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A.A. Martynyuk 1∗, A.G. Mazko 2∗, S.N. Rasshyvalova 1 and K.L. Teo 3∗

1 S.P. Timoshenko Institute of Mechanics of NAS of Ukraine,
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On the analysis of journal, conference papers and books with titles containing the
words related to ”nonlinear mechanics”, ”nonlinear dynamics”, and ”nonlinear analy-
sis”, we saw a large number of such papers, where theory and applications were being
investigated. See, for example, (70Kxx MSC 2010) for nonlinear dynamics and (93–XX
MSC 2010) for systems theory. With this observation, we set up a new scientific journal,
entitled ”Nonlinear Dynamics and Systems Theory” (ND&ST), in 2001. The scopes of
the journal also include topics on stability theory and its applications.

Over the last 10 years, the members of the Editorial Board, especially the past and
current Regional Editors C. Corduneanu, C. Cruz-Hernandez, H.I. Freedman, A.D.C.
Jesus (former), M. Ikeda (former), J. Mildowney (former), S. Omatru (former), Peng
Shi, S. Sivasundaram (former), K.L. Teo, and J. Wu (former), have made significant
contributions to the improved quality of the published papers. They also helped shape
the directions and focuses of the Journal. All papers received are subject to a rigorous
reviewing process. Approximately 30% of the submitted papers were rejected in 2010.

Member of the Editorial Board are known scholars and they work actively promoting
the journal. Changes in the Editorial Board take place every year, allowing for active
high profile young researchers to be invited to join the Editorial Board. We find this
practice effective.

In addition to regular papers, ND&ST also allocates a section called ”Personage in
Science” for some issues, publishing short biographical sketches, reviews of results, and

∗ Corresponding authors:
mailto:center@inmech.kiev.ua mailto:mazko@imath.kiev.ua mailto:K.L.Teo@curtin.edu.au
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lists of main works by A.M. Lyapunov, N.N. Bogoluybov, Yu.A. Mitropolsky, V.I. Zubov
and other scholars who have made fundamental contributions to the development of
nonlinear dynamics and systems theory. ND&ST has so far published 5 Special Issues
listed below:

• Stability Analysis and Synthesis for Time Delay Stochastic Nonlinear Systems
(Guest Editors: Sing Kiong Nguang and Peng Shi). Nonlinear Dynamics and
Systems Theory 4 (3) (2004) 243–380.

• System Science and Optimization Approaches to Nonlinear Dynamics and Systems
Theory with High Technology Applications (1) (Guest Editors: Wuyi Yue and Kok
Lay Teo). Nonlinear Dynamics and Systems Theory 6 (3) (2006) 211–308.

• System Science and Optimization Approaches to Nonlinear Dynamics and Systems
Theory with High Technology Applications (2) (Guest Editors: Wuyi Yue and Kok
Lay Teo). Nonlinear Dynamics and Systems Theory 7 (1) (2007) 1–112.

• Dynamic Equations on Time Scales: Qualitative Analysis and Applications (Guest
Editors: M. Bohner and J.M. Davis). Nonlinear Dynamics and Systems Theory 9

(1) (2009) 1–108.

• Dynamical Systems and Control Theory and Their Applications. In dedication
to Professor T.L. Vincent (Guest Editors: B.S. Goh and K.L. Teo). Nonlinear
Dynamics and Systems Theory 10 (2) (2010) 103–201.

These Special Issues have attracted a wider readership and more subscriptions. On
the initiative of the Editorial Board members, the following review papers were published:

⋆ G.A. Leonov and M.M. Shumafov. Stabilization of Controllable Linear Systems.
Nonlinear Dynamics and Systems Theory 10 (3) (2010) 235–268.

⋆ A.A. Martynyuk. Stability in the Models of Real World Phenomena. Nonlinear
Dynamics and Systems Theory 11 (1) (2011) 7–52.

ND&ST is a scientific journal which provides an international forum for scientists,
engineers, researchers, and practitioners to present new research findings and state-of-
the-art solutions, and to open new avenues of research and developments, on all issues
and topics related to nonlinear dynamics and systems theory, including those in aerospace
and neuron.

Starting from 2012, the Journal will publish titles and abstracts of PhD theses, which
are within the scopes of the Journal and submitted by Regional Editors. For an excellent
dissertation within the scopes of ND&ST, the author will be given the option of publishing
the complete dissertation in ND&ST as a supplemental issue of the Journal after receiving
positive reports from two independent reviewers and the handling editor. The author will
be responsible for copy editing and, as such a dissertation would normally be published
with minimum modification unless it is requested by the reviewers and/or the handling
editor. The author will retain the copyright.

Upon consultation with the Regional Editors and the Honorary Editors Professors
T.A. Burton and S.N. Vassilyev, the aim and the scopes of ND&ST are listed as follows:
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• Analysis of uncertain systems

• Bifurcations and instability in dynamical behaviors

• Celestial mechanics, variable mass processes, rockets

• Control of chaotic systems

• Controllability, observability, and structural properties

• Deterministic and random vibrations

• Differential games

• Dynamical systems on manifolds

• Dynamics of systems of particles

• Hamilton and Lagrange equations

• Hysteresis

• Identification and adaptive control of stochastic systems

• Modeling of real phenomena by ODE, FDE and PDE

• Nonlinear boundary problems

• Nonlinear control systems, guided systems

• Nonlinear dynamics in biological systems

• Nonlinear fluid dynamics

• Nonlinear oscillations and waves

• Nonlinear stability in continuum mechanics

• Non-smooth dynamical systems with impacts or discontinuities

• Numerical methods and simulation

• Optimal control and applications

• Qualitative analysis of systems with aftereffect

• Robustness, sensitivity and disturbance rejection

• Soft computing: artificial intelligence, neural networks, fuzzy logic, genetic algo-
rithms, etc.

• Stability of discrete systems

• Stability of impulsive systems

• Stability of large-scale power systems

• Stability of linear and nonlinear control systems
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• Stochastic approximation and optimization

• Symmetries and conservation laws.

Nonlinear Dynamics and Systems Theory (ISSN 1562-8353 (Print), ISSN 1813-7385
(Online)) is an international journal published under the auspices of the S.P. Timoshenko
Institute of Mechanics of National Academy of Sciences of Ukraine and Curtin University
(Perth, Australia). It aims to publish new significant scientific results within the scopes
listed above.
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Complex Network Synchronization of Coupled

Time-Delay Chua Oscillators in Different Topologies

O.R. Acosta-Del Campo 1, C. Cruz-Hernández 2∗, R.M. López-Gutiérrez 1,
A. Arellano-Delgado 1, L. Cardoza-Avendaño 1 and R. Chávez-Pérez 2
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Abstract: In this paper, complex network synchronization of coupled hyperchaotic
nodes (described by time-delay Chua oscillators) in different topologies is reported.
In particular, networks synchronization in nearest-neighbor, small-world, open ring,
tree, star, and global topologies are achieved. For each topology, the number of
hyperchaotic nodes is evaluated that can be connected in the dynamical networks
for synchronization purpose, which is based on a particular coupling strength. In
addition, complex network synchronization for the mentioned topologies with unidi-
rectional and bidirectional coupling of hyperchaotic nodes is considerated.

Keywords: complex networks; nearest-neighbor topology; small-world topology; open
ring topology; tree topology; star topology; global topology; network synchronization;
hyperchaotic time-delay Chua oscillator.

Mathematics Subject Classification (2000): 37N35, 65P20, 68P25, 70K99,
93D20, 94A99.
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1 Introduction

Many systems in nature, applied sciences, and technology are constituted by a large num-
ber of highly interconnected dynamical units, the so-called complex dynamical networks.
Some typical examples are coupled biological and chemical systems, neural networks,
social interacting species, the Internet or the World Wide Web.

Complex networks of dynamical systems have been recently proposed as models in
many diverse fields of applications (see e.g. [3, 17] and references therein). Recently,
particular attention has been focused on the problem of making a network of dynamical
systems synchronize to a common behavior. Typically, the complex network consists
of N identical nonlinear dynamical systems coupled through the edges of the network
itself [3, 17].

Synchronization is an important property of dynamical systems and even more when
the dynamical systems have chaotic behavior, since achieving synchronization of chaotic
systems provides superior alternatives to be explored, in complex network synchroniza-
tion with chaotic nodes. The most works on network synchronization is about network
configurations with regular coupling, see for example [8, 34], while the study in random
network synchronization has been smaller, see e.g. [7, 13].

In particular, there is an increased interest in complex network synchronization of
dynamical chaotic systems, which has led many scientists to consider the phenomenon
of synchronization in large-scale networks with coupled chaotic oscillators like nodes,
see e.g. [1, 2, 5, 8, 9, 18–27, 30, 31, 34, 35]. This type of network synchronization has been
with topologies completely regular and global networks, see for example [26]. The main
benefit of these simple architectures is that we can focus on the complexity caused by the
nonlinear dynamics of the nodes, without taking into account the additional complexity,
characteristic of the network topology.

In this paper, we synchronize complex dynamical networks of coupled hyperchaotic
nodes in different topologies. In particular, each uncoupled dynamical system is de-
scribed by a nonlinear set of time-delay Chua oscillators, which generate very complex
behavior including hyperchaotic motion. This study presents network synchronization in
nearest-neihbor, small-world, open ring, tree, star, and global coupling topologies; which
are the most widely used in network communication systems. The complex network
synchronization is achieved in two different way: with unidirectional and bidirectional
coupling. In addition, network synchronization is evaluated according to a particular
coupling strength for each topology.

