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Abstract

This survey is dedicated to S. J. Patterson’s 60th birthday in recog-
nition of his seminal contribution to measurable conformal dynamics
and fractal geometry. It focuses on construction principles for confor-
mal measures for Kleinian groups, symbolic dynamics, rational func-
tions and more general dynamical systems, due to Patterson, Bowen-
Ruelle, Sullivan, and Denker-Urbański.
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1 The Patterson Measure: Classics

In his pioneering work [75] Patterson laid the foundation for a comprehensive
measure theoretical study of limit sets arising from (conformal) dynamical
systems. Originally, his main focus was on limit sets of finitely generated
Fuchsian groups, with or without parabolic elements. We begin this survey by
reviewing his construction and some of its consequences in the slightly more
general situation of a Kleinian group. The starting point of this construction
is that to each Kleinian group G one can associate the Poincaré series P(z, s),
given by

P(z, s) :=
∑
g∈G

exp(−sd(z, g(0))),

for s ∈ R, 0 denoting the origin in the (N + 1)-dimensional hyperbolic space
H (throughout, we always use the Poincaré ball model for H), z an element
of H, and where d denotes the hyperbolic metric. The abzissa of convergence
δ = δ(G) of this series is called the Poincaré exponent of G. It is a priori not
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clear if P(z, s) converges or diverges for s = δ, and accordingly, G is called
of δ-divergence type if P(z, δ) diverges, and of δ-convergence type otherwise.
Patterson made use of this critical behaviour of P(z, s) at s = δ in order
to build measures supported on the limit set L(G) of G, that is, the set of
accumulation points of the orbit G(0), as follows. In order to incorporate
also the δ-convergence type case, he first chooses a sequence (sj) tending to
δ from above, and then carefully crafts a slowly varying function ϕ such that
the modified Poincaré series

Pϕ(z, s) :=
∑
g∈G

ϕ(d(z, g(0))) exp(−sd(z, g(0)))

still has abzissa of convergence equal to δ, but diverges for s = δ. With
this slight alteration of the classical Poincaré series, he then defines discrete
measures µz,sj by putting weights on the orbit points in G(0) according to

µz,sj(g(0)) =
ϕ(d(z, g(0))) exp(−sjd(z, g(0)))

Pϕ(z, sj)
.

Due to the divergence of the modified Poincaré series at δ, each weak accumu-
lation point of the resulting sequence

(
µz,sj

)
of measures is clearly supported

on L(G), and each of these so obtained limit measures is what one nowadays
calls a Patterson measure. One of the success stories of these measures is
that if G is geometrically finite, that is, each element of L(G) is either a
radial limit point or else is the fixed point of some parabolic element of G,
then there exists a unique measure class containing all these measures. In
other words, in this situation a weak accumulation point µz of the sequence(
µz,sj

)
does not depend on the particular chosen sequence (sj). Moreover,

in this geometrically finite situation it turns out that G is of δ-divergence
type. Let us now concentrate on this particular situation for a moment, that
is, let us assume that G is geometrically finite. Then, a crucial property of
the family {µz : z ∈ H} is that it is δ–harmonic, meaning that for arbitrary
z, w ∈ H we have, for each x ∈ L(G),

dµz
dµw

(x) = exp(δbx(z, w)),

where bx(z, w) denotes the signed hyperbolic distance of z to w at x, ob-
tained by measuring the hyperbolic distance dx(z, w) between the two horo-
cycles at x, one containing z and the other containing w, and then taking
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the negative of this distance if w is contained in the horoball bounded by
the horocycle through z, and letting it be equal to this hyperbolic distance
otherwise. Note that dx(z, w) is a Busemann function and bx(z, w) coincides
with log(P (z, x)/P (w, x)), for P (·, ·) denoting the Poisson kernel in H. Let
us also remark that here the wording δ–harmonic points towards another
remarkable success story of the concept “Patterson measure”, namely, its
close connection to spectral theory on the manifold associated with G. More
precisely, we have that the function φ0, given by

φ0(z) :=

∫
∂H
P (z, x)δ dµ0(x),

is a G–invariant eigenfunction of the Laplace–Beltrami operator associated
with the (smallest) eigenvalue δ(N − δ). Moreover, φ0 is always square–
integrable on the convex core of H/G, defined by forming first the convex
hull of the limit set in H, then taking a unit neighbourhood of this convex
hull, and finally quotienting out G.
In order to gain more geometric insight into δ-harmonicity, it is convenient
to consider the measure µγ(0), for some arbitrary γ ∈ G. A straightforward
computation gives that µγ(0) = µ0◦γ−1, and hence, the δ-harmonicity implies
that

d (µ0 ◦ γ−1)

d µ0

(x) = P (γ(0), x)δ, for all γ ∈ G. (1)

This property of the Patterson measure µ0 is nowadays called δ-conformality.
Sullivan ([111]) was the first to recognise the geometric strength of this prop-
erty, which we now briefly comment on. Let sx denote the hyperbolic ray
between 0 ∈ H and x ∈ ∂H, and let xt denote the point on sx at hyperbolic
distance t from the origin. Let Bc(xt) ⊂ H denote the (N + 1)-dimensional
hyperbolic disc centred at xt of hyperbolic radius c > 0, and let Π : H→ ∂H
denote the shadow–projection given by Π(C) := {x ∈ ∂H : sx ∩ C 6= ∅}.
Also, if xt lies in one of the cusps associated with the parabolic fixed points
of G, let r(xt) denote the rank of the parabolic fixed point associated with
that cusp, otherwise, put r(xt) equal to δ. Combining the δ-conformality
of µ0 and the geometry of the limit set of the geometrically finite Kleinian
group G, one obtains the following generalised Sullivan shadow lemma ([111]
[113] [110]):

µ0(Π(Bc(xt))) � |Π(Bc(xt)))|δE · exp((r(xt)− δ)d(xt, G(0))),
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for all x ∈ L(G) and t > 0, for some fixed sufficiently large c > 0, and where
| · |E denotes the diameter with respect to the chordal metric in ∂H. Note that
in the latter formula the “fluctuation term” exp((r(xt) − δ)d(xt, G(0))) can
obviously also be written in terms of the eigenfunction φ0 of the Laplace–
Beltrami operator. Besides, this gives a clear indication towards why the
Patterson measure admits the interpretation as a “correspondence princi-
ple” which provides a stable bridge between geometry and spectral theory.
However, one of the most important consequences of the generalised Sullivan
shadow lemma is, that it allows us to use the Patterson measure as a strik-
ing geometric tool for deriving significant geometric insights into the fractal
nature of the limit set L(G). For instance, it immediately follows that if G
has no parabolic elements, then µ0 coincides, up to a multiplicative constant,
with the δ-dimensional Hausdorff measure on L(G). Hence, in this case, the
Hausdorff dimension of L(G) is equal to δ. To extend this to the case in which
there are parabolic elements, one first establishes the following generalisation
of a classical theorem of Khintchine in metrical Diophantine approximations
([55]). The proof in [110] uses the generalised Sullivan shadow lemma and
the techniques of Khintchine’s classical result (for further results on metrical
Diophantine approximations in connection with the Patterson measure see
e.g. [42] [76] [96] [97] [98] [99] [100] [101] [102] [103] [105], or the survey article
[104]).

lim sup
t→∞

d(xt, G(0))

log t
= (2δ(G)− rmax)−1 , for µ0-almost all x ∈ L(G).

