessel width measurements by simultaneously tracking both
edges of a vessel in the coupled space of positions and orientations [10]. The accuracy of vessel width
measurements on images from the REVIEW database obtained by SymFD and all aforementioned
methods in terms of the standard deviation SDWR

and success rate SR are compiled in Table 5.

5.2 Automated Cell Colony Counting

Counting the number of cell colonies growing on an agar disk is a common but time-consuming task
in many areas of biomedical research. To evaluate the applicability of the blob measure B(f, y) for
automatically obtaining the number of colonies from digital images, we consider a set of pictures
which was originally developed for the evaluation of the OpenCFU software package [33]. The
set consists of digital images of 19 different plates containing between 10 and 1000 Staphylococcus
aureus colonies and can be downloaded from http://opencfu.sourceforge.net/. Each plate was
photographed once with a high-definition camera and once with a low-cost webcam. To provide a
reference for the evaluation of automated counting methods, the number of colonies on each plate
was independently counted by seven trained humans. For a single plate, the ground truth was then
defined as the median of the numbers reported by the human experts. Examples of the considered
images are displayed in Figure S-10 in the Supplemental Materials.

To automatically count the number of cell colonies in the high-definition images, all 19 images
were processed with SymFD by computing the blob measure B(f, y) on the blue color channels using
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the parameters ψe = HG1
‖HG1‖L1

, jo = −1, maxFeatureWidthhd = 20, maxFeatureLengthhd = 20,

minFeatureWidthhd = 10, α = 1, scalesPerOctave = 3, nOrientations = 16, and βhd = 15.
The obtained feature maps were then transformed into binary images by applying the threshold
0.03. Centers of cell colonies were eventually obtained by computing the centroids of all connected
components in the binary image via Matlab’s regionprops function. For processing the webcam
images, the parameters specifying the effective support of the applied symmetric molecules had
to be adapted to accommodate for the lower resolution and were set to maxFeatureWidthwc = 8,
maxFeatureLengthwc = 8, and minFeatureWidthwc = 4. Furthermore, mostly due to horizontal
stripe artifacts the contrasts of the cell colonies are slightly lower in the images captured by a
webcam than in their high-definition counterparts. Thus, for processing the webcam images, the
parameter specifying the minimal contrast was chosen as βwc = 6. Examples of cell colony detection
results obtained by SymFD for one high-definition image and one webcam image are visualized in
Figure 10.

To validate the accuracy of the cell colony counts obtained by SymFD, we follow the procedure
proposed in [33] and consider the median relative deviation from the counts provided by the human
experts across all 19 images. We further compare the accuracy of SymFD with three other methods
for the automated detection and counting of cell colonies. The NIST’s Integrated Colony Enumer-
ator (NICE) [24] is a freely available software package based on a combination of extended-minima
transforms and thresholding operations. We also consider an ImageJ plugin developed by Cai et al.
[16] that is based on adaptive thresholding, the application of a watershed algorithm, and particle
filtering. The results obtained by SymFD are compared to OpenCFU which is a highly versatile
and efficiently implemented open source library for the detection of cell colonies [33]. The median
relative deviations from human counts for SymFD and the aforementioned methods with respect
to high-definition and webcam images of all 19 plates are compiled in Table 6. The cell colony
counts for OpenCFU, NICE, and the ImageJ plugin proposed by Cai et al. were kindly provided
by the author of [33]. In particular NICE and the ImageJ macro are sensitive to artifacts in the
background and at the border of the Petri dish. To facilitate a fair comparison, Table 6 also reports
the median relative errors when using an additional foreground mask. To illustrate the robustness
of the considered methods with respect to images of agar plates with both small and large numbers
of cell colonies, semilog graphs plotting for each algorithm the relative deviation for a single plate
against the number of cell colonies in the corresponding plate are shown Figure 11.

6 Discussion of Numerical Results

The results of the numerical evaluation on synthetic images summarized in Tables 1, 2, and 3
indicate that the detection accuracy of the proposed measures E(f, y), R(f, y), and B(f, y) at least
matches the performance of some of the most popular state-of-the-art algorithms for edge, ridge,
and blob detection. In particular, all three measures show a high robustness in the presence of
noise. Maybe the most significant instance of this may be found in the case of blob detection,
where the circular Hough transform clearly fails to reliably detect filled circles in severely distorted
images, while SymFD still yields a perfect detection result in the case of synthetic image 5 and
correctly identifies three quarters of the blobs in synthetic image 6 (see Table 3 and Figure 8).
However, the experiments also show that regarding the mere detection of features, SymFD does
not provide a significant advantage over some of the already established methods for the considered
test inputs. In the case of edge detection, the well-known Canny edge detector [21] matches or even
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Figure 10: SymFD-based detection of cell colonies in digital photographs of Petri dishes.

slightly outperforms the detection rate of SymFD for all of the six test images (see Table 1) while
the same is true in the case of ridge detection for the Steger algorithm [66] (see Table 2).

