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Abstract

In this paper we study normal subgroups of Kleinian groups as well as
discrepancy groups (d-groups), that are Kleinian groups for which the
exponent of convergence is strictly less than the Hausdorff dimension
of the limit set. We show that the limit set of a d-group always con-
tains a range of fractal subsets, each containing the set of radial limit
points and having Hausdorff dimension strictly less than the Hausdorff
dimension of the whole limit set. We then consider normal subgroups
G of an arbitrary non-elementary Kleinian group H, and show that
the exponent of convergence of G is bounded from below by half of the
exponent of convergene of H. Finally, we give a discussion of various
examples of d-groups.

1 Introduction and statement of results

In this paper we investigate non-elementary Kleinian groups G acting on
(N + 1)-hyperbolic space DN+1 without torsion, which have the property
that their associated limit set L(G) has Hausdorff dimension strictly greater
than the exponent of convergence

δ(G) := inf
{
s ≥ 0

∣∣∣ ∑
g∈G

e−s ρ(0,g(0)) <∞
}
.

(Here, L(G) refers to the set of accumulation points of some G-orbit, and
ρ to the hyperbolic distance in DN+1). Throughout, we shall refer to these
groups as discrepancy groups, abbreviated as d-groups.
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In [6] it was shown that the limit set has positive 2-dimensional Lebesgue
measure for every finitely generated, geometrically infinite d-group which
acts on D3. This result was obtained via showing that for every arbitrary
non-elementary Kleinian group G one has that δ(G) coincides with the hy-
perbolic dimension of G, that is the Hausdorff dimension of the uniformly
radial limit set of G, or alternatively the Hausdorff dimension of the radial
limit set of G ([6], [25]). In this paper we consider arbitrary d-groups G and
discuss fractal properties of certain subsets of L(G), each of which contains
the radial limit set of G. These sets will be referred to as κ-weakly recurrent
limit sets. Our first main result is that for κ in a certain range, the Hausdorff
dimension of each of these κ-weakly recurrent limit sets is strictly less than
the Hausdorff dimension of L(G). In particular, this also allows to specify
a range of subsets of the transient limit set, the complement of the radial
limit set, which have the property that their Hausdorff dimension coincides
with the Hausdorff dimension of L(G). Our second main result deals with
the class of normal subgroups G of some arbitrary non-elementary Kleinian
group H. For these groups it is well-known that L(G) = L(H). Never-
theless, as can for instance be seen in the second example of Section 3, the
hyperbolic dimension of G does not necessarily conincide with the hyperbolic
dimension of H. Here our main result is that the exponent of convergence
of such a normal subgroup G is always bounded from below by half of the
exponent of convergence of H. Finally, in Section 3 we discuss various exam-
ples of d-groups. These include the infinitely-punctured Riemann surfaces
of Patterson’s ([18], Theorem 4.4). This type of example is closely related to
constructions of Hopf ([10]) and Pommerenke ([21]), and seems to have been
the first example of a d-group in the literature. Also, we discuss the case of
a normal subgroup G of some convex cocompact Kleinian group H. If H/G
is non-amenable, then it follows by work of Brooks ([8]) that G is a d-group.
Eventually, based on further work of Patterson ([19]), we outline a construc-
tion of infinitely generated free d-groups of the first kind. Again, as in the
normal subgroup example this construction works in any dimension, and we
also show that it can be employed to construct special d-groups which have
the property that the set of Jørgensen points has positive N -dimensional
spherical Lebesgue measure. These special d-groups are groups of the first
kind such that the complement of their horospherical limit set contains a
wandering set of positive N -dimensional measure. Hence, these groups do
not act conservatively, and therefore they are not ergodic on SN in the sense
that for each of them there exists a bounded group-invariant function which
is hyperbolically harmonic.
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In order to state the results in detail, we now first introduce the limit sets
which are relevant. Throughout, let G be some arbitrary non-elementary
Kleinian group without torsion. It is well-known that L(G) can be decom-
posed into the set Lr(G) of radial limit points and the set Lt(G) of transient
limit points, where

• Lr(G) := {ξ ∈ L(G) | lim infT→∞∆(ξT ) <∞}

• Lt(G) := {ξ ∈ L(G) | limT→∞∆(ξT ) =∞}.