The rest of the paper is outlined as follows. Section 2 describes the mathemati-
cal preliminaries, some important definitions, description of the networks, topologies,
characteristics, network synchronization conditions, probability conditions, etc. Section
3 shows network synchronization with time-delay Chua oscillator like nodes, then it’s
performed network synchronization with each of the topologies with unidirectional and
bidirectional coupling. Section 4 gives the conclusions of the results.

2 Preliminaries

We consider a complex dynamical network of N identical nodes, linearly coupled through
the first state variable of each node, each node being a n-dimensional dynamical system.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (4) (2011) 341–372 343

The state equations of the network are given by:

.
xi1 = f1(xi) + s

N
∑

j=1

aijxj1, i = 1, 2, ..., N.

.
xi2 = f2(xi),

...
.
xin = fn(xi), (1)

where xi = (xi1, xi2, ..., xin)
T ∈ R

n are the state variables of node i, fi(0) = 0, s > 0 rep-
resents the coupling strength of the network, and the coupling matrix A = (aij)(N×N) ∈
R

N×N represents the coupling configuration of the complex dynamical network. If there
is a connection between node i and node j, then aij = 1; otherwise, aij = 0 (i 6= j).

In this paper, we only consider symmetric and diffusive coupling. In particular, we
assume that:
(i) A is a symmetric and irreducible matrix.
(ii) The off-diagonal elements aij (i 6= j) of coupling matrix A, are either 1 (when a
connection between node i and node j) or 0 (when a connection between node i and
node j is absent).
(iii) The elements of the principal diagonal of A satisfy

aii = −
N
∑

j=1

j 6=i

aij = −
N
∑

j=1

j 6=i

aji, i = 1, 2, ..., N. (2)

The above conditions imply that one eigenvalue of the coupling matrix A is zero,
with multiplicity 1, and all the other eigenvalues of A are strictly negative.

Given the dynamics of an isolated node and the coupling strength, stability of the
synchronization state of the complex dynamical network (1) can be characterized by those
nonzero eigenvalues of the coupling matrix A. A typical result states that the complex
dynamical network (1) will synchronize if these eigenvalues are negative enough [34].

Lemma 2.1 [31] Consider the dynamical network (1). Let λ1 be the largest nonzero
eigenvalue of the coupling matrix A of the network. The synchronization state of network
(1) defined by x1 = x2 = ... = xn is asymptotically stable, if

λ1 ≤ −
T

s
, (3)

where s > 0 is the coupling strength of the network and T > 0 is a positive constant such
that zero is an exponentially stable point of the following n-dimensional system:

.
z1 = f1(z)− Tz1,

.
z2 = f2(z),

.
zn = fn(z). (4)

System (4) corresponds an isolated node with self-feedback –Tz1. Condition (3) means
that the complex dynamical network (1) will synchronize provided that λ1 is negative
enough, e.g. it is sufficient to be less than −T/s, so that the self-feedback term –Tz1
could stabilize the isolated node (4).
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3 Complex Network Topologies

3.1 Nearest-neighbor coupled network topology

The coupling configuration in nearest-neighbor consists of N arranged nodes in ring
where each node i coupled to its nearest-neighbors nodes. The corresponding coupling
matrix is given by

Anc =















−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2















. (5)

The eigenvalues of the coupling matrix Anc are given by [31]:

{

− 4sin2

(

kπ

N

)

, k = 0, 1, . . . , N − 1
}

. (6)

Therefore, according to Lemma 2.1, the nearest-neighbor coupled dynamical network
will asymptotically synchronize if [31]:

4sin2
( π

N

)

≥
T

s
. (7)

3.2 Small-world coupled network topology

Aiming to describe a transition from a regular network to a random network, Watts and
Strogatz [32] introduced an interesting model, called the small-world (SW) network. The
original SW model can be described as follows. Take an one-dimensional network of N
arranged nodes in a ring with connections between only nearest neighbors. We “rewire”
each connection with some probability p. Rewiring in this context means shifting one
end of the connection to a new node chosen at random from the whole network, with the
constraint that no two different nodes can have more than one connection among them,
and no node can have a connection with itself.

However, there is a possibility for the SW model to be broken into unconnected clus-
ters. This problem can be circumvented by a slight modification of the SW model, sug-
gested by Newman and Watts [15], which is called the NW model. In the NW model, we
do not break any connection between any two nearest neighbors. We add with probability
p a connection between each other pair of nodes. Likewise, we do not allow a node to be
coupled to another node more than once, or coupling of a node with itself. For p = 0,
it reduces to the originally nearest-neighbor coupled network; for p = 1, it becomes a
globally coupled network. In this paper, we are interested in probabilities with 0 < p < 1.

From a coupling matrix point of view, a complex dynamical network (1) with new
connections in small-world is determined as follows: if aij = 0, this element can change to
aij = aji = 1 according to the probability p. Then, we recompute the diagonal elements
according to Eq. (2). We denote the new small-world coupling matrix as Aswc(p;N) and
let λ

1swc(p;N) be its largest nonzero eigenvalue. According to Lemma 2.1, if

λ
1swc(p;N) ≤ −

T

s
, (8)
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then the corresponding complex dynamical network (1) with small-world connections will
synchronize [31].

3.3 Open ring coupled network topology

Open ring configuration consists of N arranged nodes in a ring, but in this case, the last
node is not connected to the first node. The corresponding coupling matrix is given by

Arc =















−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1















. (9)

This matrix have an eigenvalue at 0 and others N − 1 are at −1 [30].

3.4 Star coupled network topology

A complex dynamical network with star coupling consists of a single node (called the
common node or central node) of the complex dynamical network connected with the
remaining N − 1 nodes. The coupling matrix is given by

Asc =

















1−N 1 ... ... 1
1 −1
...

. . .
...

. . .

1 −1

















. (10)

The eigenvalues of the coupling matrix Asc are {0,−N,−1, . . . ,−1} [30].

3.5 Globally coupled network topology

In this coupling configuration, the N nodes are connected with others; that is any two
nodes are connected directly. All nodes are connected to the same number (N − 1) of
nodes. Thus, the coupling matrix is given by

Agc =















1−N 1 1 . . . 1
1 1−N 1 . . . 1
...

. . .
. . .

. . .
...

1 1 1 . . . 1
1 1 1 . . . 1−N















. (11)

This matrix has a single eigenvalue at 0 and others N − 1 at −N [30]. Lemma 2.1
implies that the global coupled network will asymptotically synchronize, if

N ≥ −
T

s
.
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3.6 Tree coupled network topology

The network topology in tree can be viewed as a collection of star networks arranged in
a hierarchy way, the network begins with a master node and this in turn is connected to
other slave nodes which are connected with the rest of the nodes. The coupling matrix
for this network is given by

Atc =

































0 ... ... ... ... ... 0

1 −1
. . .

. . .
. . .

. . .
...

1 0
. . .

. . .
. . .

. . .
...

0 1
. . .

. . .
. . .

. . .
...

... 1 0
. . .

. . .
. . .

...
... 0 1

. . .
. . .

. . . 0
...

... 1 0 0 0 −1

































. (12)

This matrix has an eigenvalue at 0 and the others N − 1 are at −1 [30].

4 Network Synchronization with Time-Delay Chua Oscillator Like Nodes

4.1 Time-delay Chua oscillator

The time-delay Chua oscillator is a physical system, which presents well-defined hy-
perchaotic dynamics confirmed experimentally and numerically. The state equations
describing the time-delay Chua oscillator in dimensionless form are given by [4, 6, 29]:

.
x1 = α(−x1 + x2 − f(x1)),
.
x2 = x1 − x2 + x3, (13)
.
x3 = −βx2 − γx3 − βε sin(σx1 (t− τ)),

with nonlinear function defined by

f (x1) = bx1 +
1

2
(a− b) (|x1 + 1| − |x1 − 1|) .

The parameters which are obtained hyperchaotic dynamics are: α = 10, β = 19.53,
γ = 0.1636, a = −1.4325, b = −0.7831, σ = 0.5, ε = 0.2, and by using the time-delay
τ = 0.001. The initial conditions of the oscillator are x(0) = (1.1, 0.1, 0.5). The generated
hyperchaotic attractors by the time-delay Chua oscillator (13) are shown in Figure 1.
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Figure 1: Hyperchaotic attractors generated by the time-delay Chua oscillator.

4.2 Synchronization in nearest-neighbor coupled networks

4.2.1 Bidirectional network synchronization

The state equations for N hyperchaotic nodes of the complex dynamical network (1) are
given by

.
xi1 = α(−xi1 + xi2 − f(xi1)) + s

N
∑

j=1

(aijxj1), i = 1, 2, ..., N,

.
xi2 = xi1 − xi2 + xi3, (14)
.
xi3 = −βxi2 − γxi3 − βε sin(σxi1 (t− τ)),

with nonlinear function defined by

f (x1) = bx1 +
1

2
(a− b) (|x1 + 1| − |x1 − 1|) .

For T = 30, the isolated node time-delay Chua oscillator (13) stabilizes at a point as
is shown in Figure 2. The coupling strength chosen is s = 25 and the connection grade
of the dynamical network is K = 2.

For example, with N = 5 hyperchaotic nodes (time-delay Chua oscillators), the dy-
namical network is shown in Figure 3(a). The bidirectional coupling matrix is given
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Figure 2: Attractors generated by an isolated time-delay Chua oscillator with feedback −Tx1 .

by

Anc =













−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2













. (15)

The largest nonzero eigenvalue of Anc is defined by (6) as follows

− 4sin2
(π

5

)

= −1.382. (16)

The network synchronization condition (3) is as follows

− 1.382 ≤ −
30

25
= −1.2. (17)

With these chosen values, the condition (3) is fulfilled and therefore the dynamical
network with N = 5 hyperchaotic nodes in nearest-neighbor will synchronize.