One of the most significant benefits of the proposed framework is that it not only allows for
the detection of different types of features but also yields a comprehensive characterization of
their geometry in terms of local tangent directions and diameters. The respective mean absolute
errors reported in Tables 1 and 2 indicate a comparatively high accuracy of the tangent orientation
measures OE(f, y) and OR(f, y), and the width measure WR(f, y). However, the experiments also
show that for all considered test images, the width and orientation measures are sensitive to noise,
where the most significant decrease in accuracy may be found in the case of OE(f, y) and synthetic
image 2 (see Table 1). The visualization of the local error of the tangent direction estimates shown
in Figure S-6d in the Supplemental Materials furthermore reveals that the accuracy of the measure
OE(f, y) deteriorates in the proximity of points on which the edge curve is not smooth (e.g. corner
points). In the case of blob detection, the errors of the width measure WB(f, y) summarized in
Table 3 and visualized in Figure S-8d in the Supplemental Materials are relatively large, even in
comparison with the results yielded by the circular Hough transform. This can in part be explained
by the fact that the two-dimensional generators from the set Ψ̃e

2 are based on tensor products of
one-dimensional even-symmetric wavelets and thus designed to detect square-shaped rather than
circular blobs, which is also reflected in the definition of the function K̃g̃e(r) in Section 3.4 (see
(57)). We suspect that the accuracy of the measure WB(f, y) with respect to filled circles would
significantly be improved by using circular two-dimensional generators and adjusting the definition
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Table 6: Accuracy of Cell Colony Counts

HD Webcam

With Mask Without Mask With Mask Without Mask

SymFD 1.95 % 3.57 % 2.23 % 5.95 %

OpenCFU [33] 1.93 % 3.85 % 2.79 % n/a

ImageJ [16] 6.64 % 80.93 % 11.11 % n/a

NICE [24] 9.91 % 20.56 % 13.04 % n/a

The accuracy is reported in terms of the median relative deviation from counts
provided by human experts.

of K̃g̃e(r) accordingly. A first choice for such a generator could be the two-dimensional Mexican hat
wavelet. We further suspect that using a generator that actually matches the symmetry properties
and shape of the objects that are to be detected would also have a positive effect on the overall
accuracy of the measure B(f, y).

The numerical experiments conducted in Section 5.1 show that the measures R(f, y), OR(f, y),
and WR(f, y) can be used to reliably describe the geometry of blood vessels in different types
of retinal images. In particular, the tangent direction estimates yielded by OR(f, y) are highly
accurate in the sense that their mean deviation from the ground truth is only slightly above the
variation within the group of human experts (see Table 4). While the width measure WR(f, y)
yields more accurate estimates of local vessel diameters than many of the classical approaches it is
also clearly outperformed by some of the more recent algorithms that were specifically developed
for processing retinal images, such as ARIA [9] and ETOS [10] (see Table 5).

The applicability of the blob measure B(f, y) for automatically counting the number of cell
colonies on an agar plate was investigated in Section 5.2. It has been suggested that in practice, an
average relative deviation of less than 20 % will often be negligible in comparison to noise introduced
by other experimental factors [33]. When using an additional foreground mask, SymFD achieves a
median relative deviation from the ground truth of about 2 % on a set of 19 high-definition images
but also on a set of 19 low-quality webcam images (cf. Table 6). This accuracy is comparable to the
accuracy of the widely used OpenCFU software package [33] and suggests a high reliability of the
results obtained by SymFD when applied for cell colony detection. The values reported in Table 6
also show only a slight decrease in accuracy for SymFD when omitting the foreground mask, which
indicates that the measure B(f, y) is not sensitive to structures in the image background or at the
border of a Petri dish. Similar to other methods, SymFD tends to slightly overestimate the number
of cell colonies on sparse plates while underestimating the cell colony count for high-density plates
(cf. Figure 11). This is mostly due to the high significance of false positives when only a few
colonies are present and the difficulty of correctly identifying single colonies in dense clusters which
often occur on high-density plates.