In here, ξT refers to the point on the ray from 0 to ξ for which ρ(0, ξT ) = T ,
and ∆(ξT ) refers to the hyperbolic distance of ξT to the orbit G(0), that is
∆(ξT ) := inf{ρ(ξT , g(0)) | g ∈ G}. Important subsets of L(G) are the set
Lur(G) of uniformly radial limit points and the set LJ(G) of Jørgensen limit
points. These are given as follows (cf. [28], [16]).

• Lur(G) := {ξ ∈ L(G) | lim supT→∞∆(ξT ) <∞}

• LJ(G) refers to the set of ξ ∈ L(G) such that there exists a geodesic ray
towards ξ which is completely contained in some Dirichlet fundamental
domain of G.

One easily verifies that Lur(G) ⊂ Lr(G) and that LJ(G) ⊂ Lt(G). Note
that for ease of exposition we have defined the set LJ(G) such that the
set of bounded parabolic fixed points of G is contained in LJ(G) (for the
definition of a bounded parabolic fixed point we refer to [15] p.43), and hence
our definition of LJ(G) here differs from the definition given in [16]. Also,
note that LJ(G) corresponds to the dissipative part of the action of G on
the sphere at infinity (c.f. [29], [13]).

Finally, we introduce the set L
(κ)
t (G) of κ-transient limit points and the set

L
(κ)
r (G) of κ-weakly recurrent limit points for κ > 0 as follows.

• L(κ)
r (G) :=

⋃
c>0

{
ξ ∈ L(G)

∣∣∣∣ ξ ∈ b (Π(g(0)), c e−ρ(0,g(0))/(1+κ)
)

for infinitely many g ∈ G

}
• L(κ)

t (G) := L(G) \ L(κ)
r (G).

In here, b(η, r) ⊂ SN refers to the ball centred at η ∈ SN of spherical radius r,
and Π to the shadow projection from zero to the boundary SN of hyperbolic

space. One easily verifies that L
(κ1)
t (G) ⊃ L

(κ2)
t (G) whenever κ1 ≤ κ2, and

that Lr(G) ⊂ L
(κ)
r (G) for all κ > 0. Also, note that Lr(G) is a dense
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subset of L(G), and hence so is L
(κ)
r (G). Therefore, by a standard result in

fractal geometry (see e.g. [9]), it follows that the lower packing dimension of

L
(κ)
r (G) coincides with the lower packing dimension of L(G), where the latter

is always greater than or equal to the Hausdorff dimension of L(G). The

following theorem shows that the Hausdorff dimension of L
(κ)
r (G) relates in

a more subtle way to the Hausdorff dimension dimH(L(G)) of L(G). The
theorem gives the first main result of the paper.

Theorem 1. Let G be a d-group. With δ∗(G) := (dimH(L(G))−δ(G))/δ(G),
we have for all 0 < κ < δ∗(G),

δ(G) ≤ dimH(L(κ)
r (G)) < dimH(L(G)),

and in particular

dimH(L
(κ)
t (G)) = dimH(L(G)).

Note that by a result of Beardon ([2], [3]) the exponent of convergence of a
non-elementary Kleinian group is strictly positive, which gives that δ∗(G) is
well-defined.

Our second main result considers normal subgroups of an arbitrary Kleinian
group. We refer to Section 3 (Example 2) for a discussion of some examples
for d-groups of this type.

Theorem 2. Let H be a non-elementary Kleinian group, and let G be a
non-trivial normal subgroup of H. We then have

δ(G) ≥ δ(H)

2
.

Before giving the proofs of these theorems, let us first show that they have
some interesting immediate implications. For the first recall that a Kleinian
group G is called of δ(G)-convergence type if and only if

∑
g∈G e

−δ(G) ρ(0,g(0))

converges. Also, let Hs refer to the s-dimensional Hausdorff measure. Note
that the statement (i) in the following corollary generalizes a result in [5]
(Corollary 5), where the case dimH(L(G)) = N has been considered.

Corollary 1. For each d-group G the following holds.

(i) If HdimH (L(G))
(L(G)) > 0, then HdimH (L(G))

(L
(κ)
t (G)) = HdimH (L(G))

(L(G))
for all 0 < κ < δ∗(G).
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(ii) If G is of δ(G)-convergence type, then H(1+κ)δ(G)
(L

(κ)
r (G)) = 0 for all

0 < κ ≤ δ∗(G).