Figure 4 shows the first attractor (xi1 vs xi2) of each node. While, Figure 5 illustrates
synchronization among nodes, showing the first state of each hyperchaotic node.

With N = 6 hyperchaotic nodes, the network is shown in Figure 3(b). The coupling
matrix is defined by

Anc =

















−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2

















. (18)
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Figure 3: Network topologies in bidirectional nearest-neighbor: a) With N = 5 nodes. b) With
N = 6 nodes.

Figure 4: First attractor of each node with bidirectional synchronization for N = 5.

The largest nonzero eigenvalue is defined by (6),

− 4sin2
(π

6

)

= −1. (19)
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Figure 5: Synchronization among 5 hyperchaotic nodes in the bidirectional nearest-neighbor
coupled network.

The network synchronization condition (3) is as follows

−1 ≤ −
30

25
= −1.2.

Now, the network synchronization condition (3) is not fulfilled and therefore the
dynamical network with 6 hyperchaotic nodes will not synchronize. Figure 6 illustrates
the phase portrait among nodes, showing the first state of each node. It can be seen that
there is no synchronization among nodes.

Therefore, we can say that for s = 25 and N = 6, the synchronization of the network
in bidirectional nearest-neighbor configuration will synchronize up to with 5 hyperchaotic
nodes.

4.2.2 Unidirectional network synchronization

With N = 5 hyperchaotic nodes (time-delay Chua oscillators), the dynamical network is
shown in Figure 7(a). The unidirectional coupling matrix is given by

Anc =













−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1













. (20)
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Figure 6: Phase portrait for no synchronization process among 6 hyperchaotic nodes of the
dynamical network.

With a coupling strength s = 10 and previous values, the dynamical network with
5 nodes synchronizes. Figure 8 shows the first hyperchaotic attractors (xi1 vs xi2) of
each node. While, Figure 9 illustrates the synchronization among 5 hyperchaotic nodes,
showing the first state of each node.

Figure 7: Network configuration in unidirectional nearest-neighbor: a) With N = 5 hyper-
chaotic nodes. b) With N = 6 hyperchaotic nodes.

With N = 6 hyperchaotic nodes, the dynamical network is shown in Figure 7(b). For
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Figure 8: First attractor of each node with unidirectional synchronization for N = 5 hyper-
chaotic nodes.

this case, the coupling matrix is defined by

Anc =

















−1 0 0 0 0 1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

















. (21)

The largest nonzero eigenvalue is −0.5 − 0.866i. With a coupling strength s = 10
and previous values, the network with 6 hyperchaotic nodes will not synchronize. Figure
10 illustrates the synchronization errors among 6 hyperchaotic nodes, showing the first
state of each node. It can be seen that there is no synchronization among nodes.

Therefore, we have that for coupling strength s = 10 and N = 6 hyperchaotic nodes,
the dynamical network in unidirectional nearest-neighbor configuration will synchronize
up to with N = 5 hyperchaotic nodes. In the sequel, we show how synchronize the men-
tioned complex dynamical network with few extra connections for N ≥ 6 hyperchaotic
nodes.
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Figure 9: Synchronization among 5 hyperchaotic nodes in unidirectional nearest-neighbor cou-
pled network.

4.3 Synchronization in small-world coupled networks

4.3.1 Bidirectional network synchronization

The nearest-neighbor coupled network with the values of previous parameters will not
synchronize for N ≥ 6, therefore, in this subsection we use the small-world configuration
for synchronization of a number of hyperchaotic time-delay Chua oscillator nodes N ≥ 6,
of course without reaching the global coupling configuration, where network synchroniza-
tion can be achieved without “any problem”, besides having unnecessary connections that
would increase construction costs and higher energy consumption, while with some new
connections we can achieve complete synchronization of the complex dynamical network
by using the small-world configuration.

Based on the coupling matrix (12) with N = 6 hyperchaotic nodes, the bidirectional
nearest-neighbor configuration can build the new coupling matrix in small-world as fol-
lows [31]. In the nearest-neighbor coupling matrix Anc, the elements aij = aji = 0 can
change to aij = aji = 1 according to a chosen probability p. In this case, we used a
probability of connection p = 0.15, we choose a dynamical network with two new con-
nections. With these new connections the dynamical network is shown in Figure 11(a).
Then, we recompute the diagonal elements according to Eq. (2), the coupling matrix
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Figure 10: Phase portrait for no synchronization process among 6 hyperchaotic nodes of the
unidirectional network.

with two new connections is defined by

Aswc =

















−3 1 0 1 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
1 0 1 −4 1 1
0 0 0 1 −2 1
1 0 0 1 1 −3

















.

The largest nonzero eigenvalue is −1.3088. The network synchronization condition (3) is

given by

− 1.3088 ≤ −
30

25
= −1.2. (22)

With these chosen values, the condition (3) is fulfilled and therefore the complex
dynamical network with 6 hyperchaotic nodes will synchronize. Figure 12 shows the first
attractor of each node.

Figure 13 illustrates the network synchronization among 6 hyperchaotic nodes, show-
ing the first state of each node.

Figure 14 shows the numerical values of λ1swc as a function of the number of N
hyperchaotic nodes. In this figure each pair of values N and λ1swc is obtained by
averaging the results of 20 runs, implemented in the Matlab programming language.
The above results imply that, for any given coupling strength s, we have: For any given
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Figure 11: Small-world network configuration with N = 6 hyperchaotic nodes. a) Bidirectional
coupling. b) Unidirectional coupling.

Figure 12: First hyperchaotic attractor of each node in bidirectional small-world configuration
with N = 6 nodes.

N hyperchaotic nodes, there exists a critical value λ1swc, such that if λ1swc ≥ λ1swc,
then the small-world connected network will synchronize.

4.3.2 Unidirectional network synchronization

Based on the coupling matrix (12) with N = 6 hyperchaotic nodes, the unidirectional
nearest-neighbor configuration can build the new coupling matrix in small-world as fol-
lows [31]. In the nearest-neighbor coupling matrix Anc, the elements aij = aji = 0 can
change to aij = aji = 1 according to a chosen probability p. In this case, we used a
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Figure 13: Synchronization in the first states among 6 hyperchaotic nodes of the network in
bidirectional small-world configuration.

Figure 14: Number of nodes in function of the eigenvalues to achieve complex network syn-
chronization.

probability of connection p = 0.15, we choose a dynamical network with two new con-
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nections. With these new connections the dynamical network is shown in Figure 11(b).
Then, we recompute the diagonal elements according to Eq. (2), the coupling matrix
with two new connections is defined by

Aswc =

















−1 0 0 0 0 1
1 −1 0 0 0 0
0 1 −1 0 0 0
1 0 1 −2 0 0
0 0 0 1 −1 0
0 0 0 1 1 −2

















.

The largest nonzero eigenvalue is −0.9293 + 0.7587i.

With these two new connections and previous values, the unidirectional small-world
complex dynamical network with 6 nodes will synchronize. Figure 15 shows the first
hyperchaotic attractor of each node. Figure 16 illustrates the complex network synchro-
nization among 6 hyperchaotic nodes, showing the first state of each node.

Figure 15: First hyperchaotic attractor of each node in unidirectional small-world configuration
with N = 6.
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Figure 16: Synchronization in the first states among 6 hyperchaotic nodes of the network in
unidirectional small-world configuration.

4.4 Synchronization in open ring coupled networks

4.4.1 Bidirectional network synchronization

With N = 6 hyperchaotic nodes, the dynamical network is shown in Figure 17(a). The
coupling matrix is given by

Arc =

















−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −1

















. (23)

The largest nonzero eigenvalue is −0.2679. In this case, Lemma 2.1 is not valid,
however this dynamical network synchronizes with a coupling strength s = 50.

Figure 18 shows the first attractor (xi1 vs xi2) of each node. Figure 19 illustrates
the network synchronization among 6 hyperchaotic nodes, showing the first state of each
node.
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Figure 17: Network configuration in open ring with N = 6 hyperchaotic nodes: a) Bidirectional
coupling. b) Unidirectional coupling.

Figure 18: First attractor of each node in bidirectional open ring configuration with N = 6
hyperchaotic nodes.
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Figure 19: Synchronization among 6 nodes of the network in bidirectional open ring configu-
ration.

4.4.2 Unidirectional synchronization

With a number N = 6 hyperchaotic nodes, the dynamical network is shown in Figure
17(b). The corresponding coupling matrix is defined by

Arc =

















0 0 0 0 0 0
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

















. (24)

The largest nonzero eigenvalue is −1. In this case, Lemma 2.1 is not valid, however
this dynamical network synchronizes with a coupling strength s = 50.

Figure 20 illustrates the first attractor (xi1 vs xi2) of each node. Figure 21 shows
the network synchronization among 6 hyperchaotic nodes, showing the first state of each
node.
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Figure 20: First attractor of each hyperchaotic node in unidirectional open ring configuration
with N = 6 hyperchaotic nodes.

Figure 21: Synchronization among 6 hyperchaotic nodes of the network in unidirectional open
ring configuration.



362 O.R. ACOSTA-DEL CAMPO, C. CRUZ-HERNÁNDEZ ET. AL.

Figure 22: Network configuration in star with N = 5 hyperchaotic nodes: a) Bidirectional
coupling. b) Unidirectional coupling.