Here, rmax denotes the maximal rank of the parabolic fixed points of G. By
combining this with the generalised Sullivan shadow lemma, an immediate
application of the mass distribution principle gives that even when G has
parabolic elements, we still have that δ is equal to the Hausdorff dimension
of L(G). Moreover, these observations immediately show that µ0 is related to
the δ-dimensional Hausdorff measure Hδ and packing measure Pδ as follows.
For ease of exposition, the following table assumes that G acts on hyperbolic
3-space.

0 < δ < 1 δ = 1 1 < δ < 2

no cusps µ0 � Hδ � Pδ µ0 � H1 � P1 µ0 � Hδ � Pδ
rmax = 1 µ0 � Pδ, Hδ = 0 µ0 � H1 � P1 µ0 � Hδ, Pδ =∞
rmin = 2 n.a. n.a. µ0 � Pδ, Hδ = 0

rmin = 1, rmax = 2 n.a. n.a. Hδ = 0, Pδ =∞
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Moreover, as was shown in [105], again by applying the generalised Sulli-
van shadow lemma for the Patterson measure, we additionally have that δ is
equal to the box-counting dimension of L(G). At this point it should also be
mentioned that in [8] and [103] it was shown that in fact every non-elementary
Kleinian group G has the property that its exponent of convergence δ is equal
to the Hausdorff dimension of its uniformly radial limit set, that is, the subset
of the radial limit set consisting of those limit points x ∈ L(G) for which there
exists c > 0 such that d(xt, G(0)) < c, for all t > 0. The proof of this rather
general result is based on an elementary geometrisation of the Poincaré series
and does not use any Patterson measure theory (see also [103]). These fractal
geometric interpretations of the exponent of convergence are complemented
by its dynamical significance. Namely, one finds that the square integrability
of the eigenfunction φ0 on the convex core of H/G implies that the invariant
measure for the geodesic flow on H/G associated with the Patterson measure
has finite total mass ([113]). Using this, one then obtains that δ is equal to
the measure-theoretic entropy of the geodesic flow. In particular, if there
are no cusps, one can define a topological entropy for the invariant set of
geodesics with both endpoints in the limit set, and this topological entropy
also turns out to be equal to the critical exponent δ ([111]). It is worth
mentioning that in this geometrically finite situation the invariant measure
for the geodesic flow is not only of finite total mass and ergodic, but it is
also mixing and even Bernoulli ([90]). In fact, these strong properties of
the geodesic flow have been exploited intensively in the literature to derive
various interesting aspects of the limit set. For instance, the marginal mea-
sure of the Patterson–Sullivan measure |x− y|−2δdµ0(x)dµ0(y), obtained by
disintegration of the first coordinate, leads to a measure which is invariant
under the Bowen–Series map. This allows us to bring standard (finite and
infinite) ergodic theory into play. As an example of the effectiveness of this
connection, we mention the recent result (see [53] in these Proceedings) that
for a geometrically finite Kleinian group G with parabolic elements we have
that, with | · | denoting the word metric,∑

g∈G
|g|≤n

exp(−δd(0, g(0))) = O(n2δ−rmax).

For Kleinian groups which are not geometrically finite the Patterson mea-
sure theory is less well developed, although various promising first steps have
been undertaken. Here, an interesting class is provided by finitely generated,
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geometrically infinite Kleinian groups acting on hyperbolic 3–space H3 whose
limit set is not equal to the whole boundary ∂H3. For these groups it had
been conjectured for almost 40 years that the area of their limit sets is always
equal to zero. This conjecture was named after Ahlfors and was eventually
reduced to the so–called tameness–conjecture, a conjecture which was only
very recently confirmed in [5] and [18]. Given the nature of this conjecture,
it is perhaps not too surprising that the concept “Patterson measure” also
made vital contributions to its solution.

For infinitely generated Kleinian groups, so far only the beginnings of a
substantial theory have been elaborated. As Patterson showed in [77], there
exist infinitely generated groups whose exponent of convergence is strictly
less than the Hausdorff dimension of their limit set. Kleinian groups with
this property were named in [37] as discrepancy groups. Also, an interesting
class of infinitely generated Kleinian groups is provided by normal subgroups
N of geometrically finite Kleinian groups G. For these groups one always has
that L(N) = L(G) and δ(N) ≥ δ(G)/2 (see [37]), and this inequality is in fact
sharp, as was shown very recently in [11]. Moreover, by a result of Brooks
in [14], one has that if G acts on hyperbolic n–space such that δ(G) > n/2,
then

N is a discrepancy group if and only if G/N is non–amenable.

This result is complemented by beautiful applications of the Patterson mea-
sure theory in [86] and [87], where it was shown for the Fuchsian case that if
G/N ∼= Zk, and hence δ = δ(N) = δ(G), since Zk is clearly amenable, then

N is of δ–divergence type ⇔

{
k ∈ {1, 2} if G has no parabolic elements

k = 1 if G has parabolic elements.