The following corollary represents the main theorem of [5]. We remark that
the work to this paper was originally inspired by this result of Bishop.

Corollary 2. For every non-elementary Kleinian group G we have

dimH(L(G)) = max(δ(G), dimH(
⋃
κ>0 L

(κ)
t (G))).

Finally, let us briefly comment on the way our results relate to horospherical
limit sets (recall that ξ ∈ L(G) is called horospherical limit point if every
horoball at ξ contains infinitely many elements of G(0)). In [30] Tukia
introduced the so-called big horospherical limit set, which consists of limit
points ξ ∈ L(G) for which there exists a horoball at ξ containing infinitely
many elements of G(0). One immediately verifies that every horospherical

limit point is contained in the big horospherical limit set, and that L
(1)
r (G)

coincides with the big horospherical limit set. A straight-forward adaptation

of the proof of Theorem 1 (where one has to replace L(G) by L
(1)
r (G)) then

gives rise to the following proposition.

Proposition. Let G be a non-elementary Kleinian group such that δ(G) <

dimH(L
(1)
r (G)). We then have for all 0 < τ < (dimH(L

(1)
r (G))−δ(G))/δ(G),

dimH(L(τ)
r (G)) < dimH(L(1)

r (G)).

Acknowledgements. We would like to thank the Department of Mathe-
matics at the University of Helsinki for its warm hospitality and financial
support. Also, we are grateful to Pekka Tukia for helpful conversations on
the construction of certain d-groups, as well as to the referee for his/her
careful reading of the original manuscript and for the helpful comments
which significantly improved the paper. Finally, the second author would
like to thank the Mathematical Institute and the Institute for Mathemati-
cal Stochastics at the University of Göttingen for hospitality and excellent
working conditions.

2 Proofs

2.1 Upper bounds for the Hausdorff dimension of
weakly recurrent limit sets

Proof of Theorem 1.
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Let σ > 0 be given. By definition, L
(σ)
r (G) can be written as a union of

limsup-sets as follows

L(σ)
r (G) =

⋃
c>0

lim sup

{
b

(
Π(g(0)), c e−

ρ(0,g(0))
1+σ

)∣∣∣∣ g ∈ G} .
For each c > 0 the family {b(Π(g(0)), c e−ρ(0,g(0))/(1+σ)) | g ∈ G} represents
a covering of lim sup{b(Π(g(0)), c e−ρ(0,g(0))/(1+σ)) | g ∈ G}. For the radii of
these covering balls we have by definition of δ(G) that

∑
g∈G

(
c e−

ρ(0,g(0))
1+σ

)s
<∞ for all s > (1 + σ) δ(G).

Therefore, the s-dimensional Hausdorff measure of the limsup-set associated
with c is finite for all s > (1 + σ) δ(G), which gives

dimH

(
lim sup

{
b

(
Π(g(0)), c e−

ρ(0,g(0))
1+σ

)∣∣∣∣ g ∈ G}) ≤ (1 + σ) δ(G).

Since c was chosen to be arbitrary, the latter estimate clearly holds for
every c > 0. By monotonicity of Hausdorff dimension (see e.g. [9] p. 29),
we therefore have

dimH(L(σ)
r (G)) ≤ (1 + σ) δ(G).

This immediately implies that for every σ with (1+σ) δ(G) < dimH(L(G)),
or what is equivalent for every σ < δ∗, we have

dimH(L(σ)
r (G)) < dimH(L(G)).

This proves the first assertion of the theorem. The second assertion is
an immediate consequence of the first. Namely, as we have just shown

dimH(L
(κ)
r (G)) < dimH(L(G)) for all 0 < κ < δ∗, and hence for κ in this

range we have

dimH(L(G)) = dimH(L(G) \ L(κ)
r (G)) = dimH(L

(κ)
t (G)).

�

Proofs of Corollaries.

Corollary 2 is immediate consequences of Theorem 1.
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For Corollary 1 (i), Theorem 1 gives dimH(L
(κ)
r (G)) < dimH(L(G)), for all

0 < κ < δ∗(G). For κ in this range we thus have that if HdimH (L(G))
(L(G)) >

0, then HdimH (L(G))
(L(G)) = HdimH (L(G))

(L
(κ)
t (G)) > 0.

