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The Exponent of Convergence of Kleinian
Groups; on a Theorem of Bishop and Jones

Bernd O. Stratmann

Abstract. In this note we give a characterization of the Hausdorff dimensional
significance of the exponent of convergence for any arbitrary Kleinian group.
We show that this exponent is always equal to the Hausdorff dimension of
the uniformly radial limit sets of the Kleinian group. We give a detailed and
elementary proof of this important fact, clarifying and generalizing a result
of Bishop and Jones.
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1. The Exponent of Convergence versus Hausdorff Dimension

Already Hadamard observed that on a cusped hyperbolic surface the set of geodesic
movements starting from an arbitrary fixed point and remaining in some bounded
region of that surface represents a rather tricky and sophisticated set of directions,
which he certainly would have called ’fractal’ if in those days this term would
have already been coined. Another important observation is due to Poincaré, who
realised the significance of a certain series which is naturally associated with a
hyperbolic surface. This series is now called the Poincaré series and its abzissa of
convergence is referred to as the exponent of convergence or Poincaré exponent of
the fundamental group of the surface. In this note we show in a far more general
context how these two observations are related. Namely, we give a detailed proof
of the fact that for any hyperbolic manifold the Poincaré exponent coincides with
the Hausdorff dimension of the set of directions at an arbitrary point for which
the associated geodesic movements remain in bounded regions of the manifold.

This fact was verified in many special cases using various different techniques,
for instance for the modular group implicitly by Jarńık [8] (see also Schmidt [11]),
for general cofinite Fuchsian groups by Patterson [9], for cofinite Kleinian groups
by Dani [4] and Stratmann [12], and for geometrically finite Kleinian groups by
Stratmann [13] as well as Fernández and Melián [6]. More recently, Bishop and
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Jones [2] gave an astonishingly elementary method which allows to derive this fact
in its complete generality, that is for arbitrary non-elementary Kleinian groups.
The main goal of this paper is to clarify the construction in [2]. We try to keep
our presentation accessible to non-experts in the field.

Before we state the main theorem more explicitly, let us begin with explain-
ing the setting. We consider non-elementary, discrete subgroups G of the group
Con(N) of isometries of the (N + 1)-dimensional hyperbolic space. (Throughout,
for the latter we shall use exclusively the Poincaré ball model (DN+1, d).) Such
a group G is called Kleinian group, and its associated exponent of convergence
δ = δ(G), often also referred to as the Poincaré exponent, is defined by

δ(G) := inf{s :
∑

g∈G

exp(−sd(0, g(0))) converges}.

A Kleinian group G acts discontinuously on D
N+1. Hence, the orbit G(0) of the

origin 0 ∈ DN+1 under G forms a discrete point set which with respect to the
Euclidean metric accumulates only at the boundary of hyperbolic space SN =
∂DN+1. The set L(G) of accumulation points of G(0) is called the limit set of
G. Important subsets of L(G) turn out to be the radial limit set Lr(G) and the
uniformly radial limit set Lur(G) which are given by the following definitions.

• A point ξ ∈ L(G) is called radial limit point if there exists a positive constant
c = c(ξ) such that sξ ∩ b(g(0), c) �= ∅ for infinitely many different orbit points
g(0) ∈ G(0).

• A point ξ ∈ L(G) is called uniformly radial limit point if for some positive
c = c(ξ) we have that sξ ⊂ ⋃

g∈G b(g(0), c).

Here sξ denotes the hyperbolic ray from 0 to ξ, and b(x, r) the hyperbolic ball of
radius r centred at x.

Note that we may project the ray sξ onto the associated hyperbolic manifold
M := D

N+1/G where it becomes a geodesic ray starting from the point on M
which corresponds to the origin. If ξ ∈ Lr(G), then in general this ray performs
a recurrent geodesic excursion on M , i.e. there exists a bounded region in M
which gets visited infinitely often. If ξ ∈ Lur(G), then the ray describes a bounded
excursion, i.e. in M each point on the ray is at most a bounded distance away
from the starting point. Clearly, every uniformly radial point is radial (whereas
the opposite is only true for cocompact and convex cocompact Kleinian groups).