Finally, we mention the related work of [2] which considers the special
situation of the Riemann surface C \ Z uniformized by a Fuchsian group N
which is a normal subgroup of the subgroup G of index 6 of the modular
group PSL2(Z) uniformizing the three-fold punctured sphere. There it was
shown that the Poincaré series P(z, s) associated with N has abscissa of
convergence δ(N) = 1 and that it has a logarithmic singularity at s = 1 (for
further results of this type see e.g. [4] [79] [80] [65] [72]). This result of [2] is
obtained by showing that the associated geodesic flow has a factor which is
Gibbs-Markov ([3]) and by using a local limit theorem of Cauchy type.
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2 Gibbs Measures

Rokhlin’s seminal paper [88] on the foundations of measure theory, dynam-
ical systems and ergodic theory is fundamental for our further discussion of
Patterson measures and conformality of measures of the type as in equation
(1). Let R : Ω1 → Ω2 be a measurable, countable-to-one map between two
Lebesgue spaces (Ωi,Σi, µi) (i = 1, 2) ([19]), where Σi and µi denote some
Borel fields and measures. If R is nonsingular1 the Jacobian JR of R exists,
meaning that, for all E ∈ Σ1 such that R|E is invertible, we have that

µ2(R(E)) =

∫
E

JRdµ1. (2)

By our assumptions, the imagesR(E) are always measurable, in fact, through-
out this section all functions and sets considered will always be assumed to
be measurable. Also, note that JR is uniquely defined, µ1-almost every-
where. Moreover, since R is countable-to-one, the Jacobian JR gives rise to
the transfer operator LJ = LJR , given by

LJf(x) =
∑

R(y)=x

f(y)
/
J(y), (3)

for all measurable functions f : Ω1 → R for which the right hand side in (3)
is well defined. (For example, the latter always holds for f bounded and R
finite-to-one, and it holds, more generally, if ‖LJ1‖∞ <∞.) For this type of
function, we then have that (2) is equivalent to∫

fdµ1 =

∫
LJfdµ2. (4)

Note that this identity can also be written in terms of the “dual operator”
L∗J , which maps µ2 to µ1. If the two Lebesgue spaces agree and are equal
to some Ω, then R : Ω→ Ω is a nonsingular transformation of the Lebesgue
space Ω, and in this situation we have that µ = µ1 is a fixed point of the
dual L∗J .

The δ-conformality of the Patterson measure in (1) can be viewed as
determining the Jacobian for the transformations in the Kleinian group G.

1R is said to be nonsingular with respect to µ1 and µ2, if for each measurable set
E ⊂ Ω2 one has that µ1(R−1(E)) = 0 if and only if µ2(E) = 0.
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Hence, the Patterson construction in Section 1 solves the problem of find-
ing a measure whose Jacobian equals a certain power of the derivative of
these transformations. This naturally leads to the following question: For a
given measurable function φ and a transformation T , when does there exist
a probability measure with Jacobian equal to eφ? It turns out that typical
conditions on φ and T are certain kinds of conformality as well as some spe-
cific geometric and/or analytic properties. Nowadays, this type of question
is well addressed, but in the mid 70’s the work in [75] paved the way for these
developments (see the following sections). Here, it should also be mentioned
that, parallel to this development, the theory of Gibbs measures evolved ([12]
[122]), solving the analogue question for subshifts of finite type.

Consider a compact metric space (Ω, d) and a continuous finite-to-one
transformation T : Ω → Ω. For a given continuous function φ : Ω → R,
let us first identify nonsingular measures mφ for which (2) is satisfied with
JT = eφ. A good example for this situation is given by a differentiable
map T of the unit interval into itself, where the Lebesgue measure satisfies
the equality (2), with φ being equal to the logarithm of the modulus of the
derivative of T .

For an expanding, open map T : Ω → Ω and a nonnegative continuous
function φ, Ruelle’s Perron-Frobenius Theorem ([12]) guarantees the exis-
tence of a measure µ satisfying

µ(T (A)) = λ

∫
A

eφdµ, (5)

for some λ > 0 and for each A ∈ Σ for which T |A is invertible. Each measure
so obtained is called a Gibbs measure for the potential function φ. This
type of measure represents a special case of conformal measures. An open,
expanding map on a compact metric space is called R–expanding, where R
refers to Ruelle. This includes subshifts of finite type (or topological Markov
chains), for which the Ruelle Theorem was originally proven. In fact, such
a R–expanding map has the property that the number of pre-images of all
points is locally constant. Consequently, for a given φ ∈ C(X), the Perron–
Frobenius operator (or equally, the transfer operator) Lφ acts on the space
C(X), and is given by

Lφf(x) =
∑

y:T (y)=x

f(y) exp(−φ(y)).
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In this situation we then have that the map m 7→ L∗φm/m(Lφ1) has a fixed
point mφ. The measure mφ is a Gibbs measure whose Jacobian is equal to
λ · eφ, for λ = mφ(Lφ1). The logarithm of the eigenvalue λ is called the
pressure P (T,−φ) of −φ.

The following Bowen-Ruelle-Perron-Frobenius Theorem summarised the
main results in this area.

Theorem 2.1 ([12]) Let (Ω, T ) be a topologically mixing, R–expanding dy-
namical system. For each Hölder continuous function φ : Ω→ R, there exists
a probability measure mφ and a positive Hölder continuous function h such
that the following hold.

1. L∗φmφ = exp(P (T, φ))mφ;

2. Lφh = exp(P (T, φ))h;

3. Lnφf −
∫
fhdmφ decreases in norm exponentially fast.

One immediately verifies that the measure m̃φ, given by dm̃φ = h · dmφ,
is T–invariant, and hence, m̃φ is often also referred to as the invariant Gibbs
measure. In fact, as the name already suggests, the existence of this type
of Gibbs measures is closely related to the thermodynamic formalism for
discrete time dynamical systems.

Note that the existence of mφ has been derived in [52], whereas some first
results in this direction were already obtained in [74]. Alternative proofs of
the Bowen-Ruelle-Perron-Frobenius Theorem use, for instance, the Hilbert
metric in connection with positive cones (see [38] and section 5) or, for the
statement in 2., the Theorem of Ionescu-Tulcea and Marinescu (see [50]).
Also, note that the original version of this theorem was given in terms of
subshifts of finite type. In fact, an R–expanding transformation admits a
Markov partition, and therefore, the associated coding space is a subshift of
finite type. Nevertheless, the theorem can also be proven directly in terms
of R–expanding maps on compact metric spaces.

Finally, let us remark that the method above can be extended to systems
which are neither open nor expanding. For instance, the potential function
φ may have properties which only requires T to be expanding along certain
orbits. A typical condition of this type is that the pressure function at φ
exceeds sup(φ), where the supremum is taken over the state space Ω. This
situation arises, for instance, if T is a rational map on the Riemann sphere
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(see e. g. [33] and [27], or [47] for the case of a map of the interval). In this case
we still have that Lφ acts on the set of continuous functions, and the proof
of the existence of the invariant Gibbs measure then uses that for a Hölder
continuous potential function φ most of the branches are contracting and that
the contributions of other branches are negligible, due to the boundedness
condition on φ. In fact, this approach turns out to be somehow characteristic
for certain non-uniformly hyperbolic systems.