The numerical experiments described in Sections 4 and 5 suggest that the proposed measures
indeed define a highly versatile and powerful framework that can be reliably applied in a wide
range of different feature detection and characterization tasks. There is, however, a trade-off for
this high degree of flexibility, namely the relatively large number of parameters that are required
to be selected when configuring SymFD for a specific task. Furthermore, evaluating the proposed
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(c) Webcam images with additional foreground mask.
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Figure 11: Semilog graphs and trendlines for four automated cell counting methods plotting the
relative deviation for a single plate against the number of cell colonies in the corresponding plate.

edge, ridge, and blob measures on a digital image often requires the computation of more than 100
convolutions with digital symmetric molecule filters. While an average execution time of slightly
less than 20 seconds is still acceptable in most tasks, SymFD is currently far from being applicable
in real-time applications.

7 Conclusion

In the present work, we propose a novel framework for the detection and characterization of features
such as edges, ridges, and blobs in two-dimensional images. Drawing inspiration from investigations
of the phase congruency property [57, 56, 45], the developed measures exploit the special symmetry
properties of directionally sensitive analyzing functions that are based on tensor products of L1-
normalized derivatives of the one-dimensional Gaussian and their Hilbert transforms. Differently
scaled and oriented two-dimensional analyzing functions are then constructed within the recently
introduced α-molecule framework [35], which provides a maximum degree of flexibility. Combining
both old and new ideas from applied harmonic analysis and computational vision, the developed
measures are by construction contrast-invariant and furthermore capable of fully characterizing the
geometry of features in terms of local tangent directions and local widths.

By considering pairs of even- and odd-symmetric analyzing functions that are sensitive to scaling

36



and orientation, the measures E(f, y), R(f, y), and B(f, y) are strongly inspired by functional
properties that are known to be exhibited by neurons in the early human visual system [26].
Another property that has widely been observed in neural populations is that the response of
single neurons is often normalized in the sense that it is divided by a weighted sum of the responses
of neighboring neurons [38, 22, 14]. This principle is often termed divisive normalization and closely
related to the normalization procedure which ensures contrast invariance in the proposed measures
(cf. (22), (44), (55), and (64)).

The implementations of the developed edge, ridge, and blob measures for digital images could
also be modeled as artificial neural networks, where the applied even- and odd-symmetric digital
filters define a convolutional layer, the absolute value is used as a non-linearity and max-pooling
as well as divisive normalization are applied to obtain the final normalized values. It would be
interesting to see whether a neural network architecture that is based on similar design principles
would yield computations that are related to the formulas proposed in this work when trained for
the detection of edges, ridges, or blobs. On one hand, this could lead to new ideas to improve
the proposed measures in order to to better handle difficulties such as corner points, intersections
of ridges, or densely grouped blobs. On the other hand, neural network architectures such as
[6], which have already been trained with great success for similar tasks, could potentially also
be further improved by considering the computational principles behind the proposed measures.
Ideally, such work would lead to hybrid approaches that combine the best of both worlds in the
sense that they yield state-of-the-art performance results for specific applications that are nowadays
often only achievable with learning-based methods while also being robust in applications where
pure learning is not possible due to a lack of training data.

We have demonstrated that the proposed measures can yield state-of-the-art detection per-
formances when considering sets of both clean and distorted artificial images that are associated
with reliable ground truths. Furthermore, we have given examples of how the developed feature
detectors can be applied in tasks like the characterization and detection of blood vessels in retinal
images, or the automated counting of cell colonies in a Petri dish. The obtained experimental
results are promising and suggest a high applicability of the proposed measures in a wide range of
diverse applications. However, they also reveal a number of open issues that leave ample room for
future improvements.

The present work only considers two-dimensional images. However, similar measures and
construction principles of even- and odd-symmetric generators could also be applied in a three-
dimensional setting to detect and characterize surfaces, planes, filaments, or filled three-dimensional
objects. The definition as well as the mathematical and experimental analysis of such measures
could also be a fruitful topic of future research.
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[2] M. D. Abràmoff, M. K. Garvin, and M. Sonka, Retinal imaging and image analysis,
IEEE Rev. Biomed. Eng., 3 (2010), pp. 169–208.

[3] E. H. Adelson and J. R. Bergen, Spatiotemporal energy model for the perception of motion,
J. Opt. Soc. Am. A, 2(2) (1985), pp. 284–299.

[4] B. Al-Diri, A. Hunter, and D. Steel, An active contour model for segmenting and mea-
suring retinal vessels, IEEE Trans. Med. Imag., 28 (2009), pp. 1488–1497, https://doi.org/
10.1109/TMI.2009.2017941.

[5] B. Al-Diri, A. Hunter, D. Steel, M. Habib, T. Hudaib, and S. Berry, REVIEW
– a reference data set for retinal vessel profiles, in 30th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, Aug. 2008, pp. 2262–2265, https:

//doi.org/10.1109/IEMBS.2008.4649647.
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