In this note we shall give a detailed and elementary proof of the following
result of Bishop and Jones. This result gives an ultimate clarification of the ‘Haus-
dorff dimensional significance’ of the exponent of convergence for an arbitrary
Kleinian group. We restrict the theorem to non-elementary Kleinian groups, that
is groups with limit sets of cardinality strictly greater than 2. The elementary cases
are in fact trivial.

Theorem. For a non-elementary Kleinian group G with exponent of convergence
δ we have that

δ = dimH(Lr(G)) = dimH(Lur(G)).
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The paper is organized as follows. We begin with giving in section 2 a discus-
sion of the geometries which are relevant in the proof of the theorem. This includes
some well-known topics from hyperbolic geometry, conformal geometry and fractal
geometry. In section 3 we introduce the concept of ‘divergence points’, and show
that the set of these points is dense in the limit set. Using this, we then give a
geometrisation of the Poincaré series for parameter values below the exponent of
convergence. This then allows to construct Cantor subsets of the uniformly radial
limit set and to give estimates for their Hausdorff dimensions in terms of δ.

We end this introduction by giving a brief description of the proof of the
theorem in terms of the associated hyperbolic manifold M . Namely, the heart of
the proof, if ‘projected onto M ’, is to show that everywhere on any arbitrary M
the following scenario is met.
The sketch on M . At each point x0 ∈ M there exist bouquets B(i)

n (for n ∈ N

and i = 1, 2) of closed loops starting and terminating at x0 with the following
properties. The length of each loop in B(i)

n is roughly equal to l
(i)
n (for some l

(i)
n ↗

∞, for i = 1, 2), and there exists a positive constant α0 such that the angle between
any of the initial directions in B(1)

n and any of those in B(2)
n is bounded from below

by α0. In combination with these bouquets there exists a positive constant σ and
a sequence κn ↘ 0 such that if we consider all initial directions at x0 giving rise
to geodesic rays which stay always σ-close to elements of B(1)

n ∪ B(2)
n , then the

Hausdorff dimension of this set of directions is greater than δ − κn.
Roughly speaking, the proof then follows by observing that trivially the Hausdorff
dimension of all recurrent geodesic rays starting at x0 does not exceed δ, and that
the set of directions giving rise to bounded geodesic rays is contained in the set of
those giving rise to recurrent geodesic rays.

Remark. The method of Bishop and Jones, as explained in this paper, has recently
been employed in a straightforward manner to derive corresponding results also in
slightly more general settings. For geometrically finite groups in rank 1 symmetric
spaces a result similar to the above theorem has been obtained in [3]. Also, the
Bishop-Jones argument has been adapted in [10] to hyperbolic groups in the sense
of Gromov, and in [7] to the case of pinched negative curvature.

Acknowledgement. The author would like to thank Kurt H. Falk for enjoyable con-
versations on the subject matter of this paper and for being helpful with producing
the pictures.

2. Background Geometry

2.1. Hyperbolic and Conformal Geometry

Recall that for the Poincaré ball model of hyperbolic space (DN+1, d) the hyper-
bolic distance d(v, w) between two arbitrary points v, w ∈ DN+1 is given by the
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expression

d(v, w) := inf
∫

γ

2
1 − |z|2 |dz|,

where the infimum is taken over all smooth curves connecting the points v and w.
(For a comprehensive introduction into hyperbolic geometry the reader is referred
to Beardon’s book [1].)
For subsets A ⊂ DN+1, the shadow map Π : DN+1 → SN is defined by

Π(A) := {ξ ∈ S
N : sξ ∩ A �= ∅}.

Lemma 2.1. For every z ∈ DN+1 and for each positive ρ < d(0, z), the spherical
diameter |Π(b(z, ρ))| of the projection of the open hyperbolic ball b(z, ρ) centred at
z and of radius ρ has the property

|Π(b(z, ρ))| �ρ e−d(0,z).

