
S-1 Plots of Symmetric Molecule Generators
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Figure S-1: Examples for L1-normalized one- and two-dimensional symmetric generators. (a): First
derivative of the Gaussian G1 plotted together with its Hilbert transform HG1. (b): The second
derivative of the Gaussian and its Hilbert transform. (c): Odd-symmetric 2D generator given by
a separable product of G1 and G0. (d): Even-symmetric 2D generator based on G2 and G0. (e):
Even-symmetric 2D generator given by the tensor product of G2 with itself.

S-2 Implementation for Digital Images

A Matlab toolbox named Symmetric Molecule-based Feature Detector (SymFD) that implements
the measures defined in Section 3 for digital two-dimensional grayscale images can be down-
loaded from http://www.math.uni-bremen.de/cda/software.html. SymFD uses cyclic two-
dimensional convolutions with digital symmetric molecule filters to obtain the required even- and
odd-symmetric coefficients. The convolutions are carried out in the frequency domain via the fast
Fourier transform (FFT). The computational complexity of the evaluation of any of the measures
implemented in SymFD is thus of order O(MN log(N)), where N denotes the number of pixels of
the input image and M the number of considered symmetric molecule filters.

A main difficulty of developing digital implementations of the proposed feature detectors is to
find a parametrization that makes it easy to configure SymFD for different types of applications and
inputs while retaining the flexibility of the original definitions. In this section, we briefly summarize
how systems of digital symmetric molecule filters can be defined and how the different parameters
of the proposed edge, ridge, and blob measures are represented in SymFD.
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Figure S-2: (a): Example of an even-symmetric molecule filter. (b): Example of an odd-symmetric
molecule filter. (c): Digital symmetric molecule filters that were obtained by rotating and anisotrop-
ically dilating the even-symmetric generator depicted in (a) (α = 0.2).

In the continuum, a symmetric molecule system SM(g, α, a, J,Θ) ⊂ L1 ∩ L2(R2) is defined
by an even- or odd-symmetric generator g ∈ L1 ∩ L2(R2), an anisotropy parameter α ∈ [0, 1], a
constant scaling factor a > 0, a set of scaling parameters J ⊂ Z, and a set of rotation parameters
Θ ⊂ T (see (28)). In SymFD, digital symmetric molecule filters are constructed by sampling the
frequency domain representations m̂j,θ,y(ξ) of symmetric molecules on a uniformly spaced grid of
the size of the given input image. Note that all even- and odd-symmetric generators in the set
Ψe

2∪ Ψ̃e
2∪Ψo

2 are based on tensor products of derivatives of the one-dimensional Gaussian and their
Hilbert transforms (see Equations (25) to (27)), for which we can use the explicit formulations in the

Fourier domain (9) and (10). Each function in the set Ψe
2 ∪ Ψ̃e

2 ∪Ψo
2 of two-dimensional symmetric

generators is associated with two scaling parameters c1, c2 ∈ R>0 that determine the shape of their
effective support (cf. (28)). In SymFD, the parameters maxFeatureWidth and maxFeatureLength

can be used to directly specify the width and length of a generating symmetric molecule filter
in terms of pixels. Here, the width is defined as the distance between the two zero crossings of
the associated one-dimensional wavelet that are closest to the origin while the length is defined
as the size of the interval centered on the origin which contains 95 % of the energy of the dilated
one-dimensional Gaussian. Figures S-2a and S-2b depict examples of an even-symmetric and an
odd-symmetric digital filter, respectively, and their corresponding lengths and widths. Note that in
the case of even-symmetric molecules, this notion of width agrees with the definition of the radius
given in Equations (49) and (58).

The anisotropy parameter α is equivalent to the parameter alpha in SymFD. The constant
scaling factor a is parameterized by the value scalesPerOctave which determines the number of
scales within each dyadic scaling step, that is,

a = 21/scalesPerOctave. (S-1)

The set of scaling parameters J can then be specified via the parameter minFeatureWidth which
defines the width of the symmetric molecule filters on the scale associated with the highest fre-
quencies. That is, J = {0, . . . , jmax} with

jmax = max
{
j ∈ N : a−jmaxFeatureWidth ≥ minFeatureWidth

}
. (S-2)

In SymFD, the set of rotation parameters Θ is defined by the integer nOrientations as a
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sequence of uniformly spaced samples from the interval [−π
2 ,

π
2 ), that is,

Θ =
{
θn =

nπ

nOrientations
− π

2

}nOrientations−1
n=0

. (S-3)

Examples of differently dilated and rotated digital symmetric molecule filters are plotted in Figure S-
2c. SymFD furthermore supports the use of both rotation matrices Rθ (see (2)) and shear matrices

Ss =

(
1 s
0 1

)
, and Ss

ᵀ =

(
1 0
s 1

)
, s ∈ R, (S-4)

to change to preferred orientation of a symmetric generator. In practice, however, we recommend
that one applies the rotation matrix Rθ. A main advantage of the shear operator is that it preserves
the integer grid for shear parameters s ∈ Z. This facilitates the construction of discrete shearlet
transforms that provide a faithful transition between the continuous and the digital realm (e.g.,
[5, 9]). However, such transforms are typically only defined for special combinations of generators,
scaling parameters, and orientation parameters and thus substantially lacking in flexibility. For
this reason, all digital filters used in SymFD are constructed by sampling their analogs from the
continuum in the Fourier domain. This approach yields maximal freedom but also renders the most
significant advantage of applying shears instead of rotations moot.

