
Sound Analysis using
STFT spectroscopy

by

Tobias Maas

Thesis
for the Degree of

Bachelor of Science
in Industrial Mathematics

University of Bremen

1. Evaluator: Dr. Stefan Schiffler, University of Bremen

2. Evaluator: Dr. Dennis Trede, University of Bremen

July 22, 2011

Contents

List of figures iii

1 Introduction 1
1.1 Outline . 1
1.2 The physics of music . 2

2 Theoretical Background 3
2.1 Continous approaches . 3

2.1.1 The Fourier transformation 3
2.1.2 Short Time Fourier Transformation (STFT) 7
2.1.3 The Gabor-Transformation 9

2.2 Discrete Preconsiderations . 9
2.2.1 Discrete Frequencies 9
2.2.2 Noise . 10

3 Numerical implementation 11
3.1 Idea . 11
3.2 Minimization tools . 11

3.2.1 The simple L2 comparison 12
3.2.2 The sparsity approach 12
3.2.3 The elastic net approach 17

3.3 Actual implementation . 18
3.3.1 Building the operator 18
3.3.2 Analysing a sound file 20

3.4 Results and Plausability . 22
3.5 Limits of the implementation 27

4 Conclusion and outlook 29

A Code 31
A.1 Set Frequencies . 31

i

ii Contents

A.2 Seperate the tones . 31
A.3 Build the operator . 32
A.4 Analyse a file . 33
A.5 Showtones . 36

References 40

List of Figures

1.1 Basic tone (left), Real tone (right) 2

2.1 Fourier transformation of f(x) = 2ei3x + 4ei5x 5
2.2 A sample and hold step . 9
2.3 Undersampling . 10

3.1 x+ αSign(x) (left) and its inverse (right) with α = 5 14
3.2 Different visualizations . 21
3.3 GUI . 21
3.4 Happy Birthday: wavfile (left), spectrogram (right) 22
3.5 Different visualizations . 23
3.6 Recreated score . 23
3.7 A river flows in you: wavfile (left), spectrogram (right) 24
3.8 Different visualizations . 25
3.9 Recreated score . 25
3.10 Different visualizations: Saxophone (left), Guitar (right) . . . 26
3.11 Recreated scores: Saxophone (left), Guitar (right) 26
3.12 Different spectrograms (Guitar, Viola, Saxophone, Piano) . . . 27

iii

Chapter 1

Introduction

1.1 Outline

This bachelor thesis focuses on the concept of extracting information from
sound, more precisely extracting the played pitches of given instruments at
all times. For this to work, one has to know how to physically and mathe-
matically describe the nature of sound.
This is discussed in the first part of this thesis, where the concept of the
Fourier transformation for frequency analysis is presented. For changing
frequencies, the Fourier transformation of the whole function is not suffi-
cient, so the transformation has to be specialized to the Short Time Fourier
Transformation (STFT) to get a time dependent analysis. The second part
engages the possibilities of comparing incoming sounds with those who are al-
ready analysed to find corresponding pitches and instruments at each time.
Mainly the simple L2-comparison, the sparsity algorithm and the elastic-
net algorithm are presented and discussed to find a sufficient algorithm for
a given problem. With all these theoretical aspects clarified, the third part
presents an actual implementation using a dictionary of sounds and the spar-
sity algorithm for the comparison. The whole algorithm can be found in the
appendum. The last part concludes the thesis, giving an outlook to the fu-
ture of this topic.
Extracting informations out of sound is engaged by several researchers. The
leading company on this market is Celemony. Their Melodyne editor can
seperate and modify the notes of easy songs, so that wrongly played pitches
can be corrected or the tune of the melody can be changed. More informa-
tions about the Melodyne editor can be found at [9]. The main motivation
for this thesis was to create a program that could decode any arbitrary sound
file and output the score of its melody.

1

2 Chapter 1. Introduction

1.2 The physics of music

As Klapuri and Davy define it (cf.[3]), a basic theoretical tone is a sound wave
oscillating with one base frequency between 20 Hz and 20 kHz, originating
from the cause of the tone. These waves are called sound waves, because the
eardrum inside the human ear vibrates in resonance with the incoming sound,
transfering signals to the brain. Within this spectrum the brain reinterprets
the signal as sound. The amplitude of the oscillating wave is proportional to
the oscillation of the eardrum, resulting in a proportional volume.

Figure 1.1: Basic tone (left), Real tone (right)

Basic tones differ from real tones in many ways.
Real instruments create their own characteristics of a tone by adding a
complex structure of overtones, more precisely adding natural multiples of
its base frequency. Some instruments, e.g. a trumpet, additionally create
non-constant frequencies because of their mouth piece or vibrations inside
their bodies. These effects create the hearing experience as we know it, but
are physically and mathematically harder to describe.
When speaking about music, one has to notice that sound waves do not
have constant frequencies or amplitudes. In addition to that, several pitches
and instruments are played at once, resulting in superposed uninterrupting
sound waves. Seperating this mass of frequencies as played pitches is the
topic of the next chapter.

Chapter 2

Theoretical Background

2.1 Continous approaches

2.1.1 The Fourier transformation

In 1822 Jean Baptiste Joseph Fourier laid the foundation for analysing
frequencies(cf.[4]). The so called Fourier transform transfers a function into
the corresponding frequency space to easily extract informations about the
frequency spectrum. The easiest way to do so is by using the complex

eikx = cos(kx) + i sin(kx), |eikx| = | cos(kx) + i sin(kx)| = 1

with the reversion

cos(kx) =
1

2

(
eikx + e−ikx

)
, sin(kx) =

1

2i

(
eikx − e−ikx

)
.

This attribute can be used to obtain the absolute value of the amplitude of
a given sinus or cosinus oscillation. As mentioned before, musical compo-
sitions are created out of overlapping oscillations, so they can be described
as a sum of different sinuses and cosinuses. The absolute value ignores the
phase difference between the two oscillations, so this sum can be simplified
even further by only using sinuses. Another effect of their oscillating charac-
ter is that the compositions we want to analyse are infinitely differentiable
and of finite length. It follows that every function has its support inside a
compact cube, so that any supremum or infimum is reached inside. Another
benefit of finite support is the fact, that infinitely differentiable functions are
automatically in L1 and L2.
In this thesis the support is normalised to [0, 2π] to not have to use scalar
transformations of the period of eikx, but all results can be transferred to
any finite interval. With the demand of f being infinitely differentiable, the
following lemma holds true.

3

4 Chapter 2. Theoretical Background

Lemma 2.1.1. Let f be in C∞[0, 2π]. Then
1
2π
fe−ikx is in C∞[0, 2π] ⊂ L1[0, 2π] aswell.