Here, �ρ means that the quotient of the two quantities is bounded from below and
above by some positive constants which depend only on ρ.

Proof. Using the definition of the hyperbolic metric above, a straight forward
computation (see [1]) gives that the hyperbolic length of a circle Ct around the
origin of hyperbolic radius t is equal to 2π sinh t, and hence it is asymptotic to πet.
This implies that for t sufficiently large, we may cover nearly all of Ct by roughly
πet/(2ρ) pairwise disjoint balls of hyperbolic radius ρ which are centred at points
of Ct. Since for large t and z ∈ Ct we have that the Euclidean diameter of b(z, ρ)
is comparable to |Π(b(z, ρ))|, it follows that

|Π(b(z, ρ))| � 2ρe−t �ρ e−t. �

Lemma 2.2 (Geometric Distortion Lemma). Let σ > 0, and let γ ∈ Con(N) be
non-elliptic such that d(0, γ(0)) > σ. Then we have for all z ∈ DN with d(0, z) > σ
and Π(z) ∈ γ−1 (Π(b(γ(0), σ))) that

d(0, γ(0)) + d(0, z) − 2σ < d(0, γ(z)) ≤ d(0, γ(0)) + d(0, z).

Proof. (see Figure 1) Raise the perpendicular from the origin onto the geodesic
segment t between z and γ−1(0). Let p denote the point of intersection of this
perpendicular with t. Note that by construction, the hyperbolic distance s of p to
the origin is less than or equal to σ. Let t1 and t2 denote the hyperbolic lengths
of the geodesic segments between p and γ−1(0), p and z respectively. Using the
triangle inequality, we derive that

d((0, γ−1(0)) ≤ σ + t1 and d(0, z) ≤ σ + t2.

It hence follows that

d(0, γ(z)) = d(γ−1(0), z) = t1 + t2 ≥ d(0, γ−1(0)) + d(0, z) − 2σ.

The second inequality in the lemma is an immediate consequence of the triangle
inequality. �



The Exponent of Convergence of Kleinian Groups 97

s
z

γ   (0)

Π(b (γ(0),σ))

-11

2 p

γ(0)

γ(z)

t
t

0

σ

Figure 1.

Lemma 2.3 (Light Cone Lemma). For all σ > log 2 and for all non-elliptic γ ∈
Con(N) for which d(0, γ(0)) > σ, we have that

S
N \ B

(
Π(γ−1(0)), 2πe−σ

) ⊂ γ−1 (Π(b(γ(0), σ))) ⊂ S
N \ B

(
Π(γ−1(0)), e−σ

)
.

Here, B(x, r) denotes the spherical N-ball with centre x ∈ SN and radius r.

Proof. Let σ > 0 and let γ be chosen as stated in the lemma. For l denoting a
geodesic in D

N which intersects ∂b(0, σ) in exactly one point, say zσ, let rσ be the
radius of the spherical disc Π(l). Then it is geometrically evident that (see Figure
2)

S
N \ B

(
Π(γ−1(0)), 2rσ

) ⊂ γ−1 (Π(b(γ(0), σ))) ⊂ S
N \ B

(
Π(γ−1(0)), rσ

)
;

where we assumed that 2rσ ≤ π. Hence it remains to find lower and upper bounds
for rσ. For this, note that by definition of the hyperbolic distance we have that
d(0, zσ) = log((1 + |zσ|)/(1 − |zσ|)). An elementary calculation then gives

e−σ ≤ 1 − |zσ| ≤ rσ ≤ π

2
(1 − |zσ|) ≤ πe−σ.

Finally, since 2πe−σ < π if and only if σ > log 2, it follows that for σ in this range
the condition 2rσ ≤ π is always satisfied. �
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2.2. Fractal Geometry

Recall that for a Borel set E ⊂ SN the Hausdorff dimension dimH(E) of E is
defined by

dimH(E) := inf{s ≥ 0 : lim
ρ→0

inf
U∈Uρ(E)

∑

u∈U

|u|s < ∞},

where Uρ(E) denotes the set of coverings of E by balls with radii at most ρ. In
computations of dimH(E) to find lower bounds is usually the hardest part, and
for this the following mass distribution principle very often turns out be useful. In
here, a � b refers to that a/b is uniformly bounded away from infinity.