4.5 Synchronization in star coupled networks

4.5.1 Bidirectional network synchronization

With N = 5 hyperchaotic nodes, the dynamical network is shown in Figure 22(a). The
coupling matrix is given by

Asc =













−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1













. (25)

The largest nonzero eigenvalue is −1. In this case, Lemma 2.1 is not valid, however
this network synchronizes with a coupling strength s = 20.

Figure 23 shows the first attractor (xi1 vs xi2) of each node. Figure 24 illustrates the
synchronization among nodes, showing the first state of each node.

4.5.2 Unidirectional network synchronization

With N = 5 hyperchaotic nodes, the dynamical network is shown in Figure 22(b). The
coupling matrix is given by

Asc =













0 0 0 0 0
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1













. (26)

The largest nonzero eigenvalue is −1. In this case, Lemma 2.1 is not valid, however
this dynamical network synchronizes with a coupling strength s = 20.

Figure 25 shows the first attractor (xi1 vs xi2) of each hyperchaotic node. Figure 26
illustrates the synchronization among nodes, showing the first state of each node.
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Figure 23: First hyperchaotic attractor of each node in bidirectional star configuration with
N = 5.

Figure 24: Synchronization among 5 hyperchaotic nodes of the network in bidirectional star
configuration.



364 O.R. ACOSTA-DEL CAMPO, C. CRUZ-HERNÁNDEZ ET. AL.

Figure 25: First hyperchaotic attractor of each node in unidirectional star configuration with
N = 5 nodes.

Figure 26: Synchronization among 5 hyperchaotic nodes of the network in unidirectional star
configuration.
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Figure 27: Network in global coupling with N = 6 hyperchaotic nodes.

4.6 Synchronization in global coupled networks

With N = 6 hyperchaotic nodes, the network is shown in Figure 27. The coupling matrix
is defined by

Agc =

















−5 1 1 1 1 1
1 −5 1 1 1 1
1 1 −5 1 1 1
1 1 1 −5 1 1
1 1 1 1 −5 1
1 1 1 1 1 −5

















. (27)

The largest nonzero eigenvalue is −6. In this case, Lemma 2.1 is not valid, however
this dynamical network synchronizes with a coupling strength s = 10. Figure 28 shows
the first attractor (xi1 vs xi2) of each 6 hyperchaotic nodes. Figure 29 illustrates the
synchronization among 6 hyperchaotic nodes, showing the first state of each hyperchaotic
node.

4.7 Synchronization in tree coupled networks

4.7.1 Bidirectional network synchronization

With N = 7 hyperchaotic nodes, the dynamical network is shown in Figure 30(a). The
coupling matrix is given by

Atc =





















−2 1 1 0 0 0 0
1 −3 0 1 1 0 0
1 0 −3 0 0 1 1
0 1 0 −1 0 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 −1 0
0 0 1 0 0 0 −1





















. (28)

The largest nonzero eigenvalue is −0.2679. In this case, Lemma 2.1 is not valid,
however this dynamical network synchronizes with a coupling strength s = 10.

Figure 31 shows the first attractor (xi1 vs xi2) of each node. Figure 32 illustrates
the network synchronization among 7 hyperchaotic nodes, showing the first state of each
node.
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Figure 28: First hyperchaotic attractor of each node in global coupling with N = 6 nodes.

Figure 29: Synchronization among 6 hyperchaotic nodes of the dynamical network in global
coupling.
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Figure 30: Network configuration in tree with N = 7 hyperchaotic nodes: a) Bidirectional
coupling. b) Unidirectional coupling.

Figure 31: First hyperchaotic attractor of each node in bidirectional tree configuration with
N = 7 nodes.
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Figure 32: Synchronization among 7 hyperchaotic nodes of the network in bidirectional tree
configuration.

Figure 33: First hyperchaotic attractor of each node in unidirectional tree configuration with
N = 7 nodes.
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Figure 34: Synchronization among 7 hyperchaotic nodes of the network in unidirectional tree
configuration.

4.7.2 Unidirectional network synchronization

With N = 7 hyperchaotic nodes, the dynamical network is shown in Figure 30(b). The
coupling matrix is given by

Atc =





















0 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
0 1 0 −1 0 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 −1 0
0 0 1 0 0 0 −1





















. (29)

The largest nonzero eigenvalue is−1. In this case, Lemma 2.1 is not valid, however this
network synchronizes with a coupling strength s = 20. Figure 33 shows the first attractor
(xi1 vs xi2) of each hyperchaotic node. Figure 34 illustrates the synchronization among
7 hyperchaotic nodes, showing the first state of each node.

5 Conclusions

In this paper, synchronization of complex dynamical networks in various topologies was
performed. Numerical results were obtained for network synchronization in nearest-
neighbor configuration, small-world configuration, open ring configuration, tree configu-
ration, star configuration, and global configuration topologies, by using the hyperchaotic
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time-delay Chua oscillator like nodes. One can see that each coupling configuration
requires a different coupling strength, each topology also has its own characteristics
with implication that this coupling strength is different for each case. As an example,
we mention the first topology, the nearest-neighbor, where with a number of N = 5
hyperchaotic nodes, it was required a coupling strength s = 25 for bidirectional synchro-
nization; instead, for unidirectional network synchronization and the same number of
nodes a coupling strength s = 10 is enough to achieve network synchronization. For tree
topology, the bidirectional network synchronization requires a coupling strength s = 10
to synchronize, however, the unidirectional synchronization requires a coupling strength
s = 20 for synchronization, which is twice as large as that of bidirectional. However,
for all topologies the synchronization of the network was achieved unidirectionally or
bidirectionally.
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L. Network synchronization of unified chaotic systems in master-slave coupling. In: Procs.
of the 3th International Conference on Complex Systems and Applications. Le Havre, Nor-
mandy, France, 2009, P. 56–60.

[6] Cruz-Hernández, C. and Martynyuk, A. A. Advances in Chaotic Dynamics and Applica-
tions, Stability, Oscillations and Optimization of Systems. Cambridge Scientific Publishers,
Vol. 4, 2010.

[7] Gade, P. M. Synchronization of oscillators with random nonlocal connectivity. Phys. Rev.
E54 (1996) 64–70.

[8] Heagy, J. F., Carroll, T. L. and Pecora, L. M. Synchronous chaos in coupled oscillator
systems. Phys. Rev. E50 (3) (1994) 1874–1885.

[9] Hu, G., Yang, J. and Liu, W. Instability and controllability of linearly coupled oscillators:
Eigenvalue analysis. Phys. Rev. Lett. 74 (21) (1998) 4185–4188.

[10] Lago-Fernández, L. F., Huerta, R., Corbacho, F. and Siguenza, J. A. Fast response and
temporal coherent oscillations in small-world networks. Phys. Rev. Lett. 84 (12) (2000)
2758–2761.
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Abstract: In this paper, the problem of partial stabilization is considered for non-
linear control systems and a general approach for partial stabilization is proposed.
In this approach, by introducing the notion of partially passive systems, some theo-
rems for partial stabilization are developed. For this purpose, the nonlinear system
is divided into two subsystems based on stability properties of system’s states. The
reduced control input vector (the vector that includes components of input vector ap-
pearing in the first subsystem), is designed based on the new passivity based control
theorems, in such a way to guarantee asymptotic stability of the nonlinear system
with respect to the first part of states vector.

Keywords: nonlinear systems; partial stability; partial passivity; partial control.
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1 Introduction

For many of engineering problems, application of Lyapunov stability is required [1]– [3].
However, there are other physical systems like inertial navigation systems, spacecraft sta-
bilization, electromagnetic, adaptive stabilization, guidance, etc. [4]– [12], where partial
stability is necessary. In the mentioned applications, while the plant may be unstable in
the standard sense, it is partially and not totally asymptotically stable. It means that
naturally the plant is stable with respect to just some -and not all- of the state variables.
For example, consider the equation of motion for the slider-crank mechanism depicted in
Figure 1 [8]:
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Figure 1: Slider-crank mechanism [8].

m(θ(t))θ̈(t) + c(θ(t))θ̇2(t) = u(t),

θ(0) = θ0, dotθ(0) = θ̇0, t ≥ 0,

where

m(θ) = mBr
2 +mAr

2

(

sin θ +
r cos θ sin θ

√

l2 − r2 sin2 θ

)2

,

c(θ) = mAr
2

(

sin θ +
r cos θ sin θ

√

l2 − r2 sin2 θ

)

(

cos θ + r
l2(1− 2 sin2 θ) + r2 sin4 θ

(l2 − r2 sin2 θ)3/2

)

and mA and mB are point masses, r and l are the lengths of the rods, and u(.) is the
control torque applied by the motor. Suppose that a feedback control law in the form of
u(.) = k(θ, θ̇) should be designed in a way that the angular velocity becomes constant;
that is, θ̇(t) → Ω as t → ∞ where Ω > 0. This implies that θ(t) = Ωt → ∞ as t → ∞.
In addition, the angular position θ may not be disregarded. It is because m(θ) and c(θ)
are functions of θ, and sin θ does not converge to a limit. Consequently, it is obvious
that the slider-crank mechanism is unstable in the standard sense; however, it is partially
asymptotically stabilizable with respect to θ̇ [8].

In spite of variety of research papers in the ground of partial stability applications,
there are only few papers in partial control design and advantages of partial control are
not fully recognized. Furthermore, most of papers do not propose a general framework to
design a partially stabilizing controller for nonlinear systems. In [6], the design of a partial
controller is done for an Euler dynamical system. The references [5, 7] deal with several
types of partial stabilization and control problems, such as permanent rotations of a rigid
body, relative equilibrium of a satellite, stationary motions of a gimbaled gyroscope.
Application of partial stabilization to achieve chaos synchronization is investigated in
[10, 11].