3 Sullivan’s Conformal Measure

As already mentioned at the beginning, originally one of the main motivations
for the construction of the Patterson measure was to study fractal geometric
properties of limit sets of Fuchsian groups. The analogue of Patterson’s
construction for Julia sets of either hyperbolic or parabolic rational maps was
first noticed by Sullivan in [112]. Recall that a rational function R : S2 → S2

is called hyperbolic if its Julia set does not contain any critical or rationally
indifferent (parabolic) periodic points, whereas R is called parabolic if its
Julia set contains a parabolic periodic point, but does not contain any critical
point. Here, the key observation is that in these expansive cases the Julia
set can be considered as being the “limit set” of the action of the rational
map on its Fatou component. The elaboration of this analogue between
Fuchsian groups and rational maps in [112] has led to what is nowadays
called Sullivan’s dictionary (for some further chapters of this dictionary, see
e.g. [112] [109] [108] [107] [106]).

The idea of a conformal measure for a rational map R appeared first in
[112], Theorem 3, where the existence of a conformal measure for the function
|R′|t, for some t ∈ R, was established. Moreover, in the same paper Sullivan
showed that this measure is unique in the hyperbolic case. In fact, in this
case one easily verifies that δ = inf{t > 0 : a t-conformal measure exists}
coincides with the Hausdorff dimension h of the Julia set. Sullivan’s con-
struction modifies the Patterson measure construction, and his method was
later extended in [28] to more general classes of transformations.

Recall that the starting point of Patterson’s and Sullivan’s construction
is to consider powers φt of the exponential of some potential function log φ,
for t greater than a certain critical value, and then to proceed by letting t
decrease to this critical value. However, in the case of expanding rational
maps it is much simpler to use the theory of Gibbs measures, as explained
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in Section 2.
One immediately verifies that there always exists a Gibbs measure mt for

φt = |R′|t, for some t ≥ 0 (this follows from the discussion in section 2).
Since

mt(R(A)) = λt

∫
A

|R′|tdmt,

where as before log λt = P (R,−t log |R′|), we have that the measure mt is
conformal if and only if P (R,−t log |R′|) = 0. If R is expanding, it is easy to
see that the pressure function is continuous and strictly decreasing, for t ≥ 0.
In particular, we have that P (R, 0) (= log deg(R)) is equal to the topological
entropy (see [66]) and that P (R,−t log |R′|)→ −∞, for t tending to infinity.
This implies that there exists a unique t for which the pressure function van-
ishes. In fact, this is precisely the content of the Bowen–Manning–McCluskey
formula ([68], [13]). Using this observation, it can then be shown that the
so obtained t is equal to the Hausdorff dimension of the Julia set of R, a
result due to Sullivan in [112] (see [13] for related earlier results on dynam-
ical and geometric dimensions). Note that Sullivan’s construction employs
Patterson’s approach, replacing the orbit under the Fuchsian group by the
set of pre-images under R of some point in the Fatou set which accumulates
at the Julia set. This approach can be viewed as some kind of “external
construction” (see [40]).

For more general rational functions, it is necessary to gain better control
over the eigenvalues of the transfer operator. This can hardly be done by the
type of functional analytic argument given above. However, for a parabolic
rational map one still finds that there exists a unique non–atomic ergodic
conformal measure with exponent equal to the Hausdorff dimension of the
Julia set. Although there still exists such a conformal measure, in this situ-
ation one finds that every other ergodic conformal measure is concentrated
on the orbit of the parabolic points (see [32] [34]). While the construction
is still straightforward in this parabolic case, other cases of rational func-
tions have to be treated with refined methods and require certain “internal
constructions”, of which we now recall a few (see also Section 4).

One of these methods is Urbański’s KV-method, which considers invari-
ant subsets of the Julia set whose closures do not contain any critical point.
Given that these sets exhaust the Julia set densely, this method allows us
to construct measures which converge weakly to the conformal measure in
question. Here, the main work consists in showing that the obtained limit
measure has no atoms at the critical orbits. This is achieved by employing
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a certain type of tightness argument. In a similar fashion to that outlined
above, the construction leads to a conformal measure with a minimal expo-
nent (see [31] [83]). Although it is still an open problem to decide if this
measure is overall non-atomic, one nevertheless has that the minimal expo-
nent is equal to the dynamical dimension of the system.

Another method is the constructive method of [29], which applies in the
case of subexpanding rational functions and in the case of rational functions
satisfying the Collet-Eckmann condition. It also applies to rational maps
which satisfy the following summability condition of [40] and [84]:

∞∑
n=1

|(Rn)′(Rnc(c))|−α <∞,

for some α ≥ 0, for all critical points c in the Julia set, and for some nc ∈ N.
In this case the existence of a non–atomic conformal measure is guaranteed,
given that the Julia set does not contain parabolic points and given that
α < h/(h+µ), where h denotes the Hausdorff dimension of the Julia set and
µ the maximal multiplicity of the critical points in the Julia set.

Finally, let us also mention that for a general rational map we have that
the dynamical dimension of its Julia set coincides with the minimal t for
which a t-conformal measure exists ([31] [83]).

The following theorem summarises the discussion above.

Theorem 3.1 Let R be a rational map of the Riemann sphere, and let h
denote the Hausdorff dimension of its Julia set J(R). Then there exists a
non–atomic h-conformal probability measure m on J(R), given that one of
the following conditions hold:
(1) ([112]) R is hyperbolic. In this case m is the unique t-conformal measure,
for all t ∈ R.
(2) ([32]) R is parabolic. In this case m is the unique non–atomic t-conformal
measure, for all t ∈ R.
(3) ([29]) R is subexpanding (of Misiurewicz type). In this case m is the
unique non–atomic h-conformal measure.
(4) ([118]) If J(R) does not contain any recurrent critical points of R, then m
is the unique h-conformal measure. Moreover, m is ergodic and conservative.
(5) ([40],[84]) R satisfies the above summability condition. In this case m is
the unique non–atomic h-conformal measure.
(6) ([6]) R is a Feigenbaum map for which the area of J(R) vanishes. In
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this case m is the unique h-conformal measure and there exists a non–atomic
t-conformal measure, for each t ≥ h.