• Let µ be a probability measure supported on E. If there exists τ ≥ 0 such that
for each x ∈ E we have lim supr→0 µ(B(x, r))/rτ � 1, then dimH(E) ≥ τ .
For a good introduction into fractal geometry the reader is referred to [5]. In

this paper we shall require the following elementary facts from fractal geometry.

Lemma 2.4. Let {B(xi, ri)}i∈N be a family of spherical N-balls in SN with centre
xi and radius ri such that limi→∞ ri = 0 and such that

∑
i∈N

rs
i has exponent of

convergence τ ≥ 0. We then have that

dimH

( ⋃

c>0

lim sup
i∈N

{B(xi, c ri)}
)
≤ τ.
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Proof. For each c, ρ > 0 we have that {B(xi, c ri) : i ∈ N, ri ≤ ρ} represents a
ρ-covering of

Bc := lim sup
i

{B(xi, c ri)} = {x ∈ S
N : x ∈ B(xj , c rj) for infinitely many j}.

Hence, for arbitrary ε > 0 we have that

inf
U∈Uρ(Bc)

∑

u∈U

|u|τ+ε ≤
∑

i∈N

(cri)τ+ε ≤ cτ+ε
∑

i∈N

rτ+ε
i < ∞.

By letting ρ tend to 0, this implies that dimH(Bc) ≤ τ + ε. Since ε was chosen
to be arbitrary, we deduce that dimH(Bc) ≤ τ . And finally, since dimH(Bc0) ≤
dimH(Bc1) for c0 < c1, the result follows by monotonicity of Hausdorff dimension.

�

Lemma 2.5. For a finite index set I containing at least two elements, let a descend-
ing sequence A(i1) ⊃ A(i1, i2) ⊃ · · · of closed spherical N-balls in S

N be given for
each (i1, i2, . . .) ∈ I∞. Assume that there exist 0 < β < 1 and τ ≥ 0 such that for
each n ∈ N and for all distinct (i1, . . . , in), (j1, . . . , jn) ∈ In we have that

(i) |A(i1, . . . , in)| � βn and A(i1, . . . , in) ∩ A(j1, . . . , jn) = ∅;
(ii)

∑
j∈I |A(i1, . . . , in, j)|τ ≥ |A(i1, . . . , in)|τ .

It then follows that

dimH

( ⋂

n∈N

⋃

(i1,...,in)∈In

A(i1, . . . , in)
)
≥ τ.

Proof. We sketch the proof which uses the mass distribution principle. Let µ be a
probability measure with support A :=

⋂
n∈N

⋃
(i1,...,in)∈In A(i1, . . . , in) such that

for each n ∈ N and (i1, . . . , in) ∈ In,

µ(A(i1, . . . , in)) =
|A(i1, . . . , in)|τ∑

(j1,...,jn)∈In |A(j1, . . . , jn)|τ .

Consider the spherical N -ball B(x, r) centred at x ∈ A of small radius r > 0.
We then have r � βn for some n ∈ N, and condition (i) in the lemma guarantees
that there exists a constant c > 0 such that for the number of balls of the n-th
generation which intersect B(x, r) we have

card ({(i1, . . . , in) : B(x, r) ∩ A(i1, . . . , in) �= ∅}) < c.

Using this observation and (ii) of the lemma, we obtain

µ(B(x, r)) ≤ c · max {µ(A(i1, . . . , in)) : B(x, r) ∩ A(i1, . . . , in) �= ∅}
� βnτ

∑
(j1,...,jn)∈In |A(j1, . . . , jn)|τ � rτ

∑
i∈I |A(i)|τ

� rτ .

Applying the mass distribution principle, the lemma follows. �
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The following is an immediate consequence of the previous lemma. It in
particular gives the model for the special type of Cantor set, which in the final
section will be shown to exist inside the uniformly radial limit set of any arbitrary
Kleinian group.