In this article, a general approach for partial control design is proposed. This ap-
proach provides the possibility to transform the control problem into a simpler one by
reducing the control input variables. For this purpose, the state vector of the system is
separated into two parts and accordingly the nonlinear dynamical system is divided into
two subsystems. The subsystems, hereafter, are referred to as the first and the second
subsystems. The reduced control input vector (the vector that includes components of
input vector which appear in the first subsystem) is designed based on new concept of
passivity, i.e., partial passivity in such a way to guarantee asymptotic stability of the
nonlinear system with respect to the first part of state vector.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (4) (2011) 373–382 375

The concept of passivity and its application in stability have been widely studied
in many books and papers [13]– [18]. In this paper, introducing the notion of partially
passive systems, a new approach for partial stabilization is developed.

The remainder of this paper is arranged as follows. First, the preliminaries on partial
stability/control are given in Section 2. In Section 3, the theorems for partial control
design are presented and explained in detail. Finally, conclusions are made in Section 4.

2 Preliminaries

In this section, the definitions and notations of partial stability are introduced. Consider
a nonlinear system in the form:

ẋ = f(x), x(t0) = x0, (1)

where x ∈ Rn is the state vector. Let vectors x1 and x2 denote the partitions of the
state vector, respectively. Therefore, x = (xT

1 , x
T
2 )

T where x1 ∈ Rn1 , x2 ∈ Rn2 and
n1 + n2 = n. As a result, the nonlinear system (1) can be divided into two subsystems
(the first and the second subsystems) as follows:

ẋ1(t) = F1(x1(t), x2(t)), x1(t0) = x10,

ẋ2(t) = F2(x1(t), x2(t)), x2(t0) = x20, (2)

where x1 ∈ D ⊆ Rn1 , D is an open set including the origin, x2 ∈ Rn2 and F1 : D×Rn2 →
Rn1 is such that for every x2 ∈ Rn2 , F1(0, x2) = 0 and F1(., x2) is locally Lipschitz in
x1. Also, F2 : D×Rn2 → Rn2 is such that for every x1 ∈ D, F2(x1, .) is locally Lipschitz
in x2, and Ix0

= [0, τx0
), 0 < τx0

≤ ∞ is the maximal interval of existence of solution
(x1(t), x2(t)) of (2) ∀t ∈ Ix0

. Under these structures, the existence and uniqueness of
solution is ensured. Stability of the dynamical system (2) with respect to x1 can be
defined as follows [8]:

Definition 2.1 The nonlinear system (2) is Lyapunov stable with respect to x1 if
for every ǫ > 0 and x20 ∈ Rn2 , there exists δ(ǫ, x20) > 0 such that ‖x10‖ < δ implies
‖x1(t)‖ < ǫ for all t ≥ 0 . This system is asymptotically stable with respect to x1, if it is
Lyapunov stable with respect to x1 and for every x20 ∈ Rn2 , there exists δ = δ(x20) > 0
such that ‖x10‖ < δ implies limt→∞ x1(t) = 0.

Now, in order to analyze partial stability, the following results are taken from [8].

Theorem 2.1 Nonlinear dynamical system (2) is asymptotically stable with respect
to x1 if there exist a continuously differentiable function V : D × Rn2 → R and class K
functions, α(.) and γ(.), such that:

V (0, x2) = 0, x2 ∈ Rn2 , (3)

α (‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D ×Rn2 , (4)

∂V (x1, x2)

∂x1
F1(x1, x2) +

∂V (x1, x2)

∂x2
F2(x1, x2) ≤ −γ(‖x‖), (x1, x2) ∈ D ×Rn2 . (5)

Proof See [8]. 2
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Corollary 2.1 [8] Consider the nonlinear dynamical system (2). If there exist a
positive definite, continuously differentiable function V : D → R and a class K function
γ(.), such that:

∂V (x1)

∂x1
F1(x1, x2) ≤ −γ(‖x‖), (x1, x2) ∈ D ×Rn2 , (6)

then the nonlinear system (2) is asymptotically stable with respect to x1.

Now, consider the following autonomous nonlinear control system:

ẋ1(t) = F1(x1, x2, u(x1, x2)), x1(t0) = x10,

ẋ2(t) = F2(x1, x2, u(x1, x2)), x2(t0) = x20, (7)

where u ∈ Rm and F1 : D × Rn2 × Rm → Rn1 is such that for every x2 ∈ Rn2 ,
F1(0, x2, 0) = 0 and also F1(., x2, .) is locally Lipschitz in x1 and u. Also F2 : D×Rn2 ×
Rm → Rn2 is such that for every x1 ∈ D, F2(x1, ., .) is locally Lipschitz in x2 and u.
These assumptions guarantee the local existence and uniqueness of the solution of the
differential equations (7).

Definition 2.2 The nonlinear control system (7) is said to be asymptotically stabiliz-
able with respect to x1 if there exists some admissible feedback control law u = k(x1, x2),
which makes system (7) asymptotically stable with respect to x1.

3 An Approach for Partial Control Design

Suppose that ẋ1-equation in (7) is affine with respect to control input (the second sub-
system may have the general dynamical form):

ẋ1(t) = f1(x1, x2) +

m
∑

i=1

g1i(x1, x2)ui,

ẋ2(t) = F2(x1, x2, u), (8)

where ui is the ith component of input vector u. Also, g1i, for i = 1, 2, ...,m are the
vectors which belong to Rn1 . Let us define:

r = number of (g1i 6= 0)i=1,...,m,

where r indicates the number of control components of input vector which appear in
ẋ1-equation. Thus 0 ≤ r ≤ m. Now, with respect to the value of r, two cases may be
considered.

3.1 Case 1: r 6= 0.

By augmenting the r nonzero vectors g1i in a matrix, i.e., G1, the nonlinear control
system (8) can be rewritten as follows:

ẋ1(t) = f1(x1, x2) +G1(x1, x2)ur,

ẋ2(t) = F2(x1, x2, u), (9)
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where ur ∈ Rr is the reduced version of control input vector u, that contains r control
variables appearing in ẋ1-equation, G1(x1, x2) is a n1×r matrix where its columns are the
r nonzero vectors g1i. In this case, the task is to find an appropriate ur, which guarantees
partial stabilization of nonlinear system (9) with respect to x1. Indeed, instead of design
u, we design ur to achieve partial stability and this approach lead to simplifying the
controller design. Before this, some definitions about the new concept of passivity, i.e.,
partial passivity are introduced.

Definition 3.1 Consider the system (9) with output function (10):

yr = h(x1, x2), (10)

where yr ∈ Rr and h is a continuous function. The system (9)-(10) is partially passive
(with respect to input ur and output yr) if there exists a continuously differentiable
positive semi definite function V : D → R (called partially storage function) such that

uT
r yr ≥ V̇ (x1), (x1, x2, ur) ∈ D ×Rn2 ×Rr. (11)

Remark 3.1 It is important to note the difference between passive systems which
have been proposed in literature and partially passive systems which is introduced in this
paper. For this purpose, the definition of passive systems is taken from [13]. Consider
the following nonlinear system

ẋ = f(x, u),

y = H(x),

where x ∈ Rn, y, u ∈ Rn, f is locally Lipshitz in (x, u) and H is continuous. The above
system is passive with respect to input u and output y if there exists a continuously
differentiable positive semidefinite function V (x) (storage function) such that

uT y ≥ V̇ (x), (x, u) ∈ Rn ×Rm.

In Definition 3.1, by dividing the state vector x into two parts x1 and x2, the passivity
concept only with respect to the first subsystem, i.e., ẋ1-equation is considered (partial
passivity). Also, the partial storage function (in Definition 3.1) is only function of a part
of states, i.e., x1, while the storage function in definition of passive systems is function
of all states, i.e., x. In what follows some new lemma and theorems are proposed for
partially passive systems.

Lemma 3.1 Consider the nonlinear system (9). Suppose there exists a positive def-
inite, continuously differentiable function V : D → R such that:

∂V (x1)
T

∂x1
f1(x1, x2) ≤ 0, (x1, x2) ∈ D ×Rn2 . (12)

Take virtual output yr as

yr = h(x1, x2) =
∂V (x1)

T

∂x1
G1(x1, x2). (13)

Then the system (9)-(13) is partially passive with respect to input ur and output yr.
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Proof Consider the following statement

uT
r yr −

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) = uT

r h−
∂V (x1)

T

∂x1
f1(x1, x2)− hTur. (14)

Since ur, yr ∈ Rr, thus uT
r h = hTur are scalar terms. Therefore,

uT
r yr −

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) = −

∂V (x1)
T

∂x1
f1(x1, x2), (15)

where according to assumption (12), ∂V (x1)
T

∂x1

f1(x1, x2) ≤ 0, therefore,

uT
r yr −

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) ≥ 0. (16)

Consequently,

uT
r yr ≥

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) = V̇ (x1). (17)

Hence, uT
r yr ≥ V̇ (x1). Thus, by using the function V (x1) as the partial storage function

candidate, the system is partially passive with respect to the input ur and the output yr
(according to Definition 3.1). 2

Theorem 3.1 Consider the nonlinear dynamical system (9). Suppose there exist a
positive definite, continuously differentiable function V (x1) : D → R and a class K
function γ(.) such that:

∂V (x1)
T

∂x1
f1(x1, x2) ≤ −γ (‖x1‖) , (x1, x2) ∈ D ×Rn2 . (18)

Then the state feedback control law (19), makes the system (9) asymptotically stable with
respect to x1.

ur = −ϕ(h(x1, x2)), (19)

where h(x1, x2) =
∂V (x1)

T

∂x1

G1(x1, x2) and ϕ is any smooth mapping such that ϕ(0) = 0

and hTϕ(h) > 0 for all h 6= 0 (It reads a function belonging to the first-third quadrant
sector).