Corollary 1 (ii) is proved by way of contradiction as follows. Assume that

H(1+κ)δ(G)
(L

(κ)
r (G)) > 0 for 0 < κ ≤ δ∗(G). Using Frostman’s Lemma

(cf. [14]), it follows that there exists a finite Radon measure νκ with compact

support in L
(κ)
r (G), such that νκ(b(η,R)) ≤ R(1+κ)δ(G) for all η ∈ SN , R > 0.

Using the definition of δ(G) and the fact that G is of δ(G)-convergence type,
it follows for all c > 0,∑

g∈G
νκ

(
b

(
Π(g(0)), c e−

ρ(0,g(0))
1+κ

))
<∞.

By the Borel-Cantelli Lemma, we hence have for all c > 0,

νκ

(
lim sup

{
b

(
Π(g(0)), c e−

ρ(0,g(0))
1+κ

)})
= 0.

This implies νκ(L
(κ)
r (G)) = 0, and hence gives a contradiction.

�

2.2 A lower bound for the exponent of convergence of normal
subgroups

In order to prepare for the proof of Theorem 2 we give the following ele-
mentary geometric estimates. In here B(z, r) refers to the open hyperbolic
ball centred at z ∈ DN+1 of radius r, and |Π(E)| := |{ξ ∈ SN | ξT ∈
E for some T > 0}| denotes the spherical diameter of the shadow projec-
tion Π(E) of E ⊂ DN+1 from zero to the boundary SN of hyperbolic space.
Also, we use the common convention a � b to describe that the ratio of
two positive real numbers a and b is uniformly bounded away from zero and
infinity.

Lemma 1. Let κ > 0 be given. For all z ∈ DN+1 such that ρ(0, z) is
sufficiently large, we have∣∣∣∣b(Π(z), e−

ρ(0,z)
1+κ

)∣∣∣∣ � ∣∣∣∣Π(B(z,
κ

1 + κ
ρ(0, z)))

∣∣∣∣ � e− ρ(0,z)1+κ .
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Figure 1: The setting of Lemma 1.

Proof. Define θ := κρ(0, z)/(1 +κ), and let zθ refer to the point of tangency
of some geodesic ray which starts at the origin and which is tangential to the
boundary of B(z, θ). Consider the right-angled triangle with vertices 0, z
and zθ, and let α denote its angle at 0 (see Figure 1). Using the ‘hyperbolic
cosine rule’ ([4] p. 148) we have

eρ(0,zθ) � eρ(0,z) e−θ = eρ(0,z) e−κρ(0,z)/(1+κ) = eρ(0,z)/(1+κ).

Also, by the ‘hyperbolic tangent rule’ for right-angled triangles ([4] p. 147)
we have

tanh θ = sinh ρ(0, zθ) tanα.

Furthermore, note that for ρ(0, z) sufficiently large such that α is bounded
away from π/2, we have

|Π(B(z, θ))| � tanα.

Combining these three observations, we deduce

|Π(B(z, κρ(0, z)/(1 + κ)))| � tanα =
tanh θ

sinh ρ(0, zθ)
� e−ρ(0,zθ)

� e−ρ(0,z)/(1+κ) �
∣∣∣b(Π(z), e−ρ(0,z)/(1+κ)

)∣∣∣ .

Also, for the proof of Theorem 2 we require the following result of Matsuzaki
[12] (Theorem 6), for which we include a proof. Recall that the big horo-

spherical limit set of a Kleinian group G coincides with L
(1)
r (G). Therefore,

the following lemma shows in particular that the radial limit set of any ar-
bitrary Kleinian group H is always a subset of the big horospherical limit
set of any normal subgroup of H.

Lemma 2. Let H be a non-elementary Kleinian group, and let G be a
non-trivial normal subgroup of H. We then have

Lr(H) ⊂ L(1)
r (G) ⊂ L(H).
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Proof. We clearly have that L
(1)
r (G) is a subset of L(G). Since L(G) = L(H),

it is therefore sufficient to show that Lr(H) ⊂ L
(1)
r (G). For this, let ξ be

some arbitrary element of Lr(H). Then there exists a sequence (hn) of
elements hn ∈ H such that hn(0) approaches ξ conically, that is hn(0) tends
to ξ and there exists c > 0 such that ξ ∈ Π(B(hn(0), c)) for all n ∈ N. With
g0 ∈ G \ {id.} referring to some fixed element, we have that hng0h

−1
n ∈ G,

for all n ∈ N. Using the triangle inequality, we obtain

ρ(hn(0), hng0h
−1
n (0)) = ρ(0, g0h

−1
n (0)) ≤ ρ(0, g0(0)) + ρ(0, hn(0)).