Corollary 2.6. Let I(1) and I(2) be two finite index sets, each having at least two
elements. Let L be an infinite subset of all finite words in the alphabet I(1) ∪ I(2),
such that j ∈ L for all j ∈ I(1) ∪ I(2), and such that if (i1 . . . in) ∈ L (for n ≥ 1)
then either (i1 . . . inj) ∈ L for all j ∈ I(1) and (i1 . . . ink) /∈ L for all k ∈ I(2), or
(i1 . . . inj) ∈ L for all j ∈ I(2) and (i1 . . . ink) /∈ L for all k ∈ I(1). Assume that
for each n ∈ N and for every (i1, i2, . . . , in) ∈ L we have a descending sequence
A(i1) ⊃ A(i1, i2) ⊃ · · · ⊃ A(i1, i2, . . . , in) of closed spherical N-balls in SN with
the following properties. There exist τ ≥ 0 and 0 < βi < 1 for i = 1, 2, such that
for each n ∈ N and for all distinct (i1, . . . , in), (j1, . . . , jn) ∈ L we have that

(i) |A(i1, . . . , in)| � β
�{k:ik∈I(1)}
1 β

�{k:ik∈I(2)}
2 ; A(i1, . . . , in) ∩ A(j1, . . . , jn) = ∅;

(ii)
∑

j:(i1,...,in,j)∈L |A(i1, . . . , in, j)|τ ≥ |A(i1, . . . , in)|τ .

It then follows that

dimH

( ⋂

n∈N

⋃

(i1,...,in)∈L

A(i1, . . . , in)
)
≥ τ.

Proof. The proof is basically the same as the proof of Lemma 2.5. The only dif-
ference is that instead of using the ‘lexicographical coverings’ of the type
{A(i1, . . . , in) : (i1, . . . , in) ∈ L}, one uses the ‘geometrical coverings’ given by

{A : A = A(i1, . . . , ik) for some k ∈ N; (β1β2)n+1 ≤ |A| < (β1β2)n}. �

3. The Proof of the Theorem

3.1. A Geometrisation of the Poincaré Series

For ξ ∈ SN and 0 < r < π, let the lense λ(ξ, r) ⊂ DN+1 be defined as the interior of
the (N +1)-dimensional hyperbolic half space for which Π(λ(ξ, r)) is the spherical
N -ball of radius r centred at ξ (see Figure 3).

Definition 3.1. For ε > 0, an element ξ ∈ L(G) is called ε-divergence point if and
only if ∑

g(0)∈λ(ξ,r)

e−(δ−ε)d(0,g(0)) = ∞ for all r ∈ (0, 1).

Let Dε(G) refer to the set of all ε-divergence points.

Lemma 3.2. For each ε > 0, the set Dε(G) is dense in L(G).

Proof. Let ε be fixed, and suppose, by way of contradiction, that Dε(G) = ∅. From
this we see that for each η ∈ L(G) there exists r(η) > 0 such that

∑

g(0)∈λ(η,r)

e−(δ−ε)d(0,g(0)) < ∞ for all r ∈ (0, r(η)).
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The set {Π(λ(η, r(η))) : η ∈ L(G)} provides a covering of L(G), and since L(G) is
compact, there exist η1, · · · , ηk ∈ L(G) such that

L(G) ⊂
k⋃

i=1

Π(λ(ηi, r(ηi))),

and hence
k∑

i=1

∑

g(0)∈λ(ηi,r(ηi))

e−(δ−ε)d(0,g(0)) < ∞.

0

ξ

γ(ξ)

γ(0)

γ(λ(ξ,r))

λ(ξ,r)

λ(γ(ξ),r’)

Figure 3.