Table S-1: Algorithms Evaluated in Section 4

Edges Ridges Blobs Tangent Dir. Widths Parameters Avg. Time

SymFD 3 3 3 3 3 12 18.56 s

Shearlet [12] 3 7 7 3 7 2 2.51 s

PhaseCong [8] 3 3 7 3 7 11 1.53 s

Canny [3] 3 7 7 7 7 3 0.39 s

Sobel [10] 3 7 7 7 7 1 0.05 s

Steger [11] 7 3 7 7 3 4 1.64 s

Frangi [6] 7 3 7 3 7 8 0.43 s

Circular Hough [2, 4] 7 7 3 7 3 4 0.36 s

The parameters introduced so far fully define a system of symmetric molecule filters that is
based on a generator g which matches the symmetry of the feature that is to be detected (i.e.,
even symmetry in the cases of ridges and blobs and odd symmetry in the case of edges). In
SymFD, the generator of opposite symmetry is by default constructed by applying the Hilbert
transform to the one-dimensional wavelet used in the definition of g. Furthermore, a parameter
evenOddScaleOffset can be used to define je in (44) and jo in Equations (55) and (64).

The soft-thresholding parameter β used in all three proposed feature measures is equivalent
to the parameter minContrast in SymFD. Furthermore, SymFD implements two steps of post-
processing that can be applied if necessary. The parameter thinningThreshold defines a threshold
that is used to obtain a binary feature map which is then further processed with morphological
thinning using Matlab’s bwmorph function. The parameter minComponentLength can be used to
remove all connected components in the thinned binary feature map that do not have the specified
minimal size.
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Note that there also exists a Python implementation developed by Jonas Wloka, which is based
on a previous version of the SymFD toolbox called Complex Shearlet-Based Edge and Ridge Measure
(CoShREM). Both toolboxes can also be downloaded from http://www.math.uni-bremen.de/

cda/software.html.

S-3 Supplemental Figures of Numerical Evaluation
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(a) Synthetic image 1 (b) Medium noise (c) Severe noise

(d) Synthetic image 2 (e) Medium noise (f) Severe noise
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(h) Groundtruth for synthetic image 2

Figure S-3: The synthetic images and respective ground truths used for the evaluation of different
edge detection methods.
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(a) Synthetic image 3 (b) Medium noise (c) Severe noise

(d) Synthetic image 4 (e) Medium noise (f) Severe noise
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(h) Groundtruth for synthetic image 4

Figure S-4: The synthetic images and respective ground truths used for the evaluation of different
ridge detection methods.
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(a) Synthetic image 5 (b) Medium noise (c) Severe noise

(d) Synthetic image 6 (e) Medium noise (f) Severe noise

(g) Groundtruth for synthetic image 5 (h) Groundtruth for synthetic image 6

Figure S-5: The synthetic images and respective ground truths used for the evaluation of different
blob detection methods.
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(a) Input (synthetic image 1, medium noise)
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(b) SymFD edge measure E(f, y)
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(c) Tangent directions OE(f, y) after post-processing
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(d) Error map for OE(f, y)

Figure S-6: Detection of edges and local tangent orientations in a synthetic image yielded by SymFD
with parameters ψo = HG2

‖HG2‖L1
, ψe = G2

‖G2‖L1
, maxFeatureWidth = 16, maxFeatureLength = 16,

α = 1
2 , minFeatureWidth = 4, scalesPerOctave = 2, nOrientations = 16, je = 1, and β = 15.

The input image is of size 768× 768 and was distorted by a combination of Gaussian and Poisson
noise.
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(a) Input (synthetic image 4 , severe noise)
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(b) SymFD (tangent directions)
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(d) Steger [11]
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(e) Frangi [6]
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(f) Phase congruency measure [8]

Figure S-7: Visual comparison of the detection results yielded by different ridge detection methods.
Where applicable, the detected centerline of a ridge is shown in combination with estimates of the
local tangent direction and/or the width of the ridge.
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(a) Input (synthetic image 6 , medium noise)
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(b) SymFD blob measure B(f, y)

(c) Widths WB(f, y) after post-processing (d) Error map for WB(f, y)

Figure S-8: Detection of blobs and blob widths (diameters) in a synthetic image. The results were
yielded by SymFD with parameters ψe = HG1

‖HG1‖L1
, maxFeatureWidth = 16, maxFeatureLength =

16, α = 1, minFeatureWidth = 6, scalesPerOctave = 8, nOrientations = 16, jo = 0, and β = 5.
All blobs in the input have positive contrast. The analysis is therefore restricted to locations y
where the height measure is positive, i.e., HB(f, y) ≥ 0. The input image is of size 768 × 768 and
was distorted by a combination of Gaussian and Poisson noise.
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(a) Image 7 of the REVIEW VDIS dataset with
manually annotated vessel profiles.

(b) Image 2 of the REVIEW CLRIS dataset with
manually annotated vessel profiles.

Figure S-9: Examples of digital images in the REVIEW retinal vessel reference dataset [1] with
manually annotated ground truth vessel profiles.

(a) The shown image was acquired with a high-
definition camera with a resolution of 1538×1536
pixels. Median human count of cell colonies: 1090.

(b) The shown image was obtained from a low-
cost webcam with horizontal stripe artifacts and
acquired at a resolution of 1000×1000 pixels. Me-
dian human count of cell colonies: 69.

Figure S-10: Two pictures showing grown cell colonies in a Petri dish. The dataset containing the
displayed images was originally developed for the evaluation of the OpenCFU software package [7].
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