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Abstract

In this note we investigate radial limit sets of arbitrary regular conformal interated function

systems. We show that for each of these systems there exists a variety of finite hyperbolic

subsystems such that the spectrum made of the Hausdorff dimensions of the limit sets of

these subsystems is dense in the interval between 0 and the Hausdorff dimension of the given

conformal iterated function system. This result has interesting applications in conformal

dynamics and elementary fractal number theory.

Introduction and statement of main results

In this paper we consider iterated function systems (IFS) on a connected and compact subset X of
the N–dimensional Euclidean space RN , for N ∈ N. We always assume that the boundary of X is a
Jordan curve. Recall that a IFS is generated by a family Φ of injective contractions φi : X → X, for
i in some given countable index set I. A IFS is called conformal iterated function systems (CIFS)
if the following conditions are fulfilled. In here we use the notation φω := φi1 ◦ φi2 ◦ . . . ◦ φin

for
ω = (i1, i2, . . . in) ∈ In.

Open set condition. There exists a nonempty open set U ⊂ X in the topology of X such that
φi(U) ⊂ U for all i ∈ I, and φi(U) ∩ φj(U) = ∅ for all i, j ∈ I, i 6= j.

Contraction. There exists 0 < θ < 1 such that |φ′
i(x)| ≤ θ < 1, for all x ∈ X and i ∈ I.

Conformality. There exists an open connected set X ⊂ V ⊂ RN such that each φi extends to a
conformal diffeomorphism of V into V .

Bounded distortion property. There exists C ≥ 1 such that for all n ∈ N, ω ∈ In and x, y ∈ V we
have

|φ′
ω(y)| ≤ C |φ′

ω(x)|.

A CIFS is called finite if I is finite, otherwise it is called infinite. Every CIFS gives rise to a unique
‘radial limit set’

Λ(Φ) :=
⋂

n∈N

⋃

ω∈In

φω(int(X)).

Note that in general Λ(Φ) does not have to be a compact set. In this paper we exclusively consider
regular CIFS. That is, the system (X, Φ) admits a h–conformal measure µ, for h := dimH(Λ(Φ))
referring to the Hausdorff dimension of Λ(Φ). This means that for each Borel set B ⊂ X and
i ∈ I, we have (cf. [14],[3],[4],[10])

µ(φi(B)) =

∫

B

|φi|
hdµ, and µ(φi(X) ∩ φj(X)) = 0 for each i, j ∈ I, i 6= j.

The following theorem represents the main result of this paper. In here, hyperbolic subset of Λ(Φ)
refers to the limit set of some finite subsystem of the CIFS (X, Φ).
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Main Theorem. Let (X, Φ) be a regular conformal iterated function system. Then there exists
a set H(Φ) of hyperbolic subsets of Λ(Φ) such that

{dimH(S) | S ∈ H(Φ))} is dense in [0, dimH(Λ(Φ))].

This result has various interesting applications in complex dynamics, and we shall now briefly
comments on a few of these. For instance, for Julia sets of rational endomorphisms of the Riemann
sphere C̄ it has the following immediate implication.

Application 1. Let T : C̄ → C̄ be a rational map of degree at least 2 such that the associated
Julia set J(T ) does not contain critical points. Then there exists a set H(T ) of hyperbolic subsets
of J(T ) such that

{dimH(S) | S ∈ H(T ))} is dense in [0, dimH(J(T ))].

Furthermore, for Kleinian groups acting on the (N +1)–dimensional hyperbolic space our Main
Theorem gives rise to the following result. Note that in here we have restricted the application to
the geometrically finite situation in which the action of the group admits a fundamental domain
whose boundary consists of finitely many N–dimensional hyperbolic polygons. However, similar
conclusions could also be drawn for radial limit sets of certain types of geometrically infinite
Kleinian groups.

Application 2. For each geometrically finite Kleinian group G there exists a set H(G) of hyper-
bolic subsets of the limit set L(G) such that

{dimH(S) | S ∈ H(G))} is dense in [0, dimH(L(G))].

We remark that if G has parabolic elements then the hyperbolic sets in H(G) can be described
exclusively in terms of certain prescribed bounded cuspidal excursion patterns.

Finally, we also mention an application of our Main Theorem in elementary fractal number
theory. For this let [x1, x2, x3, . . .] refer to the regular continued fraction expansions of x ∈ [0, 1].
With A referring to the set of all finite words in the alphabet N, we define for a finite subset A of
A,

S(A) := {[a1, a2, a3, . . .] | (a1, a2, a3, . . .) ∈ AN}.

It is well known that every Markov map which is topologically conjugated to the full shift can be
represented by a suitable IFS. Since the second forward iterate of the Gauss map is a uniformly
expanding Markov map, it follows that the associated backward iterates give rise to a CIFS. Hence,
our Main Theorem has the following immediate implication.

Application 3.

The set {dimH(S(A)) | A ⊂ A finite} is dense in [0, 1].