Combining this with the fact that G(0) \ ⋃k
i=1 λ(ηi, r(ηi)) is a finite set of orbit

points, it follows that
∑

g∈G

e−(δ−ε)d(0,g(0)) < ∞,

which contradicts the fact that δ is the exponent of convergence of G. Hence, there
exists at least one ε-divergence point ξ ∈ L(G). Since G(ξ) is a dense subset of
L(G), it is now sufficient to show that γ(ξ) ∈ Dε(G) for arbitrary γ ∈ G not fixing
ξ. In order to see this, note that γ(sξ) is the ray from γ(0) to γ(ξ) and that for
each sufficiently small positive r there exists a minimal r′ such that γ(λ(ξ, r)) ⊂
λ(γ(ξ), r′) (see Figure 3). Clearly, if r decreases to 0, then the corresponding r′
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also decreases to 0. Now, the claim follows from the following observation.

∞ =
∑

g(0)∈λ(ξ,r)

e−(δ−ε)d(0,g(0))

=
∑

g(0)∈λ(ξ,r)

e−(δ−ε)d(γ(0),γg(0))

�γ

∑

g(0)∈λ(ξ,r)

e−(δ−ε)d(0,γg(0))

≤
∑

g(0)∈λ(γ(ξ),r′)

e−(δ−ε)d(0,g(0)).

�

For n ∈ N and τ > 0, the hyperbolic n-annulus An(τ ) of width τ is defined
as follows

An(τ ) := {g(0) ∈ G(0) : nτ ≤ d(0, g(0)) < (n + 1)τ}.
Lemma 3.3. Let ε, τ > 0 and ξ ∈ Dε(G) be given. Also, let M > 0 be some given
large number. Then, for each r > 0 there exists an increasing sequence of positive
integers {mi}i∈N such that for all i ∈ N,

∑

g(0)∈λ(ξ,r)∩Ami
(τ)

e−(δ−2ε)d(0,g(0)) ≥ M.

Proof. Assume that the statement of the lemma is false. Then there exists r > 0
such that for almost all n ∈ N (i.e. for all n apart from finitely many exceptions)

∑

g(0)∈λ(ξ,r)∩An(τ)

e−(δ−2ε)d(0,g(0)) < M.

In order to get rid of the ’finitely many exceptions’, note that there exists some
0 < r∗ ≤ r such that for all n ∈ N,

∑

g(0)∈λ(ξ,r∗)∩An(τ)

e−(δ−2ε)d(0,g(0)) < M.

Using this, it follows that
∑

g(0)∈λ(ξ,r∗)

e−(δ−ε)d(0,g(0)) ≤
∑

n∈N

∑

g(0)∈λ(ξ,r∗)∩An(τ)

e−εd(0,g(0)) e−(δ−2ε)d(0,g(0))

≤ M
∑

n∈N

e−ετn

< ∞,

which contradicts the fact that ξ is an ε-divergence point. �
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3.2. The Building Stone for the Cantor Construction

Recall that the injective radius at the origin is defined by inj(0) := 1
2 inf{d(0, γ(0)) :

g ∈ G \ {id.}}. In the following put τ0 := 1
2 inj(0), and let σ denote some fixed

constant such that eσ > max{2; 4π/|L(G)|}.
Lemma 3.4. For each ε > 0 and for each arbitrarily large number M > 0 there exist
ξ1, ξ2 ∈ Dε(G), r > 0 and arbitrarily large l1, l2 > 0, as well as finite sets Γ̂1 :=
{h ∈ G : h(0) ∈ Al1(τ0) ∩ λ(ξ1, r)} and Γ̂2 := {h ∈ G : h(0) ∈ Al2(τ0) ∩ λ(ξ2, r)}
such that the following properties are satisfied for i = 1, 2.

(i) The spherical distance between B(ξ1, r) and B(ξ2, r) is at least 4πe−σ.
(ii)

∑
h∈Γ̂i

e−(δ−2ε)d(0,h(0)) ≥ M.