Proof. Let f be in C∞[0, 2π]. Because e−ikx is also in C∞0, 2π] and the
multiplication of two infinitely differentiable functions is in C∞[0, 2π] aswell,
it follows that 1

2π
fe−ikx is in C∞[0, 2π]. For L1[0, 2π], examine the following

equation: ∫ 2π

0

|f(x)e−ikx|dx =

∫ 2π

0

|f(x)|dx ≤ 2π max
x∈[0,2π]

|f(x)| (2.1)

⇒ fe−ikx ∈ L1[0, 2π].

For further details on this topic, see [1].
Having this clarified, we can define the Fourier transform as it can be found
in ([2],p.103) .

Theorem 2.1.2. Let u be in L1[0, 2π] and ξ ∈ R. Then

(Fu)(ξ) = û(ξ) :=

∫ 2π

0

u(x)e−ixξdx (2.2)

is called the Fourier transformation of u. The function F : u 7→ û is called
Fourier transform. F is well defined.

Proof. It has to be shown, that this integral is well defined.∫ 2π

0

|u(x)e−ixξ|dx =

∫ 2π

0

|u(x)||e−ixξ|dx =

∫ 2π

0

|u(x)|dx ≤ ||u||L1 <∞

(2.3)
Because u is in L1[0, 2π], the integral is well defined.

This transform helps to identify the frequencies of a given function. Suppose
f(x) = 2ei3x + 4ei5x. With the previous lemma we can compute the Fourier
transformation

(Fu)(ξ) =

∫ 2π

0

e−iξxf(x)dx

=

∫ 2π

0

e−iξx2ei3xdx+

∫ 2π

0

e−iξx4ei5xdx

=

∫ 2π

0

2ei(3−ξ)xdx+

∫ 2π

0

4ei(5−ξ)xdx

2.1. Continous approaches 5

as 
2 · 2π, if ξ = 3

4 · 2π, if ξ = 5
2i
3−ξ (1− e

i(3−ξ)2π) + 4i
5−ξ (1− e

i(5−ξ)2π), else

Figure 2.1: Fourier transformation of f(x) = 2ei3x + 4ei5x

This compution returns the amplitudes of the given frequencies, peaking
in the real frequencies. If we can now show that the Fourier transform is
bijective, we can use these amplitudes in the frequency space to get informa-
tion about the corresponding composition. However, this is not possible in
L1[0, 2π]. We have to limit our space to the so called Schwartz space, as
defined by the following definition taken out of ([2],p.106).

Definition 2.1.3. The space

S([0, 2π]) = {u ∈ C∞|∀α, β ∈ N : Cα,β = sup
x∈[0,2π]

|xα ∂
β

∂xβ
u(x)| <∞} (2.4)

is called Schwartz space and elements u ∈ S([0, 2π]) are called Schwartz
functions.

One can say that elements of S([0, 2π]) are faster vanishing than any polyno-
mial can converge towards ∞. This space is stronly linked with the Fourier

6 Chapter 2. Theoretical Background

transform, because the requirement towards functions in S([0, 2π]) have an
interesting attribute in the Fourier transform.

Lemma 2.1.4. Let u be in S([0, 2π]) and α ∈ N . Then

F (
∂αu

∂xα
) = i|α|xαF (u) (2.5)

F (xαu) = i|α|
∂α

∂xα
F (u) (2.6)

Proof. A proof can be found in ([2], pp.107-108).

With this lemma, we can show the bijectivity of F on S([0, 2π]) as it can be
found in ([2], p.111).

Theorem 2.1.5. The Fourier transform F : S([0, 2π])→ S([0, 2π]) is bijec-
tive . For u ∈ S([0, 2π]) the inversion is given by

(F−1Fu)(x) = ˇ̂u =

∫ 2π

0

û(ξ)eixξdξ = u(x) (2.7)

Proof. Let u and ϕ both be in S([0, 2π]). Then the convultion of ˆ̂u and ϕ
is equal to the negative convultion of ˆ̂ϕ and u. This holds true because of
elementary convultion attributes.

(ˆ̂u ∗ ϕ)(x) =

∫ 2π

0

ˆ̂u(y)ϕ(x− y)dy =

∫ 2π

0

û(y)eikyϕ̂(−y)dy

=

∫ 2π

0

u(y) ˆ̂ϕ(−x− y)dy = (u ∗ ˆ̂ϕ)(−x)

For ϕ as an rescaled gaussian function ϕ(x) = ε−de−
|x|2

2ε2 the equation ˆ̂ϕ =
ϕ follows, because the gaussian function is an eigenfunction of the Fourier
transform. With ε→ 0 the convultion converges to

ˆ̂u ∗ ϕ(x)→ ˆ̂u(x) and u ∗ ϕ(−x)→ u(−x)

so in conclusion one can say that

ˆ̂u(x) = u(−x)

Because of the change of sign between the transform e−ixξ and the inversion
eixξ, the inversion ˇ̂u can be written as −ˆ̂u, so it follows that

ˇ̂u = u

2.1. Continous approaches 7

If we can now show, that a continous and differentiable composition is inside
S([0, 2π]), we can use the previous theorem to transfer it to the frequency
space and back.

Theorem 2.1.6. C∞[0, 2π] ⊂ S([0, 2π]).

Proof. Suppose f ∈ C∞[0, 2π]. Fix α, β ∈ N . Then ∂β

∂xβ
u(x) is in C∞[0, 2π]

aswell. Because of the compactness of [0, 2π], f reaches its supremum inside
the interval. So altogehter:

sup
x∈[0,2π]

|xα ∂
β

∂xβ
u(x)|

≤ sup
x∈[0,2π]

|xα| sup
x∈[0,2π]

| ∂
β

∂xβ
u(x)|

≤ |(2π)|α sup
x∈[0,2π]

| ∂
β

∂xβ
u(x)|

<∞

In conclusion, we can identify the frequencies of a given composition by
transforming it into the frequency space. Because this transform is bijective,
the frequencies can be used to compare it to a given spectrum. But if
we try to analyse a real piece of music, the results are not satisfying. As
noticed before, in real music the frequencies change over time, but this effect
is completely neglected by using the fourier transformation on the whole
function.

2.1.2 Short Time Fourier Transformation (STFT)

A possible solution for this problem is to lay focus on one area at a time.
This can be done by multiplying the function with a fast vanishing window
function in C∞([0, 2π]) that is centered around the focus point. As ([2], p.
135) formulate it, the Fourier theorem can be restated as

Theorem 2.1.7 (The short-time Fourier transformation). Let f and g be in
C∞[0, 2π] ⊂ S([0, 2π]), x0 ∈ [0, 2π] and ξ ∈ R. Then

(Fgu)(ξ, x0) =

∫ 2π

0

f(x)g(x− x0)e−iξxdξ (2.8)

is called the Short Time Fourier Transform of f in respect to x0. F is well
defined.

8 Chapter 2. Theoretical Background

Proof. ∫ 2π

0

|f(x)g(x− x0)(x)e−iξx|dx

=

∫ 2π

0

|f(x)g(x− x0)|dx

≤ max
x∈[0,2π]

|f(x)|
∫ 2π

0

|g(x− x0)|dx

≤ 2π max
x∈[0,2π]

|f(x)| max
x∈[0,2π]

|g(x− x0)| <∞

The uniqueness follows with the same lemma as before.