Hence, with Hξ referring to the horoball at ξ such that 0 ∈ Hξ and such
that 0 has hyperbolic distance c0 := ρ(0, g0(0)) + 2c to the horospherical
boundary of Hξ, the latter estimate implies that {hng0h

−1
n (0) : n ∈ N} ⊂ Hξ.

Now observe that, by Lemma 1 and by a well-known estimate concerning
hyperbolic geometry within horoballs (see e.g. [24] (Lemma 2)), we have
that a hyperbolic ball, which is tangential to the ray from the origin to ξ
and which is centred at some arbitrary z ∈ Hξ, must have hyperbolic radius
not exceeding c0 + ρ(0, z)/2. Therefore,

ξ ∈ Π

(
B

(
hng0h

−1
n (0),

ρ(0, hng0h
−1
n (0))

2
+ c0

))
for all n ∈ N.

Using Lemma 1, it then follows that ξ ∈ L(1)
r (G).

Proof of Theorem 2.

For G such that δ(G) = dimH(L(G)) the statement of the theorem is trivial.
Hence, we can assume without loss of generality that G is a d-group. Assume
by way of contradiction that there exists τ > 0 such that 2δ(G) + τ < δ(H).
Let ε > 0 be sufficiently small such that τ − 2ε > 0, and then choose σ such
that 0 < σ < τ−2ε. With these choices we have that δ(G)+ε < (δ(H)−σ)/2,
and therefore∑

g∈G

(
e−

ρ(0,g(0))
2

)δ(H)−σ
≤
∑
g∈G

(
e−ρ(0,g(0))

)δ(G)+ε
<∞.

Hence, we have for all c > 0,

dimH

(
lim sup

{
b
(

Π(g(0)), c e−
ρ(0,g(0))

2

)
| g ∈ G

})
≤ δ(H)− σ,
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which gives dimH(L
(1)
r ) ≤ δ(H)− σ. Using Lemma 2, it now follows

δ(H) = dimH(Lr(H)) ≤ dimH(L(1)
r (G)) ≤ δ(H)− σ,

which gives a contradiction.

�

3 Some examples

In this section we discuss some examples of d-groups. For further interesting
examples of d-groups we refer to [11].

Example 1. (‘Infinitely-punctured Riemann surfaces’)

The first example represents a simply connected Riemann surface with in-
finitely many punctures. The example is due to Patterson ([18], Theo-
rem 4.4), and to our knowledge it has been the first example of a d-group
in the literature. Here, we only give a brief description of the construction
of this type of Fuchsian groups, and we refer to [18] for the proof that these
groups are in fact d-groups (the proof in [18] uses uniformization theory in
combination with perturbation theory of the Laplacian).

Let G0 be a cocompact Fuchsian group acting on D2 without elliptic el-
ements. Then (D2 \ G0(0))/G0 is a compact Riemann surface with one
puncture, and hence it is conformally isomorphic to D2/G1, for some cofi-
nite Fuchsian G1 with exactly one parabolic element. Consider the canonical
group homomorphism φ : G1 → G0, and let G := ker(φ). Clearly, G is a
normal subgroup of G1 and uniformizes D2 \ G0(0). In [18] it was shown
that G is a group of the first kind for which δ(G) < 1. Hence, it follows that
G is a d-group.

Example 2. (‘Normal subgroups’)

The second example is mainly based on an application of a beautiful result
of Brooks in [8], who gave a significant extension of results of Rees [22], [23]
(see also [31] and the discussion in [20]).