Proof. (see Figure 4) Fix ε > 0 and M > 0. Next, choose ξ1, ξ2 ∈ Dε(G) and
r > 0 sufficiently small such that the spherical distance between B(ξ1, r) and
B(ξ2, r) is greater than 4πe−σ. Note that this is possible by choice of σ (recall
that |L(G)| > 4πe−σ) and since, by Lemma 3.2, the set Dε(G) is dense in L(G).
Now, using Lemma 3.3, we obtain that there exist arbitrarily large l1, l2 ∈ N such
that ∑

h(0)∈λ(ξi,r)∩Ali
(τ0)

e−(δ−2ε)d(0,h(0)) ≥ M for i = 1, 2. �

The following proposition gives the type of ‘building stone’ out of which in
the final section we shall construct certain specific Cantor sets.



104 Bernd O. Stratmann

Proposition 3.5. Let ε > 0 be given. There exist Γ1 ⊂ Γ̂1 and Γ2 ⊂ Γ̂2, each
containing at least two elements, with the following property. For each g ∈ G with
d(0, g(0)) > σ there exists Γ(g) ∈ {Γi : i = 1, 2} such that the following holds.

(i) The family F(g) := {Π (b(g(h(0)), σ)) : h ∈ Γ(g)} consists of pairwise disjoint
balls which are of comparable size and which are contained in Π (b(g(0), σ)).

(ii)
∑

b∈F(g) |b|δ−2ε ≥ |Π(b(g(0), σ))|δ−2ε.

Remark. Note that for a particular g ∈ G it may happen that both sets Γ1 and
Γ2 have the properties (i) and (ii) in the proposition. In this case one may think
of Γ(g) as being randomly selected.

Proof. Fix ε > 0 and g ∈ G such that d(0, g(0)) > σ. Also, let M > 0 be sufficiently
large (which will be specified at the end of the proof). By Lemma 3.4, there exist
ξ1, ξ2 ∈ Dε(G) and r > 0 such that B(ξ1, r) and B(ξ2, r) are at least the distance
4πe−σ apart. Thus, by the Light Cone Lemma (Lemma 2.3) we get that at least one
of the B(ξi, r), say B(ξ1, r), is fully contained in g−1(Π(b(g(0), σ))). In particular,
this means that Π(h(0)) ∈ g−1(Π(b(g(0), σ))), for each h ∈ Γ̂1. We can now apply
the Geometric Distortion Lemma (Lemma 2.2), which gives that for each h ∈ Γ̂1

we have

d(0, g(0)) + d(0, h(0)) − 2σ < d(0, g(h(0))) ≤ d(0, g(0)) + d(0, h(0)). (∗)
Using this estimate and Lemma 3.4 (ii), we obtain that

∑

h∈Γ̂1

e−(δ−2ε)d(0,g(h(0))) > e−(δ−2ε)d(0,g(0))
∑

h∈Γ̂1

e−(δ−2ε)d(0,h(0))

≥ M e−(δ−2ε)d(0,g(0)).

By combining this latter estimate and Lemma 2.1, we deduce that there exists a
constant C1 > 0 depending on σ, such that

∑

h∈Γ̂1

|Π(b(g(h(0)), σ))|δ−2ε ≥ C1 M |Π(b(g(0), σ))|δ−2ε.

Now, recall that for h ∈ Γ̂1 we have that l1τ0 ≤ d(0, h(0)) < l1τ0 + τ0. Combining
this observation and estimate (∗), we obtain that all g(h(0)) with h ∈ Γ̂1 are
contained in an annulus of constant hyperbolic width 2σ + τ0, that is

{g(h(0)) : h ∈ Γ̂1} ⊂ {z ∈ D
N+1 : l1τ0−2σ ≤ d(0, z)−d(0, g(0)) < l1τ0+τ0}. (∗∗)

Also, recall that, by choice of τ0, the set {b(g(h(0)), τ0) : h ∈ Γ̂1} comprises a
family of pairwise disjoint hyperbolic balls. From these two latter observations we
can now deduce that each ξ ∈ Π(b(g(0), σ)) is contained in at most a bounded
number (independently of g) of balls Π(b(g(h(0)), σ)) with h ∈ Γ̂1, i.e. there exist
a set Γ1 ⊂ Γ̂1 and a constant C2 > 0, which depends only on σ and τ0, such
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that {Π (b(gh(0), σ)) : h ∈ Γ1} consists of pairwise disjoint balls which are con-
tained in Π (b(g(0), σ)), and such that

∑

h∈Γ1

|Π(b(g(h(0)), σ))|δ−2ε ≥ C2 C1 M |Π(b(g(0), σ))|δ−2ε.