If we now compute the STFT for a fixed x0, we get the Fourier representation
to describe the function at x0. The choice of the window function g has a
great impact on the accuracy of the analysis. A wider window would average
over all frequencies inside the window, distorting the result. But a small
window (the δ-distribution as an extreme) will not always yield the best
results either. The uncertainty principle is a natural border for the accuracy.
As its written in [5], the following inequation holds.

Theorem 2.1.8. Let f and g be in C∞[0, 2π] ⊂ S([0, 2π]), x0 ∈ [0, 2π] and
ξ0 ∈ R. With u(x) = f(x)g(x− x0) follows(∫ 2π

0

(x− x0)2|u(x)|2dx
) 1

2

·
(∫ ∞
−∞

(ξ − ξ0)2|û(ξ)|2dξ
) 1

2

≥ 1

2
||fg||2L2

(2.9)

Proof. A proof can be found in ([5], pp. 21-24)

This border helps us differentiate between window functions. A good window
function would have a very small difference between the two sides, possibly
0. Luckily, this window function exists.

Theorem 2.1.9. Let g be the gaussian core

g(x) =
1

2
√
πσ

e−
1
4σ

(x)2 (2.10)

Then the previous inequation holds.

Proof. The gaussian core is an eigenfunction of the Fourier transformation, so
u(x) = û(x). Together with ||g||L2 = 1 the rest follows straight forward.

Because of this property, the STFT with a gaussian core as its window func-
tion has its own name.

2.2. Discrete Preconsiderations 9

2.1.3 The Gabor-Transformation

Theorem 2.1.10. Let f be in C∞[0, 2π] ⊂ S([0, 2π]). Then

ck,x0 =
1

2π

∫ T

0

1

2
√
πσ

e−
1
4σ

(x−x0)2f(x)e−ikxdx, k ∈ Z (2.11)

are called the Gabor coefficients of f centered around x0.

σ can be varied to control the width of the window to either get a good reso-
lution in time (σ → 0) or frequency (σ →∞), resulting in a bad resolution in
the other area, but the multiplication of both resolutions are optimal for any
σ. The transformation is named after Dennis Gabor, who 1947 took Fouriers
work to adapt it to changing frequencies([8]). These gabor coefficients will
now be used to actually implement an analysis. This implementation will
always result in a transfer from analytic to discrete computations, so a few
things have to be clarified.

2.2 Discrete Preconsiderations

2.2.1 Discrete Frequencies

Sound waves are continous functions, but the digitalisation does not allow
anything continous. In fact, a sample and hold step is used, saving the value
of the incoming signal and storing it until the next step occurs(cf.[6]). This
completely neglects the difference between the steps, so an inaccuracy is
created, quantification noise ([6]).

Figure 2.2: A sample and hold step

Smaller steps will result in a more precise reconstruction of the incoming
signal. Big steps need less data space but can distort the result by analysing

10 Chapter 2. Theoretical Background

frequencies that are not there. This effect is known as under sampling. The
red dots symbolize an undersampling, recreating a function with a lower
frequency that has nothing to do with the real frequency.

Figure 2.3: Undersampling

A good compromise can be found with the following theorem, as its written
in [6]. A proof can be found in ([2], pp.120-121).

Theorem 2.2.1. A signal will be sampled exactly, if the sampling frequency
is at least the double of the highest frequency that shall be analysed.

fs > 2fmax (2.12)

As mentioned before, the highest audible frequency is 20 kHz. A standard
sampling frequency is 44100 Hz, satisfying the theorem. And because 44100
is equal to 22325272, each second can be divided by many different natural
numbers and still have natural factors.

2.2.2 Noise

Noise is an “unwanted residual electronic noise signal that gives rise to acous-
tic noise”[7]. When analysing anything real, noise is always an issue, because
microphones and sound systems produce distortions in the music. A theo-
retical perfect tone of i.e. 10 kHz will result in a broad spectrum of different
frequencies, only peaking at 10 kHz in the Fourier space. This can easily be
taken care of by using thresholds as long as the played music is louder than
any background noise.
With all continous and discrete effects considered we can now begin the im-
plementation.

Chapter 3

Numerical implementation

3.1 Idea

Teaching a computer to distinguish between a piano and a violin is impossible
without having something to differentiate between them. There are several
possibilities to solve this problem. One could analyse each instrument to get
its characteristics of overtones and then store this information to compare an
incoming sound with different instrumental characteristics, but this approach
fails because of the uncertainty principle. The overtone characteristics can
only be computed for the natural multiples but in reality a wide spectrum
of frequencies around this multiples exhibit high amplitudes. A better ap-
proach is to create a dictionary out of easy to analyse tones with the proper
informations about these tones given by a user. The resulting implementa-
tion will have two parts. First a dictionary D = {ϕ1 ∈ Y |i ∈ N} is built out
of the gabor transformations of analysed tones, described with pitches and
corresponding instruments. Then the synthesization A : l2 → Y, x 7→

∑
xiϕi

creates an operator A. The real analysis of a piece of music computes the
gabor transformation at each point and then uses an operator to find the
best fit. This result is stored and at the end transformed into a partiture.

3.2 Minimization tools

Finding a good operator is the hardest part. The algorithm has to find the
best match but also has to be aware of highly correlated accords. There are
mainly 3 algorithms that are suited for this case:

11

12 Chapter 3. Numerical implementation

3.2.1 The simple L2 comparison

min
x
||Ax− b||22 (3.1)

The minimum can be found by solving ∇||Ax− b||22 = 0. Computing this
leads to the gaussian normal equation.

0 = ∇||Ax− b||22 (3.2)

⇔ 0 = ∇(Ax− b)T (Ax− b) (3.3)

⇔ 0 = ∇xTATAx− 2(ATx, b) + ||b||2 (3.4)

⇔ 0 = ATAx− AT b (3.5)

⇔AT b = ATAx (3.6)

There are several algorithms for the compution. See [1] for further details.
Each coordinate of x stands for the amplitude of a played tone, so with a
threshold to ignore the noise we can tell which ϕ ∈ D are playing. Sadly the
overtones of different pitches overlap, disturbing the result by computing high
amplitudes for tones with different base frequencies but similar overtones. A
desired property of the operator would be to distinguish between played
(xi 6= 0) and unplayed tones (xi = 0), possibly with very few pitches marked
as played.

3.2.2 The sparsity approach

This attribute can be achieved by adding a penal term

min
x

1

2
||Ax− b||22 + α||x||1 (3.7)

to punish any value in x 6= 0. If we want to further analyse this effect, we
need some preconsiderations, as they can be found in [5]. Due to the non
differentiable ||x||1 we can not build the gradient of the term that shall be
minimised. Instead we will use the subdifferential, which can be defined for
convex functions. A definition for convexity can be found in [1].