Proof Let us define the virtual output function as follow

yr = h(x1, x2) =
∂V (x1)

T

∂x1
G1(x1, x2). (20)

The derivative of V (x1) satisfies:

V̇ (x1) =
∂V (x1)

T

∂x1
ẋ1

=
∂V (x1)

T

∂x1
(f1(x1, x2) +G1(x1, x2)ur). (21)
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Using (18)

V̇ (x1) ≤ −γ (‖x1‖) +
∂V (x1)

T

∂x1
G1(x1, x2)ur

= −γ (‖x1‖) + yTr ur. (22)

Take,
ur = −ϕ(yr) (23)

Therefore, yTr ur = −yTr ϕ(yr) ≤ 0. As a result,

V̇ (x1) ≤ −γ (‖x1‖) . (24)

Thus, according to Corollary 2.1, the control law (19) makes the nonlinear system (9)
asymptotically stable with respect to x1. 2

Remark 3.2 There is great freedom in choosing ϕ which makes the possibility for ur

to satisfy some constraints. For instance, if ur is constrained to |uri| ≤ ki for 1 ≤ i ≤ r,
then ϕi(yr) can be chosen as ϕi(yr) = kisat(yri) or ϕi(yr) = (2ki/π) tan

−1(yri) (where
uri, ϕi and yri are the ith component of ur, ϕ and yr, respectively).

Remark 3.3 Consider the system (9). If condition (18) was not satisfied, by taking
ur = α(x1, x2) + β(x1, x2)vr, the appropriate functions α and β may be found such that
condition (18) be satisfied for f1new = f1 + G1α. Then, the control law vr = −ϕ(h1)

may be designed for partial stabilization (where h1 = ∂V (x1)
∂x1

T
G1new = ∂V (x1)

∂x1

T
G1β)

3.2 Case 2: r = 0.

It means that there is no component of control input vector in ẋ1-equation. Therefore,
the nonlinear system (8) can be rewritten as follows:

ẋ1 = f1(x1, x2),

ẋ2 = F2(x1, x2, u). (25)

In this case, the task is to find an appropriate u; which guarantees partial stabilization
of the closed-loop system. Suppose that system (25) has the following structure,

ẋ1 = f1(x1) +G1(x1)x2,

ẋ2 = f2(x1, x2) +G2(x1, x2)u. (26)

This system may be viewed as a cascade connection of two subsystems where x2 is
to be viewed as an input for the first subsystem. The system (26) is in the regular form.
Assume that x2 and u both belong to Rm (in other words, n2 = m) and G2(x1, x2) ∈
Rm×m is a nonsingular matrix. This assumption is not so restrictive and many design
methods, which are based on regular forms, e.g., backstepping or sliding mode techniques
use such an assumption [13,14]. In this case, the task is to find an appropriate u; which
guarantees partial stabilization of the closed-loop system.

Theorem 3.2 Consider the nonlinear dynamical system (26). Suppose there exist a
positive definite, continuously differentiable function V : D → R and a class K function
γ(.) such that

∂V (x1)
T

∂x1
f1(x1) ≤ −γ (‖x1‖) . (27)
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Then the state feedback control law (28), makes the closed-loop nonlinear system (26)
asymptotically stable with respect to x1 and

u = G−1
2 [−

∂ϕ(y)

∂y
ẏ − f2(x1, x2)], (28)

where y = V (x1)
T

∂x1

G1(x1) and ϕ is any locally Lipschitz function such that ϕ(0) = 0 and

yTϕ(y) > 0 for all y 6= 0.

Proof The derivative of V (x1) is given by

V̇ (x1) =
∂V (x1)

T

∂x1
ẋ1

=
∂V (x1)

T

∂x1
(f1(x1) +G1(x1)x2). (29)

Using (27), we have

V̇ (x1) ≤ −γ (‖x1‖) +
∂V (x1)

T

∂x1
G1(x1)x2. (30)

Take,

y =
∂V (x1)

T

∂x1
G1(x1) (31)

and

x2 = −ϕ(y). (32)

Then

V̇ (x1) ≤ −γ (‖x1‖) + yTx2. (33)

Since yTx2 = −yTϕ(y) ≤ 0, thus V̇ (x1) ≤ −γ (‖x1‖) and according to Corollary 2.1,
partial stabilization with respect to x1 is achieved. Also,

ẋ2 = −
∂ϕ(y)

∂y
ẏ. (34)

In addition, from ẋ2-equation, one has

ẋ2 = f2(x1, x2) +G2(x1, x2)u. (35)

Therefore, combination of (34) and (35) results in:

u = G−1
2 [−

∂ϕ

∂y
ẏ − f2(x1, x2)]. (36)

This feedback law guarantees partial stabilization of the closed-loop system. 2
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3.3 Design example

Consider the following system

ż1 =
z21z2
z23

+ z1u1,

ż2 = −z2(1 + z21) + z3u2, (37)

ż3 = −z22 sin(z3)− z3,

where z1, z2 ∈ R and z3 ∈ [−π π]. By separating the states into x1 = [z2 z3]
T and

x2 = z1, one has: r = 1 and ur = u2. The task is to design ur according to Theorem 3.1
to achieve asymptotic stability with respect to x1. For this purpose, first the condition
(18) should be checked. By choosing V (x1) =

1
2x

T
1 x1 = 1

2z
2
2 +

1
2z

2
3 , one has:

∂V (x1)
T

∂x1
f1(x1, x2) = [z2 z3]

[

−z2(1 + z21)
−z22 sin(z3)− z3

]

= −z22(1 + z21)− z22z3 sin(z3)− z23 (38)

= −z22 − z22z
2
1 − z22z3 sin(z3)− z23

≤ −z22 − z23 .

Therefore, condition (18) is satisfied for γ (‖x1‖) = xT
1 x1 = z22 + z23 . Now, by choosing h

as,

h(x1, x2) =
∂V (x1)

T

∂x1
G1(x1, x2)

= [z2 z3]

[

z3
0

]

(39)

= z2z3.

Then, the reduced input vector may be designed as

ur = −ϕ(z2z3), (40)

where ϕ is any locally Lipschitz function such that ϕ(0) = 0 and hTϕ(h) > 0 for all
h 6= 0. For example, by choosing ϕ(h) = h, then ur = −z2z3 which guarantees partial
stabilization of system (37) with respect to x1.

4 Conclusion

In this paper, a new approach for partial stabilization of nonlinear systems was proposed
and it was shown that in this approach the controller synthesis can be simplified by
reducing its variables. The reduced input vector was designed based on new introduced
partial passivity concept. In the proposed design method, a virtual output with the
same dimension as the reduced input vector was designed such that the nonlinear system
was partially passive with respect to the reduced input vector and the virtual output
vector. Then, the feedback law was designed as a first-third quadrant sector function of
virtual output vector and it was shown that this law guarantees partial stabilization of
the nonlinear system.
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Abstract: The soliton arising from a robust balance between dispersion and nonlin-
earity is the solitary wave that maintains its shape while it travels at constant speed.
The fiber Optical soliton in media and communication with quadratic nonlinearity
and frequency dispersion are theoretically analyzed. The behavior of soliton solutions
in the form of KdV partial differential equation have been investigated in the fiber
optics solitons theory in communication engineering. In this study optical soliton is
studied with illustrated graphical representation.

Keywords: soliton solution, Korteweg-de Vries equation, Gaussian white noise,
stochastic KdV equation, Fourier transform, nonlinear dynamics.
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1 Introduction

In recent years there have been important and tremendous developments in the study of
nonlinear waves and a class of nonlinear wave equations which arise frequently in many
engineering applications. The wide interest in this field comes from the understanding
of special waves called solitons and the associated development of a method of solution
to a class of nonlinear wave equations termed as the nonlinear Korteweg and de Vries
(KdV) equation. A soliton phenomenon is an attractive field of present day research
not only in nonlinear physics and mathematics but also in nonlinear dynamics and sys-
tem engineering, specially in fiber optics and communication engineering. The soliton
phenomenon was first pioneered by John Scott Russel in 1884, while he was conducting
experiments on the Union Canal (near Edinburgh) to measure the relationship between
the speed of a boat and its propelling force. Russel demonstrated the following findings
as an independent dynamic entity moving with constant shape and speed:
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• (i) Solitary waves have the shape h sech2[k(x− vt)];

• (ii) A sufficiently large initial mass of water produces two or more independent
solitary waves;

• (iii) Solitary waves cross each other without change of any kind;

• (iv) A wave of height h and travelling in a channel of depth d has a velocity given

by the expression v =
√
g(d+ h) (where g is the acceleration of gravity) implying

that a large amplitude solitary wave travels faster than one of low amplitude.

In 1895, Korteweg and de Vries published a theory of shallow water waves that reduced
Russell’s problem to its essential features (see [10] for details). However, the paper by Ko-
rteweg and de Vries was one of the first theoretical treatment in the soliton solution and
thus a very important milestone in the history of the development of soliton theory. An-
other development of the 1960s was Toda’s discovery of exact two-soliton interactions on
a nonlinear spring-mass system (see for example [23]). The brief discussion of mathemati-
cal representation of soliton begins with the Wadati’s paper published in 1983 [24]. Russel
L. Herman a famous Mathematician improved soliton theory and found some improved
results which represent a final solution of soliton [8]. Basically Wadati and Herman both
used a non-linear third order partial differential equation known as Korteweg-de Vries
equation, they started from this equation and finally gave mathematical assumption of
soliton with graphical representation. We refer readers to [5,7,9,10,13,17,20,23,25] and
the references therein for the detail studies about the history of soliton theory and KdV
partial differential equation which is the basic foundation of solitons.