In order to complete this list, let us also mention that Prado has shown
in [82] that for certain infinitely renormalizable quadratic polynomials (orig-
inally introduced in [67]), the equality h = inf{t : ∃ a t-conformal measure}
still holds. The ergodicity problem for the conformal measure of quadratic
polynomials is treated in [81] and then extended further in [48].

An interesting new approach for obtaining the existence of conformal
measures is developed by Kaimanovich and Lyubich. They study conformal
streams which are defined on laminations of conformal structures. This set-
ting is very much in the spirit of our discussion of bundle maps in section
5. For further details concerning the construction of conformal streams and
its application to rational functions we refer to [51]. Moreover, note that
the theory of conformal measures has also been elaborated for semigroups of
rational functions (see [115] [116] [114]).

Up to now, the classification of conformal measures has not been com-
pleted. Clearly, since the space of conformal measures is compact with re-
spect to the weak topology, we always have that there exists a conformal
measure of minimal exponent. However, this measure can be either non–
atomic, or purely atomic, or even a mixture of both of these types. This
follows by convexity of the space of conformal measures (cf. [40]). At this
point, it should be remarked that [9] contains an interesting result which
clarifies under which conditions on the critical and parabolic points one has
that a conformal measure is non–atomic. Also, let us remark that an impor-
tant aspect when studying conformal measures is provided by the attempts
to describe the essential support of a conformal measure in greater detail (see
[15] [49] [71] [26] [85]). Of course, the set of radial limit points marks the
starting point for this journey.

There are various further fundamental results on the fine structure of
Julia sets which have been obtained via conformal measures. For instance,
conformal measures led to the striking result that the Hausdorff dimension
of the Julia set of parabolic maps of the Riemann sphere lies strictly between
p/(p + 1) and 2 (see [1]), where p denotes the maximum of the number of
petals to be found at parabolic points of the underlying rational map. Also,
conformal measures have proven to be a powerful tool in studies of continuity
and analyticity of the Hausdorff-dimension-function on families of rational
maps ([125] [36]).
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Recently, the existence of Sullivan’s conformal measures has also been
established for meromorphic functions ([63]). The following theorem sum-
marises some of the most important cases.

Theorem 3.2 Let T be a meromorphic function on C, and let F be the pro-
jection of T onto {z ∈ C : −π < Re(z) ≤ π}. With hT (resp. hF ) denoting
the Hausdorff dimension of J(T ) (resp. J(F )), in each of the following cases
we have that there exists a hT -conformal (resp. hF -conformal) measure.
(1) ([57]) T is a transcendental function of the form T (z) = R(exp(z)), where
R is a non-constant rational function whose set of singularities consists of
finitely many critical values and the two asymptotic values R(0) and R(∞).
Moreover, the critical values of T are contained in J(T ) and are eventually
mapped to infinity, and the asymptotic values are assumed to have orbits
bounded away from J(T ). In this case, there exists t < hF such that if t > 1
then there is only one t-conformal measure. Also, the hF -conformal measure
is ergodic, conservative and vanishes on the complement of the set of radial
limit points. In particular, this hF -conformal measure lifts to a σ-finite hF -
conformal measure for T .
(2) ([61] [59]) T is either elliptic and non-recurrent or weakly non-recur-
rent2. We then have that the hT -conformal measure is non–atomic, ergodic
and conservative, and it is unique as a non–atomic t-conformal measure.
(3) ([119] [121]) T is either exponential3 and hyperbolic or super-growing4.
Here, if t > 1 then the hF -conformal measure is ergodic, conservative and
unique as a t-conformal measure for F . Also, this conformal measure lifts to
a σ-finite hF -conformal measure for T .
(4) ([120]) T is given by T (z) = exp(z − 1) (parabolic). Here, the hF -
conformal measure is non–atomic, ergodic and conservative. Also, for t > 1
it is the unique non–atomic t-conformal measure for F , and if t 6= h then
there exist discrete t-conformal measures for F , whereas no such discrete t-
conformal measure for F exists for t = h. Again, this conformal measure
lifts to a σ-finite hF -conformal measure for T .
(5) ([94]) T is given by T (z) = R(exp(z)), where R is a non-constant ra-
tional function with an asymptotic value which eventually maps to infinity.

2the ω limit sets of critical points in the Fatou set are attracting or parabolic cycles and
the ω limit set of critical points c in the Julia set are compact in C\{c} (resp. Tn(c) =∞,
for some n ≥ 1).

3i.e. of the form T (z) = λ exp(z).
4the sequence of real parts αn (resp. the absolute value) of Tn(0) is exponentially

increasing, that is, αn+1 ≥ c expαn, for all n ∈ N and for some c > 0.
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Here, the hF -conformal measure is non–atomic, conservative and ergodic,
where hF denotes the Hausdorff dimension of the radial Julia set of F . Also,
this measure is unique as a hF -conformal measure, and it lifts to a σ-finite
hF -conformal measure for T .

The proofs of these statements follow the general construction method
which will be described in the next section. Furthermore, the proofs use
the well–known standard method of extending a finite conformal measure
for an induced transformation to the full dynamics (see e.g. [35]). Note
that [58] gives a finer analysis of the geometric measures appearing in part
(5) of the previous theorem. Furthermore, we would like to mention the
work in [62] and [60], where one finds a discussion of the relations between
different geometric measures. Also, fractal geometric properties of conformal
dynamical systems are surveyed in [117] (see also the surveys in [78] and
[104]).

4 Conformal Measures for Transformations

As mentioned before, the Patterson-Sullivan construction relies on approxi-
mations by discrete measures supported on points outside the limit set, and
hence can be viewed as some kind of “external construction”. In contrast
to this, we are now going to describe an “internal construction”, which uses
orbits inside the limit set. The basic idea of this construction principle is
inspired by the original Patterson measure construction in [75], and also by
the method used for deriving equilibrium measures in the proof of the varia-
tional principle for the pressure function ([73]). Note that the method does
not use powers of some potential function, instead, it mimics the general
construction of Gibbs measures, and one is then left to check the vanishing
of the pressure function.

Throughout this section let (X, d) be a compact metric space, equipped
with the Borel σ-field F . Also, let T : X → X be a continuous map for
which the set S(T ) of singular points x ∈ X (that is, T is either not open at
x or non–invertible in some neighbourhood of x) is finite. Furthermore, let
f : X → R be a given continuous function, and let (En : n ∈ N) be a fixed
sequence of finite subsets of X.