Definition 3.2.1. Let f : l2 → R be a convex function. Then

∂f(x0) = {g ∈ Rn : f(x)− f(x0) ≥ gT (x− x0)∀x ∈ Rn} (3.8)

Each element in ∂f(x0) is called subgradient. If f is diffentiable, the sub-
gradient equals the normal gradient.

3.2. Minimization tools 13

This definition can be used to compute the subgradient of the given algo-
rithm. Solving 0 ∈ ∂f results in the x that minimises (3.7), because we can
then examine the subgradient for g=0:

f(x)− f(x0) ≥ 0⇔ f(x) ≥ f(x0)∀x ∈ Rn

Thus, x0 is the minimal value of f . The following lemma now computes the
subdifferential of the convex function f(x) = |x|.

Lemma 3.2.2. Suppose f : l2 → R, x 7→ |x| and i ∈ {1, ..n}. Then

∂f(x̄)i =


{−1}, if x̄i < 0

[−1, 1], if x̄i = 0

{1}, if x̄i > 0

(3.9)

This function is called Sign(x).

Proof. Suppose x̄ < 0 and fix i. Then

∂f(x̄)i = {gi ∈ R : f(xi) + x̄i ≥ g(xi − x̄i)∀xi ∈ R} =

{
[−1,∞] if xi < 0

[−∞,−1] if xi > 0

(3.10)
⇒ ∂f(x̄)i = [−1,∞] ∩ [−∞,−1] = {−1}. The other statements follow in an
analogous manner.

Now we can analyse the subdifferential of (3.7).

∂

(
1

2
||Ax− b||22 + α||x||1

)
(3.11)

= AT (Ax− b) + αSign(x) (3.12)

It follows that the optimal x solves

− AT (Ax− b) ∈ αSign(x) (3.13)

⇔ x− AT (Ax− b) ∈ x+ αSign(x) (3.14)

The right side can be visualised by the following picture, showing αSign(x)
for x-values between −2α and 2α. αSign(x) can easily be geometrically
inverted by mirroring it at the bisecting line.

14 Chapter 3. Numerical implementation

Figure 3.1: x+ αSign(x) (left) and its inverse (right) with α = 5

This inverse is unique and well defined. An exact derivation can be found
in [1]. If we can now show that a x exists, which fulfills x − AT (Ax − b) ∈
x + αSign(x), we can begin to build a simple fixpoint iteration. For the
existence, examine the following theorem, taking out of [2]

Theorem 3.2.3. Let X be a reflexive Banachspace, F : X → R∞ bounded
from below, coercive and lower semi-continous. Then there exists a minimizer
for F in X.

Proof. A proof can be found in [2] aswell.

With this theorem, we can prove the existence for our special case.

Lemma 3.2.4. F : l2 → R∞, x 7→ 1
2
||Ax−b||22 +α||x||1 fulfills the conditions

of the previous theorem, thus having a minimizer.

Proof. With l2 being reflexive and F begin bounded from below by 0 (at-
tribute of every norm), the first two attributes are easy to see.
Coercivity: Because of ||x||2 < ||x||1, it is easy to see, that if ||x||2 (the norm
of l2) converges towards ∞, the functional written as F (x) = ||x||1 + const
converges towards ∞ aswell.
The lower semi-continuity follows with the lemma of Fatou [1]. In conclusion,
all conditions are fulfilled, guaranteeing the existence of a minimizer.

If we now want to actually implement this minimization, we can use the
inverse Sα for a simple fixpoint iteration.

Sα(x− AT (Ax− b)) = x (3.15)

Start with an arbitrary xk. Compute xk+1 = Sα(xk − AT (Axk − b)) until
xk+1 = xk. This algorithm is simple to implement but very slow. There

3.2. Minimization tools 15

are several improvements that can be made, but describing them would go
beyond the scope of this paper. Further informations about convergence and
attributes can be found in [5].
One important attribute of this approach is the namegiving sparsity.

Definition 3.2.5. Let x be element of l2. x is called sparse, if only a finite
number of elements in x are unequal to 0.

This attribute can easily be seen with the previous images. An iteration
would shrink all values between −α and α to 0, monotonely decreasing the
number of elements unequal to 0. The space in which x exists, is l2. In l2
all sequences are converging to 0. Thus there exists a N ∈ N, so that for
all n > N : |xn| < α, guaranteeing the sparsity after the first step of the
iteration. More exactly, the choice of α determines the sparsity. In fact,
examine the following theorem.

Theorem 3.2.6. x=0 is the unique optimal solution if and only if

AT b ∈ αSign(0) = α[−1, 1]n ⇔ (AT b)i ∈ [−α, α] (3.16)

Proof. ”⇒ ” Suppose x=0 fulfills −AT (Ax− b) ∈ αSign(x). Then

−AT (A · 0− b) ∈ αSign(0)

⇔ −AT (0− b) ∈ [−α, α]n

⇔ AT b ∈ α[−1, 1]n

” ⇐ ” Suppose (AT b) ∈ [−α, α]n ∀i ∈ 1..n. Then x=0 is an optimal
solution.

−AT (Ax− b) = AT b ∈ [−α, α]n

Suppose x and 0 are mimimizer of 1
2
||Ax− b||22 + α||x||1. Then

1

2
||0− b||22 =

1

2
||Ax− b||22 + α||x||1 =

1

2
||Ax||22 − 〈Ax, b〉+

1

2
||b||22 + α||x||1

⇔0 =
1

2
||Ax||22 − 〈Ax, b〉+ α||x||1

⇔1

2
||Ax||22 + α||x||1 = 〈Ax, b〉 = 〈x, AT b︸︷︷︸

∈[−α,α]n
〉 ≤ α||x||1.

It follows that 1
2
||Ax||22 = 0⇒ Ax = 0. Inserting this result into the previous

equation follows α||x||1 = 0⇒ x = 0. So x=0 is the unique solution.

16 Chapter 3. Numerical implementation

In conclusion, choosing α ≥ maxi∈{1,..,n} |AT b|i will result in no played tone.
But α does not only yield in this defining border. It also determines the norm
of the optimal x, because the norm monotonely decreases with increasing α.

Theorem 3.2.7. Suppose α1 > α2 and let x1 and x2 be the optimal minimizer
of the corresponding term. Then

||x2||1 ≥ ||x1||1 (3.17)

Proof. If x1 is the minimizer of 1
2
||Ax− b||22 + α1||x||1 and x2 the minimizer

of the analogues term, it follows that

1

2
||Ax2 − b||22 + α1||x2||1 ≥

1

2
||Ax1 − b||22 + α1||x1||1

1

2
||Ax1 − b||22 + α2||x1||1 ≥

1

2
||Ax2 − b||22 + α2||x2||1

These terms are equal to

1

2
||Ax2 − b||22 + α1(||x2||1 − ||x1||1) ≥

1

2
||Ax1 − b||22

1

2
||Ax1 − b||22 ≥

1

2
||Ax2 − b||22 + α2(||x2||1 − ||x1||1)

combined to

1

2
||Ax2 − b||22 + α1(||x2||1 − ||x1||1) ≥

1

2
||Ax2 − b||22 + α2(||x2||1 − ||x1||1)

⇔ α1(||x2||1 − ||x1||1) ≥ α2(||x2||1 − ||x1||1)
⇔ (α1 − α2)(||x2||) ≥ (α1 − α2)(||x1||)

For α1 > α2 the result ||x2||1 ≥ ||x1||1 follows.