One of the active area of applications of solitons is fiber optics. Much experimen-
tation has been done using solitons in fiber optics applications. In 1973, Robin Bul-
lough [4] showed that solitons could exist in optical fibers while he was presenting the
first mathematical report of the existence of optical solitons. He also proposed the idea
of a soliton-based transmission system to increase performance of optical telecommunica-
tions. Now soliton is an essential tool in communication engineering. Recently the fiber
optical soliton is dominating to the global telecommunication research by super perfor-
mance data transmission in a long distances. See for examples [14,18,19] for more studies
on solitons in communication systems. There are varieties of nonlinear equations repre-
senting the solitons in the nonlinear domain such as, general equal width wave equation
(GEWE), general regularized long wave equation (GRLW), general Kortewegde Vries
equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled
equal width wave equations (CEWE), which are the important soliton equations. See
for examples [1, 2] for more details about different varieties. Our aim is to investigate
some aspects of Kortewegde Vries equation in soliton physics specially for the case of
optical soliton in nonlinear dynamical systems in mathematical physics. We also provide
an illustration with some graphical representations.

2 Analysis and Formulation of Soliton Solution

We consider the nonlinear partial differential equation

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0, (1)
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where u = u(x, t) which describes the elongation of the wave at the place x at time t. This
equation is known as the KdV equation first derived in 1885 by Korteweg and de Vries to
describe long-wave propagation on shallow water. But until recently its properties were
not well understood [13]. However, the nonlinear shallow water wave equation can be
written in the form

∂η

∂t
=

3

2

√
η
∂η

∂x
+

2

3

∂η

∂x
+

1

3
σ
∂3η

∂x3
, (2)

where σ =
h3

3
−Th
gρ

, h is the channel height, T is the surface tension, g is the gravitational

acceleration and ρ is the density.The solutions to (1) are called Solitons or Solitary waves.
The nondispersive nature of the soliton solutions to the KdV equation arises not be-

cause the effects of dispersion are absent but because they are balanced by nonlinearities
in the system. The presence of both phenomena can be appreciated by considering sim-
plified versions of the KdV equation which can be calculated by eliminating the nonlinear

term u
∂u

∂x
as

∂u

∂t
+
∂3u

∂x3
= 0, (3)

The equation (3) is now a linear version and the most elementary wave solution of
this equation, called the harmonic wave is given by

u(x, t) = A exp |i(kx+ ωt)|, (4)

where k is the wave number and ω is the angular frequency. In order for the displacement
u(x, t) presented in equation (4) to be a solution of equation (3), ω and k must satisfy
the relation

ω = k3. (5)

The relation (5) is known as dispersion relation and it contains all the characteristics of
the original differential equation. Two important concepts connected with the dispersion

relation are called the phase velocity vp =
ω

k
and the group velocity vg =

∂ω

∂k
. The phase

velocity measures how fast a point of constant phase is moving, while the group velocity
measures how fast the energy of the wave moves. The waves described by equation (3)
are said to be dispersive because a wave with large k will have larger phase and group
velocities than a wave with small k.

Now eliminating the dispersive term
∂3u

∂x3
, we obtain the simple nonlinear equation

∂u

∂t
+ u

∂u

∂x
= 0, (6)

admitting the wave solution in the form u(x, t) = f(x − ut), where the function f is
arbitrary. For such kind of waves, the important thing to note is that the velocity of a
point of constant displacement u is equal to that displacement. As a result, the wave
breaks; that is, portions of the wave undergoing greater displacements move faster than,
and therefore overtake, those undergoing smaller displacements. This multivaluedness is
a result of the nonlinearity and, like dispersion, leads to a change in form as the wave
propagates. We refer readers to [6,11,15,16,21,22] for further readings as well as recent
developments on nonlinear dynamics and stability analysis in the system theory.
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2.1 Mathematical derivation of KdV

We recall that KdV equation is the basic foundation of soliton solution. So we present
here the brief sketch of calculation for the derivation of KdV equation in the form (1).
In order to derive (1), we consider another nonlinear partial differential equation, called
Kadomtsev-Petviashvili equation (or simply the KP equation) in two spatial and one
temporal coordinate which describes the evolution of nonlinear, long waves of small
amplitude with slow dependence on the transverse coordinate (see for details [3]).The
normalized form of the equation is as follows:

∂

∂x
(ut + 6uux + uxxx)± uyy = 0, (7)

where ut, ux, uxxx and uyy stand for the partial derivatives
∂u

∂t
,
∂u

∂x
,
∂3u

∂x3
and

∂2u

∂y2

respectively. The equation (7) can be calculated as

uxt = uxxx + 3uyy − 6uyuxx − 6ux
2uxx. (8)

Thus the equation (8), after making a detailed calculation can be simplified as

ut + 6uux + uxxx = ξ(t). (9)

Here ξ(t) represents a time dependent Gaussian white noise . The stochastic process
is called Gaussian white noise if its statistical average is zero i.e.; 〈ξ(t)〉 = 0. See [7] for
more details about Gaussian white noise.

Now a relation between two covariance functions in terms of Gaussian white noise is
given by

ξ(t)ξ(T + t) = σ2δ(t). (10)

For the Fourier transformation of stationary two times covariance function we obtain

F (ω) =
∫
dt〈ξ(t)ξ(T + t)〉eiωT

=⇒ F (ω) = σ2
∫
dtδ(t)eiωT

=⇒ F (ω) = σ2.

(11)

In other words, it is clear from the above that it does not depend upon ω because
there is no co-relation in time. This is why it is called white noise.

Now for simplicity, let us assume a one-dimensional stochastic differential equation
with additive noise,

dx(t)

dt
= a(x(t), t) + η(t). (12)

Here a(x(t), t) is a Langiven (see for example [12]) equation which can be interpreted as
a deterministic or average drift term perturbed by a noisy diffusion term ξ(t). For the
increase dx during a time step dt, we get

dx(t) = a(x(t), t)dt+ dω(t),

dω(t) =

∫ t+dt

t

η(t′)dt′
(13)
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and also we assume that

dω(t2) =

∫ t+dt

t

dt1

∫ t+dt

t

dt2〈η(t1)η(t2)〉

=

∫ t+dt

t

dt1

∫ t+dt

t

dt2σ
2δ(t− t′)

= σ2dt.

(14)

Thus in the intervals [t, t+ dt] and [t′, t′ + dt′] which is a true successive step, we get

〈dωω(t)dω′〉 = 2σσ(t− t′). (15)

If δ = ε then in general we can write

〈ξ(t)ξ(t′)〉 = 2σσ(t− t′). (16)

For such time dependent noise the stochastic equation can be transformed into unper-
turbed KdV equation [10] in the form

UT + 6UUX + UXXX = 0. (17)

Let us now introduce the Galilean transformation

u(x, t) = U(X,T ) + ω(T ),

X = x+m(t),

T = t,

m(t) = −σ
∫ t

0

ω(t′)dt′.

(18)

Under the above transformation we have from calculus that the derivatives transform as

∂

∂x
=
∂X

∂x

∂

∂X
+
∂T

∂x

∂

∂T
=

∂

∂X

and
∂

∂t
=
∂X

∂t

∂

∂X
+
∂T

∂x

∂

∂T
= −σω(T )

∂

∂X
+

∂

∂T
. (19)

Now using this transformation we have

ε(t) = ut + 6uux + uxxx

= (U + ω)T − 6ωUX + 6(U + ω)UX + UXXX

= UT + 6UUX + UXXX + ωT .

(20)

Let us now define

ξ = ωT or ω(t) =

∫ t

0

ξ(t′)dt′

which leads to the KdV equation.
A remarkable property of the KdV equation is that dispersion and nonlinearity bal-

ance each other and allow wave solutions that propagate without changing its form. An
example of such a solution is one-soliton solution.
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We next consider one-soliton solution. In such case, let us consider

U(X,T ) = 2ηη sec2(η(X − 4η2T −X0)). (21)

Then the above mentioned transformation leads directly to an exact solution of stochastic
KdV equation

u(x, t) = 2η2 sech2(η(x− 4η2t− x0 − 6

∫ t

0

ω(t′)dt′)) + ω(t)

=⇒ 〈u(x, t)〉 = 2η2〈sech2(ηη(x− 4η2t− x0 − 6

∫ t

0

ω(t′)dt′))〉.
(22)

Formally we can write

sech2z =
4

(ez + e−z)2
=

4e−2|z|

(1 + e−2|z|)2
. (23)

Then according to [24], it can be presented by computing

〈u(x, t)〉 = 8η2
∑∞

n=1(−1)n+1〈exp[2nη(x− 4η2t− x0 − 6

∫ t

0

ω(t′)dt′))〉

= −2
d

dz

1

1 + e2z

= −2
d

dz

( ∞∑
n=0

(e2z)n
)

= 2
∞∑

n=1

(−1)n+1ne2nz.

(24)

In order to complete this composition some following useful relations (we are omitting
the details) are needed. We have

• 〈ω(t)〉 = 0,

• 〈ω(t1)ω(t2)〉 = 2εmin(t1, t2),

• 〈exp(cω(t))〉 = exp
(1

2
c2〈ω2(t)〉

)
.

Applying this result, we get

〈exp
(
± 12nη

∫ t

0

ω(t′)dt′
)
〉 = exp

(
72n2η2

∫ t

0

∫ t

0

〈ω(t1)ω(t2)dt1dt2〉
)

= exp(48n2η2εt3).
(25)

This leads to the following form

〈u(x, t)〉 = 8η2
∞∑

n=1

(−1)n+1nena+nb2 ,

a = 2η(x− x0 − 2η2t), b = 48η2εt3.

