
Shearlet-Based Edge Detection: Flame Fronts and Tidal Flats

Emily J. Kinga,b, Rafael Reisenhofera, Johannes Kieferc, Wang-Q Limd, Zhen Lie, Georg
Heygstere

a Center for Industrial Mathematics, University of Bremen, Bremen, Germany;
b Institute for Algebra, Geometry, Topology and Their Applications, University of Bremen,

Bremen, Germany;
c Department of Production Engineering, University of Bremen, Bremen, Germany;

d Image & Video Coding Group, Fraunhofer Institute for Telecommunications – Heinrich Hertz
Institute (Fraunhofer HHI);

e Institute of Environmental Physics, University of Bremen, Bremen, Germany

ABSTRACT
Shearlets are wavelet-like systems which are better suited for handling geometric features in multi-dimensional
data than traditional wavelets. A novel method for edge and line detection which is in the spirit of phase
congruency but is based on a complex shearlet transform will be presented. This approach to detection yields an
approximate tangent direction of detected discontinuities as a byproduct of the computation, which then yields
local curvature estimates.

Two applications of the edge detection method will be discussed. First, the tracking and classification of
flame fronts is a critical component of research in technical thermodynamics. Quite often, the flame fronts are
transient or weak and the images are noisy. The standard methods used in the field for the detection of flame
fronts do not handle such data well. Fortunately, using the shearlet-based edge measure yields good results as
well as an accurate approximation of local curvature. Furthermore, a modification of the method will yield line
detection, which is important for certain imaging modalities.

Second, the Wadden tidal flats are a biodiverse region along the North Sea coast. One approach to surveying
the delicate region and tracking the topographical changes is to use pre-existing Synthetic Aperture Radar (SAR)
images. Unfortunately, SAR data suffers from multiplicative noise as well as sensitivity to environmental factors.
The first large-scale mapping project of that type showed good results but only with a tremendous amount of
manual interaction because there are many edges in the data which are not boundaries of the tidal flats but are
edges of features like fields or islands. Preliminary results will be presented.

Keywords: edge detection, line detection, shearlets, phase congruency, flame fronts, tidal flat, synthetic aperture
radar

1. INTRODUCTION
Edge detection is a common subfield of image processing. Numerous methods have been presented through the
years, some better than others. In this paper, we present a novel method of edge detection that uses ideas
from both shearlet-based image processing and phase congruency. This method yields approximations of tangent
directions and local curvature as well. Edges are not the only kinds of discontinuities which appear in images.
One may wish to detect lines of varying pixel thickness not as a region bounded by two edges but as a uniform
line. A slight modification of the edge detection algorithm will yield line detection.

In the 1970’s and 80’s planar imaging techniques emerged which revolutionized laser combustion diagnostics
by providing spatially correlated information taken at a speed fast enough to catch transient features due to
turbulence.1–4 Determining the geometry of the flame front yields important information about combustion.
This often achieved using a binarization technique5,6 or an approximation of the local intensity gradient.7,8 In
binarization techniques, a intensity filter is applied to the image to obtain a binary image, where the flame and
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non-flame pixels hopefully take different values. Then the edge is the boundary between the two regions. Gradi-
ent approximation techniques include numerous well-known techniques from Canny9 to wavelet-based10,11 and
even shearlet-based12 techniques. The basic idea is that after some sort of preprocessing, like smoothing with a
Gaussian kernel, the pixelwise gradient is approximated and thresholded. The preprocessing and thresholding
techniques can be fine-tuned in various manners. Neither of these types of techniques handle line detection
well. However, when short-lived radicals like CH and HCO are imaged using PLIF (planar laser-induced fluo-
rescence13), the flame front appears as a line rather than an edge. We shall show that our method performs well
for both tasks of line detection and edge detection in noisy real-life data. Furthermore, information about local
geometry is also yielded.