In conclusion, α is the only threshold we need to determine between pauses
and played tones.

3.2. Minimization tools 17

3.2.3 The elastic net approach

Highly correlated entries in the dictionary result in numerical problems. The
correlation ATA gets instable when solved against AT b. A solution can be
achieved by adding a second penal term to seperate highly correlated terms.
This leads us to the elastic net approach:

min
x

1

2
||Ax− b||22 + α||x||1 +

1

2
||
√
βx||22 (3.18)

To research existence and uniqueness of minimizers, observe the following
lemma.

Lemma 3.2.8.

1

2
||Ax−b||22+α||x||1+

1

2
||
√
βx||22 =

1

2
||
(

A

id
√
β

)
x−
(
b

0

)
||22+α||x||1 (3.19)

Proof.

1

2
||
(

A

id
√
β

)
x−

(
b

0

)
||22 + α||x||1

=
1

2
||
(
Ax− b
id
√
β

)
||22 + α||x||1

=
1

2

(
n1∑
i=1

(Ax− b)2i +
n∑

i=n1+1

(
√
βx)2

)
+ α||x||1

=
1

2
||Ax− b||22 + α||x||1 +

1

2
||
√
βx||22

In conclusion, the elastic net minimization term can be written as in the
sparsity approach, guaranteeing all attributes shown before. The effect of β
is to numerically stabilize the algorithm without improving the overall quality
of the algorithm. This addition causes the algorithm to get slower, so the
following algorithm for the sound analysis will use the sparsity algorithm.
For further details and applications of the elastic net approach, see [10].

18 Chapter 3. Numerical implementation

3.3 Actual implementation

With the described algorithms we can now begin to create the main
algorithm for the analysis, divided into small parts. The whole code can be
found in the addendum and is distributed on the CD in the back of this thesis.

3.3.1 Building the operator

First, the operator has to be built to analyse the incoming sound files. When
reading in sound files, the data is stored in its oscillating wave form. The
first step is to set the frequencies that shall be analysed. Each frequency
will be compared inside the operator, so that a bigger array of frequencies
will result in a better approximation, but is mainly responsible for the data
storage and time needed. A good compromise is to analyse all frequencies
associated with and exactly between the keys of a piano.

Algorithm 1 Frequencies

F (1)← 27.5
root← 24

√
2

for i = 2→ 152 do
F (i)← F (i− 1) ∗ root

end for

The keys of a piano are build in a logarithmic scale, that can be recreated by
this algorithm. Using 24

√
2 instead of 12

√
2 additionally stores all frequencies

between the keys. With frequencies clarified, we can know start filling the
operator with fitting sound files. There are strong specifications towards
eligible files. They should consist of unisonous clearly distinguished and
increasing pitches with as little noise as possible. Such a sound file can
be used to seperate and store its tones. The seperation is shown by the
following algorithm.

3.3. Actual implementation 19

Algorithm 2 SeperateTones(file)

x← wavread(file)
threshold← max(x)/5
for i = 1→ size(x, 1) do
ampl← max(x(i− 999 : i))
if ampl > threshold, lock == false then
beat(index)← i
index← index+ 1
lock ← true

end if
if ampl < threshold/2, lock == true then
beat(index)← i
index← index+ 1
lock ← false

end if
end for

This algorithm stores the start and end of each pitch in an array called
beat, so that the following storing algorithm can assign the right pitch to
the corresponding spectrogram.

Algorithm 3 StoreTones(file,tonestart,toneend)

x← wavread(file)
F ← Frequencies()
beat← seperateTones(file)
toneheight← tonestart : toneend
for i = 1 : 2 : size(beat, 1)− 1 do
wave← x(beat(i) : beat(i+ 1));
Tone← abs(spectrogram(wave, 1024, 140, F, 44100))
Tone← Tone/norm(Tone)
Operator(:, index)← Tone
height(1, index)← toneheight(index)
Instrument(:, index)← instrum
index = index+ 1

end for
save(′Dictionary′,′ number′,′Operator′,′ height′,′ Instrument′)

The algorithm computes the matlab-intern routine ‘spectrogram’ to get the
gabor transformation. See the matlab documentation for further information.

20 Chapter 3. Numerical implementation

The operator is synthesized by storing these results in a matrix A. In addition
to that, the height and instrument of the pitches are stored in a second
vector. Initially, these informations must be inserted by the user to prepare
the computer for the analysis. Without a proper operator the analysis can
not work, so its quality is crucial.

3.3.2 Analysing a sound file

With the operator synthesized, we now can use it to analyse an arbitrary
sound file. The algorithm can be divided into four steps.

Load the operator

First the operator with the corresponding pitches and instruments has to be
loaded. The informations about the tones are later used to create the score
of the song.

Create the spectrogram of the sound file

It is important to compute the spectrogram with the exact same attributes
as the ones in the dictionary. Only this leads to a proper comparison between
the amplitudes of the frequencies.

Analyse each part of the sound file

Line by line the spectrogram can now be compared with the operator using
any minimization algorithm. The program presented here uses the sparsity
algorithm. The choice of α depends on the character of the sound file. As
seen before the term α = maxi∈{1,..,n} |AT b|i describes the border towards
x = 0 as the optimal minimum, so α = maxi∈{1,..,n} |AT b|i − 10−10 will give
us exactly one pitch unequal to zero, the played pitch. In practice, α = 35
gives satisfying results aswell and also gets two or three pitches at a time
(chords).

Output the results

The algorithm has two visual outputs. The first one describes the length
and heights of the playing instruments at any time by plotting the heights
of the minimized x that are unequal to zero against time. The x axis
tracks the time. On the y axis the frequencies are shown, encrypted in
the heights of the tones we normally hear. The transformation between y
and its corresponding frequency is f = 27.5 12

√
2y. This visualisation helps

3.3. Actual implementation 21

identifying the length and heights of tones, but is unfamiliar and unpractical
to the performing musician. The second visual output is the real score which
is created out of the corresponding symbols for the lengths and play times
of the instruments, showing the same information in another manner.

Figure 3.2: Different visualizations

All these programs can be combined into one GUI, shown in the following
picture.