Clearly, this application is closely related to the following so-called Texan conjecture, which was
formulated independently by Hensley ([5]) and Mauldin & Urbański ([9]), and which has recently
been shown to be true in the interval [0, 1/2] (cf. [7]). We remark that the partial solution of this
conjecture in [7] uses pertubation theory for a familiy of Ruelle–Frobenius operators.

Texan conjecture.

The set {dimH(S(A)) | A ⊂ N finite} is dense in [0, 1].

Acknowledgement: We should like to thank the Stochastic Institute at the University of
Göttingen and the School of Mathematics at the University of St. Andrews for their warm hospi-
tality and excellent working conditions when writing this paper.
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1 Density of hyperbolic dimensions

Perforation spectra for hyperbolic sets

Let us recall first the notion of the ν–dimension of a compact subset of Λ of RN , for some non–
atomic Borel probability measure ν on Λ. Namely, for a given ε > 0, a covering {Ui}i∈N of Λ′ ⊂ Λ
is called a (ν, ε)–covering of Λ′ if ν(Ui) < ε for all i ∈ N. With Uν

ε (Λ′) referring to the set of all
(ν, ε)–coverings of Λ′, the s–dimensional ν–Hausdorff measure Hν

s (Λ′) is given by, for s ≥ 0,

Hν
s (Λ′) := lim

ε→0
inf

{

∑

i

(ν(Ui))
s | {Ui}i∈N ∈ Uν

ε (Λ′)

}

.

Then the ν–dimension dimν(Λ′) of Λ′ is defined as

dimν(Λ′) := sup{s : Hν
s (Λ′) = ∞} = inf{s : Hν

s (Λ′) = 0}.

The following relates the ν–dimension to the Hausdorff dimension. This result represents a folklore
theorem in fractal geometry, which was implicitly obtained first in [1] (Theorem 14.1).

Billingsley’s Lemma. If there exists t > 0 such that for each N–ball B(x, r) centred at x ∈ Λ′

of radius r > 0 we have

lim
r→0

log ν(B(x, r))

log r
= t,

then
dimH(Λ′) = t dimν(Λ′).

Furthermore, we introduce the notion of the (ν,H)–perforation spectrum of a CIFS (X, Φ) for
a set H of hyperbolic subsets of Λ(Φ), which is given by

{dimν(S) | S ∈ H} .

Finally, if ν is a h–conformal measure supported on Λ(Φ), then dimH(Λ(Φ′)) = h dimν(Λ(Φ′)), for
any finite subsystem (X, Φ′) of (X, Φ). This follows since in this situation ν is h–Ahlfors regular on
Λ(Φ′), that is ν(B(x, r)) � rh for each x ∈ Λ(Φ′) and r > 0. Hence, limr→0(log ν(B(x, r)))/ log r =
h for all x ∈ Λ(Φ′), and therefore Billingsley’s Lemma is applicable.

Proposition. Let (X, Φ) be a finite conformal iterated function system, and let ν be any h-
conformal measure whose support contains Λ(Φ), for h ≥ hΦ := dimH(Λ(Φ)). Then there exists
a set H of hyperbolic subsets of Λ(Φ) such that the (ν,H)–perforation spectrum of (X, Φ) is dense
in [0, dimν(Λ(Φ))].

In the proof of this proposition the following lemma will turn out to be useful.

Lemma. Let (X, Φ) be a finite conformal iterated function system , and let ν be any h–conformal
measure whose support contains Λ(Φ), for h ≥ hΦ := dimH(Λ(Φ)). Furthermore, for each n ∈ N

let τ(n) > 0 be given by
∑

ω∈In ν(φω(X))τ(n) = 1. We then have

|τ(n) − dimν(Λ(Φ))| � 1/n.

Proof. For ω in In, let

di(ω) :=

{

ess inf dν◦φω

dν
for i = 1

ess sup dν◦φω

dν
for i = 2.

Note that d1(ω) ≤ d2(ω) ≤ θ < 1 for all finite words ω in the alphabet I. This follows since ν is
h–conformal, and therefore d(ν ◦ φω)/dν = |φ′

ω|
h. Also, we define for i = 1, 2, t ≥ 0 and n ∈ N,

Di(n, t) =
∑

ω∈In

(di(ω))t.
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We then have that for each n ∈ N there exists δi(n) such that

Di(n, δi(n)) = 1 for i = 1, 2,

and one immediately verifies that

δ1(n) ≤ τ(n) ≤ δ2(n). (1)

Note that by the bounded distortion property there exists a constant 1 ≤ Cν < ∞ such that
d2(ω) < Cνd1(ω). Then a straight forward adaptation of the methods of [8] shows that the
following Hutchinson–type formula holds.

1 ≤ D2(n, t) ≤ Cν for all n ∈ N if and only if dimν(Λ(Φ)) = t. (2)

Therefore, combining (1) and (2) is sufficient to show that ε(n) := δ2(n) − δ1(n) � 1/n. For this
we proceed as follows.