The Wadden Sea is an intertidal region along the southeastern portion of the North Sea bordering Denmark,
Germany, and the Netherlands. “Wad” is Dutch for mud flat, which encompasses much of the Wadden Sea. The
geography of the region is in constant flux, due to natural and anthropogenic reasons. Like many wetlands, the
region hosts biodeveristy while also being very delicate. The Danish, German, and Dutch governments have been
collaborating since 1978 to conserve the area, which was also named a UNESCO World Heritage site in 2009.
Tracking topological changes to the region is of utmost importance to its conservation. One approach to tracking
the changes is to use apply segmentation and edge detection techniques to the massive amount of preexisting
Synthetic Aperture Radar (SAR) data of the region.14–16 However, SAR imaging suffers from speckle noise and
is also highly susceptible to environmental changes. For example, the relative darkness of land and sea changes
when it is very windy. Due to this, the previous work involved massive amount of manual interaction making
it not feasible to broadly apply. We will present some very preliminary results showing the superiority of the
shearlet-based edge detection method over the wavelet-based method previously used.

The basic ideas behind the edge- and line-detecting method will be presented in Section 2. Then applications
of the method to flame front detection and mud flat tracking will be shown in Section 3

2. METHOD

The core idea of the method first appeared in17 and is essentially that phase congruency should be modified to
use the strength of the shearlet transform, namely its anisotropic nature. In order to make it work well with
real data, the algorithm has since been strengthened and fine-tuned, for example, by adding line detection and
local curvature estimation. Expanded analysis of the application to flame front detection will be published in18
while a more in-depth description of the mathematics behind the algorithm will appear in19]. The corresponding
author may be contacted in order to obtain the code. Here we will explain the basics of phase congruency and
shearlets and how they work together to yield information about edges and lines.

2.1 Shearlets
Wavelets rose to prominence in the 1980’s. There are countless good references about wavelet theory, like.20,21
A typical (dyadic, discrete, one-dimensional) wavelet system is of the form{

ψ2n,2−nk := 2n/2ψ(2n
(
· − 2−nk)

)
= 2n/2ψ(2n · −k); n, k ∈ Z

}
.

Since the dilation by 2n changes the essential support of the wavelet ψ and the translation by k moves around these
dilated versions of ψ, looking at the inner products 〈f, ψa,t〉 for a > 0 yields local, multiscale information about a
function f at location t. This is in contrast to the Fourier coefficients 〈f, e2πik·〉, which give periodic information
about f . Wavelets have proven to be very useful in numerous applications, even image processing, where 2-
dimensional systems are often formed by a tensor-like construction. For example, the JPEG2000 compression
scheme is based on wavelets.22 However, the isotropic nature of wavelet systems means that one is not able to
extract any directional information about features in 2D. Essentially, wavelets are fantastic for 1-dimensional
data but are not optimal for 2-dimensional data. A number of approaches have been suggested over the past
decade, like curvelets,23 ridgelets,24 contourlets,25 bandlets,26 wedgelets,27 and shearlets,28–30 with the goal of
extracting geometric information from 2- and higher dimensional data. Shearlets have a beautiful underlying
mathematical theory, being built using unitary representations of certain classes of groups,31–36 that the other
systems lack. Furthermore, shearlets have many nice properties, like nearly optimally approximating so-called
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cartoon-like images37,38 and having an associated multi-resolution analysis like wavelets.39 However, the most
important selling point is that the implementation of shearlets – unlike any of the other systems – is both open
source and actively being developed.40 Shearlets are very similar to wavelets, except that the isotropic dilation
of wavelets is replaced with anisotropic dilation and shearing – a nicer-to-implement substitution for rotation,
namely {

ψa,s,t := a3/4ψ(SsAa(· − t)); t ∈ R2, a > 0, s ∈ R
}
,

where for a > 0

Aa =

(
a 0
0
√
a

)
,

is the parabolic scaling matrix and for s ∈ R

Ss =

(
1 s
0 1

)
,

the shearing matrix. In order to prevent directional bias in necessarily finite implementations, cone-adapted
shearlets are used.28 The standard cone-adapted shearlet system SH(φ, ψ, ψ̃) generated by φ ∈ L2(R2) and
ψ, ψ̃ ∈ L2(R2) is the union of

{φk := φ(· − k); k ∈ Z2} (low frequency component),{
ψ̃2n,`,(S`A2n )−1k = 23n/4ψ(S`A2n · −k);n ≥ 0, |`| ≤ d2n/2e, k ∈ Z2

}
, (horizontal cone) and{

ψ̃2n,`,(S̃`Ã2n )−1k = 23n/4ψ̃(S̃`Ã2n · −k);n ≥ 0, |`| ≤ d2n/2e, k ∈ Z2
}

(vertical cone),

where
Ãa =

( √
a 0
0 a

)
and S̃` = ST` .