Figure 3.3: GUI

22 Chapter 3. Numerical implementation

3.4 Results and Plausability

Analysing results of the algorithm has to cover all kinds and complexities of
different music styles. The most simple music has only one instrument, clear
pitches, that are seperated from each other and no chords. This constraint
seems very strict, but there are many examples to easily test the algorithms.
Nearly all nursery rhymes fulfill this attribute and the inability of the human
voice to sing more than one pitch at a time results in many well known
melodies that can be extracted out of more complex pieces of music.
The probably best known example is the song ’Happy birthday’ by Mildred
J. Hill. Despite its simple melody, the wavfile is sufficiently complex. With
a sharp eye one can see different tones, but it is impossible to tell which
frequencies or pitches are present. The spectrogram built with the gabor
transformation helps us identify the changing frequencies. In respect to the
wav file, the spectrogram is mirrored at the bisecting line. The frequencies
are present on the x-axis and increase from left to right. The amplitudes are
shown by color. The range starts by blue (no amplitude) and ends by red
(high amplitude).

Figure 3.4: Happy Birthday: wavfile (left), spectrogram (right)

The operator is filled with each key of a standard keyboard, resulting
in 61 tones from C to c4. In this range, every row of the operator has
an corresponding entry in a vector, that keeps track of the height and
instrument of the saved tone, so any arbitrary tone in this range can be
analysed. Using this operator the analysis of ‘Happy Birthday’ results in:

3.4. Results and Plausability 23

Figure 3.5: Different visualizations

The left picture shows the result before the median filter. The main melody
can be seen, but there are several short noise-like tones. As mentioned before,
the uncertainty principle forbids the precise analyse of such short tones, so
it is safe to say that these are noise related errors. The right picture shows
the same result after a filter, that deletes small transients and unifies the
reliability of pitches. The main melody has not been affected at all, but all
noise effects are gone. This second picture can now be used to recreate the
real score.

Figure 3.6: Recreated score

This score shows exactly the real score, that was used to record the song.

24 Chapter 3. Numerical implementation

The lengths of the notes should all be eigths, but this sound file was created
on a real instrument, resulting in slightly off lengths. This effect is desired
to extract informations about melodic attributes like swing feeling that can
not be seen in a normal score.
This song was very easy to analyse. Because of its type its safe to say,
that as long as there is only one tone at a time, it can be recognized when
the corresponding tone is stored in the operator. The next step is the
analysis of a piece of music with a melody and a base line. A well known
example for a two line piano song is ‘A river flows in you’ by Yiruma. In
an unisonous song it is possible to see in the wav file where tones start and
end without having anything to say about the frequencies. But in a simple
two line song this is completely impossible. Songs are created in a manner,
that at no time no tone is played, so seperating the tones by thresholding
is not possible. The spectrogram helps us a lot in identifying frequen-
cies, but the overlap of two tones with their overtones creates a mass of
present frequencies, that needs to be untangled to access the corresponding
pitches underneath. Luckily this overlap of frequencies is undisturbed, so
the sparsity algorithm can compute the factors belonging to the right pitches.

Figure 3.7: A river flows in you: wavfile (left), spectrogram (right)

The operator is still filled with the same tones of a keyboard as before.
Because both lines are played on the same instrument, no other tones are
needed. The left picture shows the identified tones before the filter. When
all noise related effects are filtered, the right picture is created. This result
seems wrong, but a skilled eye can see the exact base line (the three lowest
tones) and the melody (the upper tones). The red rectangles symbolize
tones without sign while the orange rectangles have a cross before them.

3.4. Results and Plausability 25

Figure 3.8: Different visualizations

In the score, this can be seen even better. In order to see the base line in
the lower stave, the breaking tone to divide between the two staves is set to
e1. The result shows the exact score, that was used to record it.

Figure 3.9: Recreated score

26 Chapter 3. Numerical implementation

Now we can begin to analyse more complex songs. Complexity can increase
in many ways. Adding more tones in the spectrum does not affect the
analysis at all. In fact, the operator can distinguish even better between
different pitches, because the dictionary is filled with more information
about the instrument. A good approach to test the quality of the algorithm
is to migrate to songs with more than one instrument. The example ’Happy
Birthday’ is now played simultaneously by a saxophon and a guitar. The
guitar is playing one third above the saxophon to distinguish the tones.

Figure 3.10: Different visualizations: Saxophone (left), Guitar (right)

The analysis shows the melodies nearly perfect. Red pitches stand for a
well analysed tone and yellow pitches (artificially inserted after the analysis)
symbolize a played tone, that the algorithm did not catch. The quota 20 out
of 24 is acceptable for this display. However, this mistakes have a greater
impact on the score, because the holes are filled automatically, resulting in:

Figure 3.11: Recreated scores: Saxophone (left), Guitar (right)

3.5. Limits of the implementation 27

The melody can barely be seen anymore, so in more complex songs, the
score can not be created that easily. Extending the songs to include more
instruments increases the number of mistakes made. With these results we
can begin to address the limits of the algorithm.

3.5 Limits of the implementation

As long as there is only one instrument, the algorithm works very well. Dif-
ferent instruments will sometimes interfere, because tones have measurable
amplitudes long after they can be heard by the human ear. This disturbes
the spectrogram, so that the analysis will result in not fitting tones. Between
instruments, there is a huge difference in the spectrograms. In the following
picture, four instruments are shown, playing the same scale.

Figure 3.12: Different spectrograms (Guitar, Viola, Saxophone, Piano)

In the upperleft corner, an electric guitar is shown, distorted by many fre-
quencies to create an electronic sound. The upperright picture displays a

28 Chapter 3. Numerical implementation

viola. All pitches are clearly divided showing all overtones. It is notica-
ble, that the first overtone has a higher amplitude than the base tone itself,
complicating the analysis. The lower left display is the spectrogram of a sax-
ophon. Every second overtone is not present, simplyfying the differentiation
between two pitches. The forth picture shows a piano, demonstrating the
difference of one pitch between four instruments.

Chapter 4

Conclusion and outlook

The results presented show the possibility of analysing frequencies and recre-
ating a score for simple songs. When speaking of more complex songs that
are built from several instruments with additional effects to distort the tones,
it is hard to say if such a song is possible to analyse in this way. Because
of the needed dictionary, each instrument had to be stored once, before the
song could get analysed. The complexity and number of different instruments
would then result in a database that needs enormous space on the hard drive
and took very long to compute. A possible solution would be to analyse
the overtone structures of different instruments and find a synthetic way to
create a database. The spectrograms of the tones which shall be analysed
would then have to be processed to fit the synthetic ones. On this way, the
characteristics of different musicians playing the same tone would be ignored,
simplifying the analysis. Another mathematical approach would be to use
wavelets instead of the STFT to improve the resolution of time to frequency
preciseness.
The algorithm described in this paper can only be used to analyse instru-
ments, which play lasting tones of the standard pitches on a piano. However,
there are some other important instruments, whose tones can not be allo-
cated to simple pitches. The first one that comes to mind is the standard
drum, present in nearly every song. Its tones can more be described as snaps,
lasting only for a few milliseconds. But this is not the only difficult instur-
ment. In the wide field of electronic music, there are many other effects that
change pitches over time or are so heavily distorted that it is a real challenge
to analyse in this way.
In conclusion, there are many parts of sound analysis that are not completely
reasearched. But solving the mentioned problems is the work of future papers
on this topic.