Recall that for a sequence of real numbers (an : n ∈ N), the number
c = lim supn→∞ an/n is called the transition parameter of that sequence.
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Clearly, the value of c is uniquely determined by the fact that it is the abzissa
of convergence of the series

∑
n∈N exp(an − ns). For s = c, this series may

or may not converge. Similarly to [75] (see also Section 1), an elementary
argument shows that there exists a slowly varying sequence (bn : n ∈ N) of
positive reals such that

∞∑
n=1

bn exp(an − ns)

{
converges for s > c

diverges for s ≤ c.
(6)

The construction principle.
Define an = log

∑
x∈En expSnf(x), where Snf =

∑
0≤k<n f ◦T k, and let c be

the transition parameter of the sequence (an : n ∈ N). Also, let (bn : n ∈ N)
be a slowly varying sequence satisfying (6). For each s > c, we then define
the normalised measure

ms =
1

Ms

∞∑
n=1

∑
x∈En

bn exp(Snf(x)− ns)δx, (7)

where Ms is a normalising constant, and where δx denotes the Dirac measure
at the point x ∈ X. A straightforward calculation then shows that, for A ∈ F
such that T |A is invertible,

ms(TA) =

∫
A

exp(c− f)dms + O(s− c) (8)

− 1

Ms

∞∑
n=1

∑
x∈A∩(En+1∆T−1En)

bn exp(Snf(T (x))− ns).

For s ↘ c, any weak accumulation point of {ms : s > c} will be called a
limit measure associated with f and (En : n ∈ N). In order to find conformal
measures among these limit measures, we now have a closer look at the terms
in (8). There are two issues to discuss here. First, if A is a set which can
be approximated from above by sets An for which T |An is invertible and for
which the limit measure of their boundaries vanishes, then the outer sum
on the right hand side of (8) converges to the integral with respect to the
limit measure. Obviously, this convergence depends on how the mass of ms

is distributed around the singular points. If the limit measure assigns zero
measure to these points, the approximation works well. In this case one has
to check whether the second summand in (8) tends to zero as s ↘ c. The
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simplest case is that En+1 = T−1(En), for all n ∈ N, and then nothing has
to be shown.

This discussion has the following immediate consequences.

Proposition 4.1 ([28]) Let T be an open map, and let m be a limit measure
assigning measure zero to the set of periodic critical points. If we have

lim
s↘c

1

Ms

∞∑
n=1

∑
x∈En+1∆T−1En

bn exp(Snf(T (x))− ns) = 0,

then there exists a exp(c− f)–conformal measure µ. Moreover, if m assigns
measure zero to all critical points, then µ = m.

Clearly, the proposition guarantees, in particular, that for an arbitrary
rational map R of the Riemann sphere we always have that there exists a
exp(p−f)–conformal measure supported on the associated Julia set, for some
p ∈ R.

Also, the above discussion motivates the following weakening of the notion
of a conformal measure.

Definition 4.2 With the notation as above, a Borel probability measure m
is called weakly exp(c− f)–conformal, if

m(T (A)) =

∫
A

exp(c− f) dm

for all A ∈ F such that T |A is invertible and A ∩ S(T ) = ∅.

The following proposition shows that these weakly conformal measures
do in fact always exist.

Proposition 4.3 ([28]) With the notation as above, we always have that
there exists a weakly exp(p− f)–conformal Borel probability measure m, for
some p ∈ R.

The following theorem addresses the question of how to find the transi-
tion parameter c, when constructing a conformal measure by means of the
construction principle above. Obviously, the parameter c very much depends
on the potential f as well as on the choice of the sequence (En : n ∈ N). In
most cases, the sets En can be chosen to be maximal separating sets, and
then the parameter c is clearly equal to the pressure of φ. However, in gen-
eral, it can be a problem to determine the value of c. The following theorem
gives a positive answer for a large class of maps.
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Theorem 4.4 ([28]) For each expansive map T we have that there exists a
weakly exp(P (T, f)−f)–conformal measure m. If, additionally, T is an open
map, then m is an exp(P (T, f)− f)–conformal measure.

Note that besides its fruitful applications to rational and meromorphic
functions of the complex plane, the above construction principle has also been
used successfully for maps of the interval (including circle maps) (see e.g. [28]
[16] [46] [45] [44] [43]). In particular, it has been employed to establish the
existence of a 1-conformal measure for piecewise continuous transformations
of the unit interval, which have neither periodic limit point nor wandering
intervals, and which are irreducible at infinity (see [16]). Moreover, conformal
measures for higher dimensional real maps appear in [17], and there they are
obtained via the transfer operator method.

Currently, it is an active research area to further enlarge the class of trans-
formations for which the existence of conformal measures can be established.
This area includes the promising attempts to construct conformal measures
on certain characteristic subsets of the limit set, such as on the radial limit
set ([26] [49] [85]) or on certain other attractors ([25]). Also, a related area
of research aims to elaborate fractal geometry for systems for which weakly
conformal measures exist (see e.g. [31]).

We end this section by giving two further examples of systems for which
the theory of conformal measures has proven to be rather successful. The first
of these is the case of expanding maps of the interval. Here, Hofbauer was
one of the leading architects during the development of the general theory.

Theorem 4.5 ([45]) Let T : [0, 1]→ [0, 1] be an expanding, piecewise mono-
tone map of the interval which is piecewise Hölder differentiable. Let A ⊂
[0, 1] have the Darboux property and positive Hausdorff dimension h, and
assume that the forward orbit of each element of A does not intersect the
endpoints of the monotonicity intervals of T . Then we have that there ex-
ists a non–atomic h-conformal measure, which is unique as a t-conformal
measure for t > 0.

Also, for expansive C1+ε–maps Gelfert and Rams obtained the following
result.

Theorem 4.6 ([39]) Let (X,T ) be an expansive, transitive C1+ε–Markov
system whose limit set has Hausdorff dimension equal to h. Then there exists
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a h-conformal measure. In particular, we have that h is the least exponent
for which a t-conformal measure exists, and h is also the smallest zero of the
pressure function P (T,−t log |T ′|).

Finally, let us mention that the above construction principle can obviously
also be applied to iterated function systems and graph–directed Markov sys-
tems. For these dynamical systems, conformal measures are obtained by
considering the inverse branches of the transformations coming with these
systems. For further details we refer to [70].