Sometimes this system is modified along the “seams” by projecting the horizontal and vertical cone systems so
that they do not overlap. We, however, do not do that. A cone-adapted shearlet system induces of tiling of the
frequency domain that looks almost polar, see Figure 1 We actually employ a finer discretization of the shearlet

Figure 1. Tiling of the frequency domain generated by the essential frequency support of a classical cone-adapted shearlet
system. Source: Gitta Kutyniok, TU Berlin

system in our edge detection method, but the essential idea is the same. See19 for more information. We end
this section by modifying a shearlet construction to create complex shearlets, which still yield local geometric
information but have certain desirable traits that Fourier bases also have.17,41 In particular, we would like real
part of the generating function to be even-symmetric (like cosine) and the imaginary part odd-symmetric (like
sine). In order to do this, we employ the Hilbert transform,

H(f)(t) = lim
a→∞

∫ a

−a

f(τ)

t− τ
dτ.
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Loosely speaking, the Hilbert transform switches the roles of sine and cosine, and, in general, it turns an even-
symmetric function into an odd-symmetric function and vice versa. If ψ(e) is a real-valued, even-symmetric
shearlet, then we define the complex shearlet to be

ψ = ψ(e) + iψ(o) := ψ(e) + iH(ψ(e)),

with ψ̃(x1, x2) = ψ(x2, x1). We will construct ψ(e) as a tensor product of the Mexican hat wavelet and a
Gaussian. There is a similar construction of complex wavelets42–44], which we will use for illustrative purposes
in the following section.

2.2 Phase congruency and the new method
Phase congruency is an edge detection algorithm originally based on Fourier coefficients45,46 and then extended
to a contrast-invariant measure using complex wavelets in.47,48 For brevity and simplicity, we will describe a
one dimensional edge detection algorithm which is an improvement of the approach in.47,48 The shearlet version
is a straight forward generalization of this method and may be found in.17–19 The key idea is to note for a
complex wavelet ψ what the inner products 〈f, ψ(e)

a,t 〉 and 〈f, ψ
(o)
a,t 〉 look like when a varies over the positive

numbers and the shift of t centers the wavelets at a jump discontinuity. To make the pattern clearer, we will
normalize the ψ(e)

a,t and ψ
(o)
a,t such that they have L1-norm 1. We model the perfect one-dimensional edge as

the function f = 101[−∞,0.5) − 101[0.5,∞), where 1A is the characteristic function that takes the value 1 on A
and 0 on the complement of A. We can see what various wavelet coefficients look like when the wavelets are
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Figure 2. From left to right. (a) ψ(e)

a,1/2, dilations of the even-symmetric wavelet centered on the edge. (b) A graph of
the wavelet coefficients of the different dilated even-symmetric wavelets at different positions. The horizontal axis is the
shift y and the vertical axis is the value of 〈f, ψ(e)

a,y〉. (c) ψ(o)

a,1/2, dilations of the odd-symmetric wavelet centered on the
edge. (d) A graph of the wavelet coefficients of the different dilated odd-symmetric wavelets at different positions. T he
horizontal axis is the shift y and the vertical axis is the value of 〈f, ψ(o)

a,y〉.

perfectly centered on the jump discontinuity in Figure 2. Figure 2(a) shows ψ(e)
a,1/2 for three different values of

a > 0 overlaying the edge function f . The graph in Figure 2(b) shows the values of 〈f, ψ(e)
a,t 〉 for the three values

of a > 0 plotted against the values of t. We can see across scales that the inner product vanishes when the
even-symmetric wavelets are centered at the edge and quickly grows in absolute value when moving away from
the edge. Similarly, Figure 2(c) shows ψ(o)

a,1/2 for the same three values of a > 0. In Figure 2(d), we can see that

the coefficients 〈f, ψ(o)
a,t 〉 not only have a local maximum at t = 1/2, but the same maximum value. We present

now an edge measure, which yields a value between 0 and 1 measuring “edge-ness” of a location. That is, a
measure of 0 means that there is no edge at the location and 1 means that there certainly is. We make use of
the three traits noticed in the test case. Namely, that when t0 is the location of a jump discontinuity, that