29

Appendix A

Code

A.1 Set Frequencies

function [F] = Frequencies()

F=zeros(152,1);

F(1)=27.5;

root=nthroot(2,24);

for i=2:152

F(i)=F(i-1)*root;

end

A.2 Seperate the tones

function beat = seperatetones(filename)

%Seperate the tones of a wav-file by using thresholds.

x=wavread(filename); %Load the file

x=x(:,1);

beat=zeros(1000);

index=1;

lock=false;

threshold=max(abs(x))/5; %Set the threshold

ampl=max(abs(x(1:999)));

for i=1001:size(x,1)

if ampl==abs(x(i-1000))

ampl=max(abs(x(i-999:i))); %Get the amplitude in each point

else

ampl=max(ampl,abs(x(i)));

end

if (ampl>threshold && lock==false)||(ampl<threshold/2 && lock==true)

%Get the start and end of each tone

beat(index)=i;

index=index+1;

lock=~lock;

31

32 Chapter A. Code

end

end

beat=beat(1:index-1)’;

end

A.3 Build the operator

function StoreData(filename,pitches,start,instrum)

%Stores incoming data in the database

%filename: the filename of the wav-file that shall be stored

%pitches: "both" or "white": the wav-file must provide a monotonic scale.

%Set "both" for a chromatic scale and "white" for white keys.

%start: The starting key. 24 is a C1 (24th key on a piano)

%instrum: The played instrument in range of 1-4. Only important for

%different instruments at a time.

n=200;

F=Frequencies();

x = wavread(filename);

x=x(:,1);

disp(’Aquiring Data...’);

beat=seperatetones(filename); %Seperate the tones in the file

if ~exist(’Database.mat’)

number=0;

A=zeros(size(F,1),1000); %Create database

height=zeros(10,1000);

Instrument=zeros(1,1000);

save(’Database’,’number’,’A’,’height’,’waves’);

else

info=load(’Database’);

A=info.A;

height=info.height;

Instrument=info.Instrument;

end

if strcmp(pitches,’white’)==true %Set heights

tonheight=start:52;

end

if strcmp(pitches,’both’)==true

realindex=1;

tonheight(1:3)=1:0.5:2;

for i=start:0.5:52

index=(i-1)*2+1;

if(mod(index,14)~=4 && mod(index,14)~=10)

tonheight(realindex)=i;

realindex=realindex+1;

end

end

end

A.4. Analyse a file 33

tonheight=tonheight’;

realindex=1;

disp([’Got ’ num2str(size(beat,1)/2) ’ tones. Analysing...’]);

for index=1:2:size(beat,1)-1 %Divide the wavfile

if tonheight((index-1)/2+1)<=52

wave=x(beat(index):beat(index+1));

Music=spectrogram(wave,1024,140,F,44100); %Analyse the spectrogram

step=ceil(max(size(Music,2)/n,1));%Set the amount of data extracted

for j=1:step:size(Music,2)

tone=abs(Music(:,j));

tone=tone/norm(tone);

A(:,realindex+info.number)=tone; %Store the data

height(1,realindex+info.number)=tonheight((index-1)/2+1);

Instrument(:,realindex+info.number)=instrum;

realindex=realindex+1;

end

end

disp([num2str(floor((index+1)/size(beat,1)*100)) ’%’]);

end

number=info.number+realindex-1;

A=A(:,1:number);

height=height(:,1:number);

Instrument=Instrument(:,1:number);

save(’Database’,’number’,’A’,’height’,’Instrument’);

disp(’Finished’);

A.4 Analyse a file

function [Result] = Analyse(filename, smooth)

% Result=Analyse(filename,smooth)

% Analyses a sound file and shows the partitur.

% Only works when a Database is present. See "StoreData" for more details.

% filename : the filename of the wav-file that shall be analysed

% smooth : setting this on true activates a median filter on the result

wave=wavread(filename);

wave=wave(:,1);

if exist(’Database.mat’)

Database=load(’Database’); %Load in the data

else

error(’No database present!’);

end

F=Frequencies();

A=Database.A;

height=Database.height;

Instrument=Database.Instrument;

disp(’Aquiring Data...’);

Music=spectrogram(wave,1024,140,F,44100); %Build the gabor-transformation

disp(’...done’);

34 Chapter A. Code

Result=zeros(52,size(Music,2),floor(max(max(Instrument))));

for k=1:floor(max(max(Instrument)))

for i=1:5

for j=1:size(Result,2)

Result(24+2*i,j,k)=5; %Create the stave of the partitur

Result(10+2*i,j,k)=5;

end

end

end

disp(’Analysing pitches...’);

for index=1:size(Music,2)

Note=abs(Music(:,index)); %Analyse each row of the spectrogram

B=A;

row=1:size(A,2);

if size(B,2)>0

%maxalpha=max(max(abs(B’*Note))-10e-10,10); Activate this for

%unisonous music

maxalpha=35;

rfssResult=rfss(B,Note,maxalpha,0); %Compute the sparsity-algorithm

rfssResult=abs(rfssResult);

for i=1:size(rfssResult,1) %Store the pitches with amplitude >0,

%seperate between "sure" and "not sure"

if rfssResult(i)>2 && height(row(i))~=0

Result(floor(height(row(i))),index,floor(Instrument(row(i))))

=40-20*(height(row(i))-floor(height(row(i))));

end %Prefixes decrease the value by 10

if rfssResult(i)>4 && height(row(i))~=0

Result(floor(height(row(i))),index,floor(Instrument(row(i))))

=60-20*(height(row(i))-floor(height(row(i))));

end

end

end

if floor(index/size(Music,2)*20) ~= floor((index-1)/size(Music,2)*20)

disp([num2str(floor(index/size(Music,2)*100)) ’%’]);

end

end

disp(’...done’);

for k=1:size(Result,3)

if smooth==true %if smooth is set, further process the picture

for m=1:3

n=6;

for i=1:size(Result,1)

for j=n+1:size(Result,2)-n

E=zeros(4,1);

if Result(i,j,k)>5 || (Result(i,j-1,k)>5 && Result(i,j+1,k)>5)

before=true;

after=true;

for l=j-n:j-1

A.4. Analyse a file 35

if before==true

if Result(i,l,k)<=5

before=false;

else

E(Result(i,l,k)/10-2)=E(Result(i,l,k)/10-2)+1;

end

end

end

for l=j+1:j+n

if after==true

if Result(i,l,k)<=5

after=false;

else

E(Result(i,l,k)/10-2)=E(Result(i,l,k)/10-2)+1;

end

end

end

if ~(before||after)

Result(i,j,k)=Result(i,1,k); %delete small tones

else

maxE=max(E);

for l=1:4

if E(l)==maxE

Result(i,j,k)=l*10+20;