Let G0 and G1 be two non-elementary convex cocompact Kleinian groups
acting on DN+1 with (open) fundamental domains F0 and F1 respectively,
such that F c

0 ∩ F c
1 = ∅. For simplicity, we assume that G0 is freely gener-

ated by hyperbolic automorphisms g1, . . . , gk, and likewise that G1 is freely
generated by hyperbolic automorphisms gk+1, . . . , gk+n (for k, n > 1). With
H := G0 ∗ G1 referring to the free product of G0 and G1, we also assume
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Figure 2: Cantor-tree endings made of hyperbolic cylinders.

that δ(H) > N/2. Let ϕ : H → G1 denote the canonical group homomor-
phism, and define G := ker(ϕ). It is easily verified that G = 〈hgih−1 | i =
1, ..., k, h ∈ G1〉, and that G is the normal subgroup of H generated by G0 in
H. Hence, it follows that H/G is isomorphic to G1. In order to see that G is
a d-group, recall that Brooks ([8]) has shown that if Γ2 is a non-trivial nor-
mal subgroup of a convex cocompact Kleinian group Γ1 with δ(Γ1) > N/2,
then we have that δ(Γ1) = δ(Γ2) if and only if Γ1/Γ2 is amenable (for the
notion ‘amenable’ see e.g. [7], [33]). Observe that in our example here we
have that H/G contains a free subgroup on two generators, and therefore
H/G is not amenable (note that every group which contains a free group
with two generators is necessarily non-amenable (see e.g. [32])). Hence,
applying the result of Brooks, it follows that G is a d-group.

Example 3. (‘Cantor-tree endings made of cylinders’)

The third example gives an infinitely generated d-group of the first kind
which acts on DN+1. In particular, these groups give for instance rise to
geometrically infinite hyperbolic (N + 1)-manifolds without cusps, which
consist of a ‘cocompact root’ and an attached ending which is basically an
‘infinite capstan of hyperbolic cylinders’ (see Figure 2). Our construction
gives a slight modification of the construction of Patterson in [19] (see also
[1]). We have simplified the original construction in [19] (paragraph 5) in
order to make the ideas more transparent.

Let us first recall from [19] the following observation relating the exponent
of convergence of a convex cocompact Kleinian group Γ to the exponent of
convergence of the free product Γ ∗ 〈γ〉, for some suitably chosen hyperbolic
transformation γ.

For ξ ∈ SN , let Hξ denote the set of all hyperbolic automorphisms of DN+1

which have ξ as a fixed point. For γ ∈ Hξ, let Fγ refer to the Dirichlet
fundamental domain for 〈γ〉 (constructed with respect to 0 ∈ Fγ). We then
have that Fγ is bounded by two disjoint hyperplanes H1(γ) and H2(γ) of
co-dimension 1, and we let H∗ξ denote the set of those elements of Hξ for
which these two hyperplanes are of equal Euclidean size.
Let F be the Dirichlet fundamental domain for the convex cocompact group
Γ (constructed with respect to 0 ∈ F ). Then fix some arbitrary point ω
contained in some connected component Ω of F ∩ SN , and let H∗ω(Ω) refer
to the set of elements γ ∈ H∗ω for which Π(H1(γ)∪H2(γ)) ⊂ Ω. With these

11



preparations we then have (cf. [19])

δ(Γ ∗ 〈γ〉)→ δ(Γ) for γ ∈ H∗ω(Ω) such that |Π(H1(γ))| → 0.

The idea of the proof of this statement is roughly as follows (we refer to [19]
for the details). Recall that the limit set L(Γ) is constructed very much like
a Cantor set generated by a certain set of contractions. Likewise, L(Γ ∗ 〈γ〉)
is generated by the same set of contractions together with some additional
contractions, which correspond to γ and γ−1. It is intuitively clear that for
|Π(H1(γ))| → 0, the amount of contraction of these additional generators
becomes arbitrarily large, and therefore, in the limit the Hausdorff dimension
cannot increase.

With this preliminary observation we can now construct the following class
of d-groups.
Let G0 be some fixed convex cocompact Kleinian group acting on DN+1

such that τ0 := δ(G0) < N . Fix some number τ0 < τ < N , as well as some
strictly increasing sequence (τk)k=0,1,2,... of numbers τk such that lim τk = τ .
With F0 referring to a Dirichlet fundamental domain of G0 (constructed
with respect to 0 ∈ F0), we let O0 denote the set of connected components
of F0 ∩ SN . Also, fix some countable set X = {ξ1, ξ2, ...} which is dense in⋃

Ω∈O0
Ω. That is, we let X ⊂

⋃
Ω∈O0

Ω and X =
⋃

Ω∈O0
Ω.