• for each a > 0, 〈f, ψ(e)
a,t0〉 = 0,

• for each a > 0, 〈f, ψ(o)
a,t 〉 achieves a local maximum at t = t0, and

• for all a > 0, 〈f, ψ(o)
a,t0〉 = C for some nonzero constant C.
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The original papers essentially just leverage the fact that 〈f, ψ(e)
a,t0〉/〈f, ψ

(o)
a,t0〉 is constant across scales when t0 is

the location of a jump discontinuity. The hope is, by balancing the three different traits against each other that
the resulting measure will be robust to both noise and discretization, which seems to be the case in practice.
This leads to the definition of the one-dimensional edge measure E.

Definition 1. Given a pair of even-symmetric and odd-symmetric wavelets ψ(e) and ψ(o) which satisfy certain
hypotheses (in particular, an L1-normalized Mexican hat wavelet and its Hilbert transform works) and parameters
J ∈ {1, 2, . . .}, positive dilations {aj}j∈{1,2,...,J} and a very small ε > 0, we define for a 1D signal f

Ẽ(y) =

∣∣∣∑J
j=1〈f, ψ

(o)
aj ,y〉

∣∣∣−∑J
j=1

∣∣∣〈f, ψ(e)
aj ,y〉

∣∣∣
J maxj∈{1,2,...,J}

∣∣∣〈f, ψ(o)
aj ,y〉

∣∣∣+ ε
,

and
E(y) = max{Ẽ(y), 0}.

In one-dimension, a perfect line is represented by a delta function. Notice that in this idealized case,

• for each a > 0, 〈δt0 , ψ
(o)
a,t0〉 = 0, and

• for each a > 0, 〈δt0 , ψ
(e)
a,t 〉 achieves a local maximum at t = t0.

Given appropriate normalization, one can also obtain for all a > 0, 〈δt0 , ψ
(e)
a,t0〉 = C for some nonzero constant C.

Essentially, in order to detect lines versus edges, one simply switches the role of the even- and odd-symmetric
wavelets. In practice, one needs to be a bit more careful than in the edge detection case, since “lines” in a
quantized, discrete image could be 1-, 2-, 3- or more pixels thick. On the other hand, “edges” in a quantized,
discrete image can be viewed as falling “between pixels.” When detecting lines, it is thus important to estimate
the thickness of the line first. For more details, see.19 The essential idea behind the generalization of the edge-
and line-measures to 2D using complex shearlets is to first loosely approximate the orientation s∗ of a potential
edge. This is done by finding which pair of parameters (a, s) yields the largest coefficients of

∣∣∣〈f, ψ(o)
a,s,t0〉

∣∣∣ for a
fixed t0 over a fixed range of a and all of the s computed. Then an edge- or line-measure is computed in much
the same way as in the 1D case, but along the preferred orientation s∗.

2.3 Post-processing
We end this section by discussing a few details of how the results are fine-tuned. First, the measure presented in
the preceding subsection yields a value between 0 and 1. Thus, a thresholding scheme must be applied in order
to get a binary decision of whether or not a pixel lies on an edge or line. We simply directly threshold with
a user-given value, although certainly more advanced methods like hysteresis, which is employed in the Canny
method9 could be used. Then after the simple thresholding, a thinning procedure, specifically the thinning
option of bwmorph in the Matlab Image Processing Toolbox, is applied.49

When detecting edges (resp., lines) we already have an estimate of the orientation s∗ from the direction of
the largest odd-symmetric (resp., even-symmetric) coefficients. While this yields a fairly nice approximation of
the tangent direction of an edge, it is not nearly exact enough for local curvature estimation. To get around
this, we employ two methods in conjunction. Namely, we consider not just the largest coefficient but the largest
coefficient and the two coefficients which neighbor it in terms of the shear parameter and think of them as sample
points of a concave down parabola in order to estimate where the “true” maximum value is located. In order
to do this, we are using the methods of subpixel extrema extraction as proposed in.50 Further, a conversion
between the shearing directions and rotation directions is computed. Once a more precise estimate of the tangent
directions of the thinned edge or line has been computed, the local curvature is found using the central difference
estimate of the derivative.
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2.4 Overview of the method
The basic idea of the method is as follows.