5 Gibbs Measures for Bundle Maps

In this section we give an outline of how to extend the concept of a Gibbs
measure to bundles of maps over some topological (or measurable) space X
(cf. Section 2). For this, let (X,T ) be a dynamical system for which the
map T : X → X factorises over some additional dynamical system (Y, S)
such that the fibres are non-trivial. Then there exists a map π : X → Y
such that π ◦ T = S ◦ π. We will always assume that π is either continuous
(if X is compact) or measurable. A system of this type is called a fibred
system. Note that the set of fibred systems includes dynamical systems
which are skew products. For ease of exposition, let us mainly discuss the
following two cases: (i) (Y, S) is itself a topological dynamical system and
π is continuous; (ii) (Y,B, P, S) is a measurable dynamical system, with P
being a probability measure on Y , S an invertible probability preserving
transformation, and where π is measurable.

In the first case, one can define a family (L(y)
φ : y ∈ Y ) of transfer opera-

tors, given on the space Cy of continuous functions on π−1({y}) (the image
does not necessarily have to be a continuous function), by

L(y)
φ f(x) =

∑
T (z)=x
π(z)=y

f(z)e−φ(z).

If the fibre maps Ty = T |π−1(y) are uniformly open and expanding5, these
operators act on the spaces of continuous functions on the fibres. In this
situation we have that an analogue of the Bowen-Ruelle-Perron-Frobenius

5i.e. there exist a > 0 and λ > 1 such that for all x, x′ ∈ π−1({y}) we have that
d(x, x′) < a implies that d(T (x), T (x′)) ≥ λd(x, x′).
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Theorem holds. Note that it is not known whether this analogue can be
obtained via some fixed point theorem. The currently-known proof uses the
method of invariant cones and Hilbert’s projective metric (see [7] [22]). More
precisely, a conic bundle (Ky : y ∈ Y ) over X is given as follows. For each
y ∈ Y , let Ky ⊂ Cy be the cone defined by

Ky = {f ∈ Cy : f(x1) ≤ ρ(x1, x2)f(x2); x1, x2 ∈ π−1({y}); d(x1, x2) < a},

where ρ(x1, x2) = exp(2β(d(x1, x2))γ), and where β is chosen such that β >
αλγ/2(1−λγ). Here, 0 < γ ≤ 1 denotes the Hölder exponent of the potential
function φ. One then verifies that Ty(Ky) ⊂ KS(y) and that the projective
diameter of KS(y) is finite and does not depend on y. By using Birkhoff’s
Theorem ([7]), we then obtain that the fibre maps Ty are contractions. This
method of employing Hilbert’s projective metric in order to derive conformal
measures is due to Ferrero and Schmidt, and we refer to [38] for further
details. The following theorem states this so obtained analogue of the Bowen-
Ruelle-Perron-Frobenius Theorem for bundle maps.

Theorem 5.1 ([22]) Assume that the fibre maps are uniformly expanding,
open and (uniformly) exact6. For each Hölder continuous function φ : X →
R, we then have that there exists a unique family {µy : y ∈ Y } of probability
measures µy on π−1({y}) and a unique measurable function α : Y → R>0

such that, for each A ⊂ X measurable,

µS(y)(T (A)) = α(y)

∫
A

exp(φ(x)) dµy(x). (9)

Moreover, the map y 7→ µy is continuous with respect to the weak topology.

The family of measures obtained in this theorem represents a generalisa-
tion of the concept “Gibbs measure”, which also explains why such a family
is called a Gibbs family. Note that the strong assumptions of the theorem are
necessary in order to guarantee the continuity of the fibre measures. More-
over, note that, under some mild additional assumptions, the function α can
be shown to be continuous (and in some cases, it can even be Hölder contin-
uous) ([22]). Since by changing the metric ([20] [30]), each expansive system
can be made into an expanding system, one immediately verifies that the

6i.e. for ε > 0 there exists some n ≥ 1 such that Tn(B(x, ε)) ⊃ π−1({Sn(π(x))})
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previous theorem can be extended such that it includes fibrewise uniformly
expansive systems. The proof of this extension is given in [89].

Let us also mention that typical examples for these fibred systems are
provided by Julia sets of skew products for polynomial maps in Cd. For
these maps, it is shown in [23] that various outcomes of the usual thermo-
dynamic formalism can be extended to the Gibbs families associated with
these maps. This includes the existence of measures of maximal entropy for
certain polynomial maps. Note that, alternatively, these measures can also
be obtain via pluriharmonic functions.

For more general dynamical systems, the fibre measures do not have to be
continuous. In fact, as observed by Bogenschütz and Gundlach, the Hilbert
metric also turns out to be a useful tool for investigating the existence of
Gibbs families for more general maps. One of the problems which one then
usually first encounters is to locate a suitable subset of Y for which the
relation in (9) is satisfied. It turns out that here a suitable framework is
provided by the concept of a random dynamical system. More precisely, let
us assume that the map S is invertible and that (Y, S) is equipped with a σ-
algebra B and an S-preserving ergodic probability measure P . The following
“random version” of the Bowen–Ruelle Theorem has been obtained in [10].
Note that in here we have that (9) holds P–almost everywhere. Also, note
that in the special case in which S is invertible, we have that each of the
operators Lφ(y) is nothing else but a restriction of the transfer operator to
fibres. Moreover, the theorem uses the concept of a random subshift of finite
type. Such a subshift is defined by a bounded random function l : Y → N
and a random matrix A(·) = (ai,j(·)) over Y with entries in {0, 1}, such that
the fibres are given by

π−1({y}) = {(xn)n≥0 : xk ≤ l(Sk(y)) and axk,xk+1
(Sk(y)) = 1,∀k ∈ N}.

Theorem 5.2 ([10]) Let (X,T ) be a random subshift of finite type for which
‖ logLφ‖∞ ∈ L1(P ), A(·) is uniformly aperiodic and φ|π−1({y}) is uniformly
Hölder continuous, for each y ∈ Y . Then there exist a random variable λ
with log λ ∈ L1(P ), a positive random function g with ‖ log g‖∞ ∈ L1(P ),
and a family of probability measures µy such that the following hold, for all
y ∈ Y .

1. L(y)∗
φ µS(y) = λ(y)µy;

2. L(y)
φ g = λ(y)g;
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3.
∫
gdµy = 1;

4. The system has exponential decay of correlation for Hölder continuous
functions.

Further results in this direction can be found in [56], [41] and [54]. Note
that none of these results makes use of the Patterson construction, but for
random countable Markov shifts the construction principle of Section 4 has
been successfully applied, and this will be discussed in the following final
section of this survey.

6 Gibbs Measure on Non-Compact Spaces

Without the assumption of X being compact, the weak convergence in the
Patterson construction needs some additional care in order to overcome the
lack of relative compactness of the associated space of probability measures.