We can then construct a sequence (Gk)k=0,1,... of convex cocompact groups
Gk by way of induction as follows. In here, Fk refers to the Dirichlet funda-
mental domain of Gk (constructed with respect to 0 ∈ Fk), and Ok denotes
the set of connected components of Fk ∩SN . Now, if Gk−1 is given for some
k ∈ N, then Gk is obtained as follows.
If ξk ∈ L(Gk−1), then we let Gk = Gk−1. Otherwise, i.e. for ξk /∈ L(Gk−1),
there exist gk ∈ Gk−1 and Ω ∈ Ok−1 such that gk(ξk) ∈ Ω. Hence, by the ob-
servation above, there exists γk ∈ H∗gk(ξk)(Ω) such that δ(Gk−1 ∗ 〈γk〉) ≤ τk.
In this situation, we then let

Gk = Gk−1 ∗ 〈γk〉.

In this way we obtain the sequence (Gk) of convex cocompact groups, and
we define

G :=

∞⋃
k=0

Gk.

In order to see that G is a d-group, recall that Sullivan ([27]; see also Re-
mark 1 below) has shown that if Γ1 ⊂ Γ2 ⊂ ... ⊂ Γk ⊂ ... is an increasing
sequence of subgroups of the Kleinian group Γ =

⋃
k Γk, then it follows

12



that δ(Γ) = supk δ(Γk). Applying this result to our sequence (Gk) here, we
obtain

δ(G) = δ
(⋃

Gk

)
= sup δ(Gk) ≤ sup τk = τ.

Also note that by construction we have that {ξ1, ..., ξk} ⊂ L(Gk)∩
⋃

Ω∈O0
Ω,

for each k ∈ N. This implies that X ⊂ L(G) ∩
⋃

Ω∈O0
Ω, and hence, since

X is dense in
⋃

Ω∈O0
Ω (and thus G0(X) is dense in SN ), it follows that

L(G) is dense in SN . Using the fact that L(G) is closed, it then follows
that L(G) = SN , and hence that G is a Kleinian group of the first kind.
Summarizing the above, we now have that

δ(G) ≤ τ < N = dimH(L(G)),

which gives that G is a d-group.

Remark 1. (see also [26])
The proof in [27] of Sullivan’s result which we employed in Example 3 mainly
uses the conformality of the Patterson measure. It seems worth mentioning
that this result can be derived alternatively by purely elementary means as
follows. One easily verifies that

⋃
k Lur(Γk) ⊂ Lur(Γ). On the other hand,

if ξ ∈ Lur(Γ) then there exists an infinite path pξ in the Cayley graph of
Γ such that the ray from the origin to ξ is fully contained in some fixed
hyperbolic neighbourhood of pξ, and such that the hyperbolic lengths of
the geodesic segments of pξ are uniformly bounded from above. Therefore
Lur(Γ) =

⋃
k Lur(Γk). Using the monotonicity of Hausdorff dimension (see

e.g. [9]) and the fact that δ(H) = dimH(Lur(H)) for every non-elementary
Kleinian group H ([6], [25]), it follows that

δ(Γ) = dimH(Lur(Γ)) = dimH

(⋃
k

Lur(Γk)

)
= sup

k
dimH(Lur(Γk)) = sup

k
δ(Γk).

Remark 2.
It is straightforward to refine the latter construction to obtain a d-group
G which has the property that the N -dimensional spherical Lebesgue mea-
sure λN (LJ(G)) of the set of Jørgensen points is strictly positive. In or-
der to obtain such a group, one proceeds as follows. Let (θk)k∈N denote
some sequence of positive numbers such that

∑
k∈N θk < 1/2. Using the

notation introduced in Example 3, let γk be specially chosen such that
λN (Π(H1(γk))) ≤ θk λN

(⋃
Ω∈O0

Ω
)
, for each k ∈ N. By construction we

13



have λN (Π(H1(γk))) = λN (Π(H2(γk))) for all k, and that {Π(Hi(γk)) | k ∈
N, i = 1, 2} is a family of mutually disjoint N -dimensional spherical discs
contained in

⋃
Ω∈O0

Ω. Therefore,

λN

( ⋃
Ω∈O0

Ω \ LJ(G)

)
≤

∑
k∈N

∑
i=1,2

λN (Π(Hi(γk)))

≤ 2
∑
k∈N

θk λN

( ⋃
Ω∈O0

Ω

)
< λN

( ⋃
Ω∈O0

Ω

)
,

which shows that LJ(G) is of positive N -dimensional spherical Lebesgue
measure.
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