Input: Image f , real-valued even-symmetric shearlet ψ(e), various parameters.

1. Compute ψ using the Hilbert transform and ψ̃ by switching the variables.

2. Compute 〈f, ψa,s,t〉 for certain values of (a, s) at each pixel t.

3. At each pixel t, estimate the preferred direction of a possible edge/line.

4. At each pixel t, compute an edge/line measure by comparing the values of the even- and odd-symmetric
shearlet coefficients in the preferred direction. If doing line detection, also estimate the line thickness.

5. Threshold the edge/line measure.

6. Thin the edge measure.

7. Calculate local first and second derivatives, if desired.

3. APPLICATIONS

3.1 Flame front detection
For the task of flame front detection, we demonstrate the capabilities of the complex shearlet-based edge mea-
sure by processing a noisy mock image designed to represent the characteristics of typical flame data, a PLIF
visualization of long-lived OH radicals as well as a PLIF visualization of short-lived CH radicals. In the case
of the mock image (see Figure 3), the values of the shearlet-based edge measure are plotted alongside all post-
processing steps, namely thresholding and thinning, estimation of local tangent orientations and estimation of
local curvature. For the image of OH radicals, where flame fronts are represented by edges, and the visualization
of CH radicals, where flame fronts are represented by lines, only the thinned flame fronts and estimates of the
tangent orientation are shown (see Figure 4). All of the pre-processed images in this section are from the lab of
Johannes Kiefer.

For an in-depth evaluation and comparison to other edge and line detection techniques, see.18

3.2 Tidal flats
Here we present a very preliminary example of the superiority of the shearlet-based (phase congruency-inspired)
edge detection method in picking up the borders of a tidal flat in the Wadden Sea to the use of a wavelet-based
(gradient-approximating) edge detection method, coupled with denoising and diffusion-based segmentation, as
was used in.16 Figure 5 contains a comparison of the complex-shearlet-based edge detection method to the
combination of wavelet-based edge detection with denoising and segmentation. In the image, we see a waterway
bounded on the top by farmland. The dark areas in the image are the features of interest, the mud flats.

A section of the original image is enlarged in Figure 6. One can see on the left-hand-side that the wavelet-
based method (shown in red) picks up a lot of noise in the waterway as edges, as well as many of the land
features. On the right-hand-side, one sees the edges picked up by the complex-shearlet method. The method
picks up most of the tidal flat edges running near the top, including the small “island” in the upper right-hand
corner, and the piece of the tidal flat in the lower right corner, while managing to not pick up too many false
positives. Unlike with the wavelet-based methods, the only other preprocessing applied to the image before the
shearlet-based method was used was simply taking the logarithm as non-precise way of turning multiplicative
noise into additive noise. It should be mentioned that getting results like these requires a different tuning of the
parameters of the shearlet-based method than what was used in Section 3.1. These parameters are available on
request.
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Figure 3. (a) Mock image perturbed by additive Gaussian noise. (b) The brightness of red corresponds to the local
value of the complex shearlet-based edge measure. (c) The red lines are obtained from thresholding and thinning the
output of the shearlet-based edge measure, depicted in the previous image. (d) Color-coded estimates of the local tangent
orientation, where light blue indicates a perfectly horizontal and red represents a perfectly vertical orientation. (e) Color-
coded estimates of the local curvature, where dark blue denotes zero curvature and yellow indicates a curvature greater
or equal than 5◦.

4. CONCLUSION

The complex shearlet edge measure works well on noisy, real-life data. A few examples of flame front and tidal
flat boundary detection were presented here which look good, but thorough numerical experiments18] give more
quantitative evidence of the success. The method works quite well on flame front data but still requires more
work via the addition of further image processing procedures like sophisticated handling of the speckle noise and
a powerful segmentation algorithm in order to completely automate the task of determining the boundaries of
tidal flats. Unlike many other edge detection algorithms, this approach can be easily modified to detect lines,
which appear in experimental data, for example, certain flame fronts. Furthermore, the anisotropic nature of
shearlets allows the method to give local geometric information of edges and lines, like tangent and curvature.
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