1 =
∑

ω∈In

(d2(ω))δ2(n)

≤
∑

ω∈In

(Cνd1(ω))δ1(n)+ε(n)

≤ Cδ2(n)
ν (sup{d1(ω) | ω ∈ In})ε(n) .

This implies, using once again the bounded distortion property,

ε(n) ≤
δ2(n) log Cν

− log (sup{d1(ω) | ω ∈ In})
�

1

n
.

We are now in the position to give the proof of the Proposition.

Proof of the Proposition. Let 0 < s < dimν(Λ(Φ)) be given. It is sufficient to show that for each
n ∈ N there exists a finite subsystem (X, Πn) of (X, Φ) such that |s − dimν(Λ(Πn))| � 1/n. For
this we fix some ordering

{1, 2, . . . |I|}n = {ω1, ω2, . . . ω|I|n}.

Then let ks(n) := max{k |
∑k

i=1 ν(φωi
(X))s < 1} and define

Πn := (φi)i=1,...ks(n) .

Let κ(n) ≥ 0 be the unique solution of the equation
∑ks(n)

i=1 ν(φωi
(X))s−κ(n) = 1. With d2(ω) as

defined in the proof of the previous lemma and dmax := sup{d2(ω) | ω ∈ I}, we then have

ks(n)
∑

i=1

ν(φωi
(X))s � (dmax)

n κ(n),

which implies

κ(n) ≤
log

∑ks(n)
i=1 ν(φωi

(X))s

n log dmax

≤
log(1 − (dmax)

ns)

n log dmax

�
1

n
.

Combining this estimate with the Lemma above, the result follows.
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Proof of the Main Theorem.

Let h := dimH(Λ(Φ)). If (X, Φ) is a finite CIFS then the assertion is an immediate consequence
of the Proposition. Indeed, in this situation we can take the measure occuring in the above
Proposition to be equal to the h–conformal measure µ associated with (X, Φ), and immediately
obtain that there exists a set H of hyperbolic subsets of Λ(Φ) such that the (µ,H)–perforation
spectrum of (X, Φ) is dense in [0, dimµ(Λ(Φ))]. Since in this situation µ is h–Ahlfors regular on
Λ(Φ), it follows that limr→0(log ν(B(x, r)))/ log r = h, and hence Billingsley’s Lemma implies
dimµ(Λ(Φ)) = 1. Combining this observation with the fact that for any finite subsystem (X, Φ′)
of (X, Φ) we have dimH(Λ(Φ′)) = h dimµ(Λ(Φ′)), the result follows.

For I infinite, we proceed as follows. First, recall that there exists the following well known
canonical exhaustion of the system (X, Φ) by hyperbolic sets (see e.g. [10],[6],[11],[12],[13]).
Namely, for Φl := {φi | supx∈X |φ′

i(x)| > 1/l} we have

dimH(Λ(Φl)) ≤ dimH(Λ(Φl+1)) for all l ∈ N, and lim
l→∞

dimH(Λ(Φl)) = h.

Next, note that the h–conformal measure associated with (X, Φ) is always h–Ahlfors regular on
Λ(Φl), for each l ∈ N for which Λ(Φl) 6= ∅. Therefore, it follows

dimµ(Λ(Φl)) ≤ dimµ(Λ(Φl+1)) for all l ∈ N, and lim
l→∞

dimµ(Λ(Φl)) = 1.

Now, let 0 < t < 1 be given. By the above, there then exists lt ∈ N such that dimµ(Λ(Φlt)) > t.
Note that by compactness of X , we have that (X, Φlt) is a finite CIFS. We can then apply the
Proposition, which gives that there exists a set Ht of hyperbolic subsets of Λ(Φlt) such that the
(µ,Ht)–perforation spectrum of (X, Φlt) is dense in [0, dimµ(Λ(Φlt))]. From this we deduce that
{h dimµ(S) | S ∈ Ht} is dense in [0, h dimµ(Λ(Φlt))]. By letting t tend to 1 and using the fact that
by Billingsley’s Lemma we have dimH(S) = h dimµ(S) for each S ∈ Ht, the result follows.
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[4] M. Denker, M. Urbański. Hausdorff and conformal measures on Julia sets with a rationally
indifferent periodic point. J. London Math. Soc. (2) 43 (1991), no. 1, 107–118.

[5] D. Hensley. A polynomial time algorithm for the Hausdorff dimension of continued fraction
Cantor sets. J. Number Theory 58 (1996), no. 1, 9–45.

[6] V. Jarńık. Zur metrischen Theorie der Diophantischen Approximationen. Prace
Matematyczno-Fizyczne 36 2.Heft (1928), 91?106.

[7] O. Jenkinson. On the density of Hausdorff dimensions of bounded type continued fraction
sets: the Texan conjecture, Stochastics and Dynamics, 4 (2004), 63-7
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