By choosing M = (C1C2)−1, the statement (ii) of the proposition follows. Finally,
note that from Lemma 2.1 and the estimate (∗∗) we have for each h ∈ Γ1 that

diam(Π(b(g(h(0)), σ))) �σ,τ0 e−(d(0,g(0))+l1τ0),

from which we deduce that

|Π(b(g(h1(0)), σ))| �σ,τ0 |Π(b(g(h2(0)), σ))| for all h1, h2 ∈ Γ1.

Finally, note that by increasing the lengths l1 and l2, if necessary, it can always
be guaranteed that Γ1 and Γ2 are both of cardinality at least two. �
3.3. End of the Proof

Upper bound estimate.
For the upper bound of dimH(Lr(G)) note that by Lemma 2.1, for each ρ > 0
there exists c = c(ρ) > 0 such that for every s > δ we have

∑

g∈G

|B(Π(g(0)), ce−d(0,g(0)))|s �
∑

g∈G

|Π(b(g(0), ρ))|s �ρ

∑

g∈G

e−sd(0,g(0)).

Hence, these three series have the same exponent of convergence equal to δ. There-
fore, we can apply Lemma 2.4 to the family {B(Π(g(0)), ce−d(0,g(0))) : g ∈ G},
which then gives that

dimH(Lr(G)) ≤ δ.

Lower bound estimate.
For the lower bound of dimH(Lur(G)) we build up a Cantor subset of Lur(G) by
induction as follows.

Let ε > 0 be fixed, and let σ > 0 be chosen as in the previous section.
Note that by Lemma 3.4 we can assume that the lengths l1 and l2 (in Proposition
3.5) are sufficiently large, that is we can assume without loss of generality that
d(0, γi1(0)) > σ for all γi1 ∈ Γ1 ∪ Γ2. Now, the ‘first generation’ in our Cantor set
construction is given by

C(i1) := Π(b(γi1(0), σ)) for γi1 ∈ Γ1 ∪ Γ2.

Using Proposition 3.5, we obtain that each C(i1) contains pairwise disjoint siblings
C(i1, i2), that is

C(i1, i2) := Π(b(γi1γi2(0), σ)) for γi2 ∈ Γ(γi1).

This gives the ‘second generation’ in our Cantor set construction. Note that by
Proposition 3.5, we have for each γi1 ∈ Γ1 ∪ Γ2 that

∑

γi2∈Γ(γi1 )

|C(i1, i2)|δ−2ε ≥ |C(i1)|δ−2ε.
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Clearly, we can now proceed by induction, and in this way we derive for arbitrary
n ≥ 2 the ‘n-th generation’ which is then given by

C(i1, . . . , in) := Π(b(γi1 . . . γin
(0), σ)) for γin

∈ Γ(γi1 . . . γin−1).

By Proposition 3.5, the C(i1, . . . , in) are pairwise disjoint and have the property
that ∑

γin∈Γ(γi1 ...γin−1 )

|C(i1, . . . , in)|δ−2ε ≥ |C(i1, . . . , in−1)|δ−2ε.

Using Corollary 2.6, it now follows for Cε :=
⋂

n∈N

⋃
(i1,...,in) C(i1, . . . , in) that

dimH(Cε) ≥ δ − 2ε.

Finally, note that by construction we have for each ξ ∈ Cε that

sξ ⊂
⋃

g∈G

b(g(0), c(ε));

where we have set c(ε) := 3σ + τ0(1 + max{l1, l2}/2) (see the inclusion (∗∗) in
proof of Proposition 3.5). Hence, we have that

dimH(Lur(G)) ≥ dimH(Cε) ≥ δ − 2ε.

Since ε was assumed to be arbitrary, it follows that

dimH(Lur(G)) ≥ δ. �
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