%unify the value to "sure" or "not sure"

end

end

end

end

end

end

end

end

if max(max(Result(:,:,k)))>5

if smooth==true

Showtones(Result(:,:,k),k); %Create the score

end

figure(2*k-1);

hold off

plot(0);

image(Result(:,:,k)); %Plot the result

set(gca,’YDir’,’normal’) %Set attributes of the plot

Tick=0:100:size(Result,2);

Ticklabel=Tick/50;

YTick=10:7:50;

YTicklabel={’C’,’c’,’c1’,’c2’,’c3’,’c4’};

switch k

case 1

title(’Saxophon’);

36 Chapter A. Code

case 2

title(’Guitar’);

case 3

title(’Geige’);

end

set(gca,’xTick’,Tick);

set(gca,’xTickLabel’,Ticklabel);

set(gca,’yTick’,YTick);

set(gca,’yTickLabel’,YTicklabel);

xlabel(’Zeit’);

xlim([0 size(Result,2)]);

ylabel(’Height’);

hold on

end

end

A.5 Showtones

function picture=Showtones(Result,k)

%Shows the score of a wav-file.

%This method can only be opened by the method "Analyse".

%See its documentation for further information.

breaktone=28; %C

%breaktone=24; %E

quarter=rgb2gray(imread(’Quarter.jpg’));

eigth=rgb2gray(imread(’Eigth.jpg’));

sixteenth=rgb2gray(imread(’Sixteenth.jpg’));

half=rgb2gray(imread(’Half.jpg’)); %Load in notes

whole=rgb2gray(imread(’Whole.jpg’));

b=rgb2gray(imread(’b.jpg’));

f=rgb2gray(imread(’f.jpg’));

fs=rgb2gray(imread(’Fs.jpg’));

fs=fs(:,1:30);

dot=ones(9,9)*255;

dot(5,2:8)=0;

dot(4,2:8)=0;

dot(6,2:8)=0;

dot(3,3:7)=0;

dot(7,3:7)=0;

dot(2,4:6)=0;

dot(8,4:6)=0;

figure(2*k)

picture=ones(300,10000)*255;

index=2;

match=false;

count=0;

for j=1:size(Result,2)

A.5. Showtones 37

for i=1:size(Result,1)

if Result(i,j)>=50 && i<39 && i>10 %if the tone is inside the range

length=1;

height=52-i;

match=true;

count=0;

setdot=false;

while j+length<size(Result,2)&&Result(i,j+length)==Result(i,j)

length=length+1; %get length of the tone

end

if height <= breaktone %divide score in two parts

sub=0;

outsub=0;

else

sub=78;

outsub=12;

end

if Result(i,j)==50 %if a prefix is set

if mod(i,7)==0 || mod(i,7)==3 || mod(i,7)==6

picture(6*height-48+sub:6*height-19+sub,index*50-19:index*50-5)=f;

%set an f

else

height=height-1;

picture(6*height-55+sub:6*height-26+sub,index*50-19:index*50-5)=b;

%set an b

end

end

Result(i,j:j+length)=0; %delete the tone

length=length-1;

length=round(length/10);

tone=’none’;

switch length %get the corresponding picture

case 0

tone=ones(size(quarter))*255;

case 1

tone=sixteenth;

case 2

tone=eigth;

case 3

tone=eigth;

setdot=true;

case 4

tone=quarter;

case 5

tone=quarter;

case 6

tone=quarter;

setdot=true;

case 7

38 Chapter A. Code

tone=quarter;

setdot=true;

case 8

tone=half;

case 9

tone=half;

case 10

tone=half;

case 11

tone=half;

setdot=true;

case 12

tone=half;

setdot=true;

case 13

tone=half;

setdot=true;

case 14

tone=half;

setdot=true;

case 15

tone=whole;

case 16

tone=whole;

end

if strcmp(tone,’none’)==true

tone=whole;

setdot=true;

end

aux=picture(6*height-82+sub:6*height-41+sub,index*50:index*50+15);

picture(6*height-82+sub:6*height-29+sub,index*50:index*50+29)=tone;

%draw the note

picture(6*height-82+sub:6*height-41+sub,index*50:index*50+15)=aux;

if setdot==true

picture(6*height-38+sub:6*height-30+sub,index*50+20:index*50+28)=dot;

%draw the dot behind the note

end

for k=10+outsub:2:16+outsub

if height<=k

picture(6*k-34+sub,index*50-5:index*50+20)=0;

%draw lines towards to note

end

if height>=k+18

picture(6*(k+18)-34+sub,index*50-5:index*50+20)=0;

end

end

end

end

count=min(10,count+1);

A.5. Showtones 39

if count==10&&match==true %as long as a tone is found, a chord is built.

%After 10 frames a new index is set

index=index+1;

match=false;

end

end

for i=1:5

for j=1:size(picture,2) %the stave of the score is drawn

picture(212+12*i,j)=0;

picture(62+12*i,j)=0;

end

end

imagesc(picture);

colormap gray;

ylim([0 300]);

xlim([0 index*50+28]);

end

Bibliography

[1] Martin Hanke Bourgeois: Grundlagen der Numerischen Mathematik
und des Wissenschaftlichen Rechnens. Vieweg+Teubner, Wiesbaden,
dritte Auflage, 2009.

[2] Kristian Bredies, Dirk Lorenz: Mathematische Bildverarbeitung,
Einführung in die Grundlagen und moderne Theorie, 2011.

[3] Anssi Klapuri and Manuel Davy: Signal processing methods for music
transcription, Springer. p. 8. 2006.

[4] J J O’Connor and E F Robertson MacTutor History of Mathematics
archive,Jean Baptiste Joseph Fourier, 1997. Electronically available at
http://www-history.mcs.st-andrews.ac.uk/Biographies/Fourier.html

[5] Stefan Schiffler and Dennis Trede Einführung in die Bildverarbeitung,
Lecturing script, ZeTeM, University of Bremen, 2011.

[6] Prof. Krieger Grundlagen der Elektrotechnik 4, Lecturing script, faculity
3, electronics, University of Bremen, 2011.

[7] The American Heritage Dictionary of the English Language Fourth
Edition, Houghton Mifflin Company, 2000, archived from the original
on June 25, 2008, retrieved May 20, 2010. Electronically available at
http://wayback.archive.org/web/jsp/Interstitial.jsp?seconds=5

[8] Nobel commitee Dennis Gabor, a short biography, Electronically avail-
able at http://www.nobel-winners.com/Physics/dennisgabor.html

[9] Peter Neubäcker Celemony, 2011. Electronically available at
http://www.celemony.com/cms/index.php?id=news&L=1

[10] Hui Zou and Trevor Hastie Regularization and variable selection via the
elastic net, Paper 2004.

40

Declaration

I guarantee that I personally wrote this thesis and there are no passages
taken out of other papers without proper citation.

Bremen, July 22, 2011

. .
Tobias Maas

41