One of the the simplest examples, in which the quality of the whole space
X does not play any role, is the following. Suppose that there exists a com-
pact subset of X to which the forward orbit of a generic point under a given
transformation T : X → X returns infinitely often. More specifically, let us
assume that the map admits a countable Markov partition and that there
exists some compact atom A of this partition such that A ⊂

⋃
n∈N T

−n(A).
We then consider the induced transformation TA : A → A, given for each
x ∈ A by

TA(x) = T n(x)(x),

where n(x) = inf{k ∈ N : T k(x) ∈ A}. Likewise, for a given potential
function φ on X, we define the induced potential function φA by φA(x) =
φ(x) + ... + φ(T n(x)−1). In order to see in which way Gibbs measures for
TA give rise to Gibbs measures for T , let µ be a given Gibbs measure for
the transformation TA and the induced potential function φA. Then define a
measure m by ∫

fdm =

∫ n(x)−1∑
k=0

f(T k(x)) dµ(x).

One immediately verifies that m is a σ-finite Gibbs measure for the potential
function φ (see [35]).

If in the absence of compactness one still wants to employ any of the
general construction principles for conformal measures, discussed in Section
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1, 2 and 4, one needs to use the concept of tightness of measures. For
instance, for S-uniformal maps of the interval, tightness has been used in
[25] to show that there exists a conformal measure concentrated on a dense
symbolic subset of the associated limit set. Also, Urbański’s KV–method,
discussed in Section 3, appears to be very promising here, since it gives rise
to conformal measures which are concentrated on non-compact subsets of X
(although, strictly speaking, the construction is carried out for a compact
space, where limits do of course exist). Moreover, there is ongoing research
on the existence of Gibbs measures for countable topological Markov chains.
In all of the results obtained thus far, tightness plays a key role. For this
non–compact situation, there are various examples in the literature for which
the existence of Gibbs measures is discussed. However, the first general result
was derived in [69].

In the following theorem we consider a topologically mixing Markov chain
X, given by a state space Λ, a map T : X → X, and a transition matrix
Σ = (σij)i,j∈Λ. Recall that (X,T ) is said to have the big images and big
pre-images property, abbreviated as (BIP), if there exist a finite set Λ0 ⊂ Λ
of states such that for each ` ∈ Λ there exist a, b ∈ Λ0 for which

σa`σ`b = 1.

Note that this property is equivalent to what Mauldin and Urbański call
“finitely primitive” ([69]). Also, mark that the property (BIP) is more re-
strictive than the big image property of [1], which was there used to obtain
absolutely continuous invariant measures.

The following theorem is due to Sarig. The proof of the sufficiency part
of this theorem can also be found in [69].

Theorem 6.1 ([93]) Let (X,T ) be a topologically mixing infinite topological
Markov chain, and let φ ∈ C(X) have summable variation7. In this situation
we have that the following two statements are equivalent.
(1) There exists an invariant Gibbs measure for φ.
(2) (X,T ) has the property (BIP) and the Gurevic pressure PG(φ) of φ is
finite, that is, for some ` ∈ Λ we have

PG(φ) := lim
n→∞

1

n
log

∑
Tn(x)=x

I`(x) exp(φ(x) + ...+ φ(T n−1(x))) <∞.

7i.e.
∑∞
n=1 Vn(φ) <∞, where Vn(φ) denotes the maximal variation of φ over cylinders

of length n.
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Recently, this result has been partially extended by Stadlbauer in [95]
to the case of random countable topological Markov chains. Moreover, for
the situation of the theorem with the additional assumptions that a certain
random (BIP) holds and that V y

1 (φ) <∞ for all y ∈ Y , it was shown in [24]
that there exists an invariant measure.

Theorem 6.2 ([95]) Let (X,T ) be a random topological Markov shift, and
let φ be a locally fibre Hölder continuous function of index two8 with finite
Gurevic pressure. Also, assume that the functions y 7→

∑∞
k=1 κ(S−k(y))rk,

y 7→ log sup{L(y)
φ 1(x) : x ∈ XS(y)} and y 7→ log inf{L(y)

φ 1(x) : x ∈ XS(y)}
are P -integrable, and let (X,T, φ) be of divergence type9. Then there exists
a measurable function α : Y → R+ and a Gibbs family {µy : y ∈ Y } for the
potential PG(φ)− φ such that, for all y ∈ Y and all x in the fibre over y,

dµS(y)

dµy
(x) = α(y) exp(PG(φ)− φ(x)).

In the work of Sarig in [91] and [92], which is closely related to the ther-
modynamic formalism, tightness is used to construct Gibbs measures via
transfer operator techniques. Contrary to this approach, the results in [95]
combine the Patterson measure construction with Crauel’s Prohorov Theo-
rem on tightness ([21]). To be more precise, let (X,T ) be a random Markov
chain over the base (Y,B, R, P ), where P is some fixed probability mea-
sure. Then Crauel’s theorem states that a sequence of bundle probabilities
{µ(n)

y : y ∈ Y } is relatively compact with respect to the narrow topology if

and only if {µ(n)
y : y ∈ Y } is tight10. Here, convergence of the discrete fibre

measures {µ(n)
y : y ∈ Y } towards {µy : y ∈ Y } with respect to the narrow

topology means that for all functions f , which are continuous and bounded
as functions on fibres, we have that∫ ∫

fdµ(n)
y dP (y) =

∫ ∫
fdµy dP (y).

8V yn (φ) ≤ κ(y)rn for n ≥ 2 and
∫

log κ dP <∞.
9For a given fixed measurable family ξy ∈ π−1(y), we have that the series∑
n:Sn(y)∈Y ′ sn(L(y)

φ )n(1)(ξSn(y)) converges for s < 1 and diverges for s = 1, where Y ′

is some set of positive measure.
10i.e. for all ε > 0 there exists a measurable set K ⊂ X such that K ∩ π−1({y}) is

compact, for all y ∈ Y , and infn
∫
µ
(n)
y (K) dP (y) > 1− ε.
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The construction in Section 4 can then be carried out fibrewise, showing that
there exist weak accumulation points with respect to the narrow topology (see
also [24]). It is worth mentioning that, beyond this result, in this situation
no further results on the existence of conformal measures seem to be known.
Also, thorough investigations of the fractal geometry of such systems are
currently still missing.
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for rational functions on the Riemann sphere. Ergodic Theory Dynam.
Systems 16 (1996), 255–266.
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