(26)

In principle this result should be sufficient but we will go further to find analytically that
gives an expression to this result.

Now differentiating the series with respect to a and b we obtain the partial differential
equation

wb = waa, where w(a, b) = 〈u(x, t)〉.
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Furthermore we have w(a, 0) = 2η2 sech2
a

2
.

This is an initial value problem for the heat or diffusion equation on the real line. To
solve this problem we use Fourier transformation. The Fourier transform is defined by

w̃(k, b) =

∫ ∞
−∞

w(a, b)e−iakda,

and the inverse transform is

w(a, b) =
1

2π

∫ ∞
−∞

w̃(k, b)eiakdk.

The heat equation leads to the simple initial value problem

w̃b = −k2w̃ where w̃(k, 0) = 2η2
∫ ∞
−∞

sech2
a

2
e−iakda = 8η2

πk

sinhπk
.

Therefore, we obtain

w̃(k, b) = 8η2
πk

sinhπk
e−bk

2

. (27)

Thus the solution is found out from inverse Fourier transform as

u(x, t) =
4η2

π

∫ ∞
−∞

πk

sinhπk
eiak−bk

2

dk. (28)

However, the technique followed in [24] asserts that this simply can be calculated
using the convolution theorem. Namely we note that

w̃(k, b) = f̃(k)g̃(k, b) for f̃(k) = 8η2
πk

sinhπk
and g̃(k, b) = e−bk

2

.

The inverse transforms for these expressions are given by

f(a) = 2η2 sech2
a

2
and g(a, b) =

1√
4πb

e
a2

4b .

The last expression is just the statement for Fourier transformation of a Gaussian.
Now from the Gaussian Convolution of the functions, we have

〈u(x, t)〉 = w(a, b) = (f ∗ g)(a) =

∫ ∞
−∞

f(s)g(a− s)ds

=

∫ ∞
−∞

(
2η2 sech2

s

2

)( 1√
4πb

e
−(a−s)2

4b

)
ds

=
η2√
πb

∫ ∞
−∞

e
−(a−s)2

4b sech2
s

2
ds.

(29)

This is the exact solution of stochastic KdV equation which we will now compare to
any simulation results. The result of simulation solution of stochastic KdV equation is
given in Figure 1.

Most of the focuses of any simulations are with respect to the asymptotic results that
Wadati derived from the above solution. We will discuss the graphical representations of
the behavior of soliton solution in two cases, namely, for small times and for large times.
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Figure 1: This graph represents the solution generated by doing a simulation of the stochastic
KdV equation.

Case I: For small times (e.g., b = 48η2εt2 < 1).
In this case, it is a simple matter to show that

〈u(x, t)〉 = 2η2
∞∑
0

bn

n!

∂2n

∂a2n
sech2

a

2
. (30)

Now using the equation(30) the numerically illustrated exact solution is given below in
Figure 2.

We are now in a position to present here a comparison result between the simulation
result of the stochastic KdV equation shown in Figure 1 and the result of exact solution
shown in Figure 2. The comparison result is shown in the following Figure 3.

Case II: For large times (e.g., b = 48η2εt2 > 1).
In this case, the solution can be calculated as

〈u(x, t)〉 =
4η2√
π

(
1 +

∞∑
n=1

(22n − 2)bBnπ
2n

(2n)!

∂n

∂bn

)e−a2

4b

√
b

(31)

and also the numerical simulation for this case is presented in Figure 4.
Now we will focus on the case when t −→∞ and the result can be approximated as

〈u(x, t)〉 ≈ η√
3πε

1
2
√
t3

exp
(
− (x− x0 − 4η2t)2

48εt3

)
(32)

and the simulation result of equation (32) is presented in Figure 5.
Once again we present in Figure 6, the amplitude of the two solutions shown in the

Figure 4 and in Figure 5.
Thus we end this section providing an extensive graphical illustrations about the

shape and behavior of soliton solutions derived from the KdV equation. We also present
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Figure 2: This graph represents the exact solution of the equation (30).

Figure 3: The physical graph of comparison of the amplitudes from the exact solution and a
simulation solution.

the comparison result derived from the exact solution of stochastic KdV equation as well
as the simulation result.
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Figure 4: The graph for large times based on the solution using equation (31).

Figure 5: The solution for large times based upon equation (32).

3 A Particular Problem and Solution

In this section we will discuss the solution of a particular problem.There are several prob-
lems with Wadati’s derivation. These also appear elsewhere in the literature references to
Wadati’s paper [24]. Here we discuss the alternatives of several shortcomings to Wadati’s
derivation by this particular problem.

First, we note that the series expansion for the sech2z is not quite right. We should
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Figure 6: The amplitude of the solutions provided in the Figure 4 and Figure 5.

instead have derived it as follows (for z 6= 0 )

sech2z =
4

(ez + e−z)2
=

4e−2|z|

(1 + e−2|z|)2

= 2 sgn
d

dz

( ∞∑
n=0

(−e−2|z|)n
)

= 2
∞∑

n=1

(−1)n+1ne−2n|z|
(33)

This accounts for the convergence of the geometric series used in the derivation. Namely,
in the original derivation, one should have noted that |e2z| < 1 or z < 0.

This new derivation accounts for the case z > 0. Konotop and Vazquez [9] used this
in their review of Wadati’s derivation. They presented the infinite series result as

〈u(x, t)〉 = 8η2
∞∑

n=0

(−1)n+1ne−n|a|+n2b. (34)

There also appeared to be a problem with the derivation of the average, where Wadati
should actually have computed

〈u(x, t)〉 = 8η2
∞∑

n=0

(−1)n+1n
〈

exp
(
− 2nη|x− 4η2t− x0 − 6

∫ t

0

ω(t′)dt′|
)〉
. (35)

One could get around this problem by computing the average for space-time regions
where x − 4η2t − x0 − 6

∫ t

0
ω(t′)dt′ is definitely of one sign. Another approach would

instead be directly expanded as

u(x, t) = 2η2 sech2
(
η(x− 4η2t− x0 − 4η2t)− 6η

∫ t

0

ω(t′)dt′
)

= 2η2 sech2(θ + σ). (36)
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In the case when σ = 0 for σ = −6η

∫ t

0

ω(t′)dt′, we have

2η2 sech2(θ + σ) = 2η2
∞∑

n=0

σn

n!

∂n

∂θn
sech2θ. (37)

The average can now be computed as

〈u(x, t)〉 = 2η2
∞∑

n=0

〈σn〉
n!

∂n

∂θn
sech2θ (38)

provided that we can compute 〈σn〉 as

〈σn〉 =
〈(
− 6η

∫ t

0

ω(t′)dt′
)n〉

. (39)

Herman [8] showed that such averages can be computed based upon the nature of the
Gaussian noise as

〈σn〉 =

{
0, when n is odd,

(2l − 1)!〈σ2〉, when n=2l is even.

Thus, we just need to compute 〈σ2〉 which can be completed by the following calcu-
lation

〈σ2〉 =
〈

36η2
∫ t

0

ω(t1)dt1

∫ t

0

ω(t2)dt2

〉
= 72εη2

∫ t

0

∫ t

0

min(t1, t2)dt1dt2

= 72εη2
∫ t

0

(∫ t2

0

min(t1, t2)dt1 +

∫ t

t2

min(t1, t2)dt1

)
dt2

= 72εη2
∫ t

0

( t22
2

+ t2(t− t2)
)
dt2 = 24εη2t3.

(40)

Now inserting this result in equation (38) we obtain

〈u(x, t)〉 = 2η2
∞∑
t=0

〈12εη2t3〉
l!

∂2l

∂θ2l
sech2θ. (41)

In order to see the agreement with Wadati’s result for small b = 48εη2t3, we need to

set θ =
a

2
. We also note that

∂2l

∂θ2l
= 22l

∂2l

∂a2l
. Thus we obtain

〈u(x, t)〉 = 2η2
∞∑
t=0

〈48εη2t3〉
l!

∂2l

∂a2l
sech2

a

2
= 2η2

∞∑
t=0

bl

l!

∂2l

∂a2l
sec .h2

a

2
(42)

We further note that this solution again satisfies the heat equation and that for b = 0
this solution reduces to the soliton initial condition. Thus, we have seemingly bypassed
any problem with the computing the average with an absolute value. However, this series
is divergent for b > 1.
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4 Conclusion

Soliton theory has been a challenging area of research over the years, especially since the
mid-1970s, the soliton concept has become established in several areas of applied science
and its applications in the diverse fields of science and engineering such as nonlinear
analysis, water waves, relativistic and quantum field theory, control and system theory as
well as electrical and communication engineering have made this theory more attractive.
In this study the soliton solution and some of its large scale applications are studied with
simulations. The mathematical derivation of soliton is shown by using the Korteweg-
de Vries equation and Kadomtsev–Petviashvili equation in the form of nonlinear partial
differential equation. It is necessary to mention, however, that not all nonlinear partial
differential equations have soliton solutions. Those that do are generic and belong to a
class for which the general initial-value problem can be solved by a technique called the
inverse scattering transform, a brilliant scheme developed by Kruskal and his coworkers
in 1965. We also investigate the result of the solution which is generated by doing a
simulation of the stochastic KdV equation and the exact solution and a comparison
between them is shown graphically. Also the solutions based on small and large times
are represented graphically.
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Abstract: In this work we consider a class of quasilinear integro-differential equa-
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1 Introduction

Let X and Y be two real reflexive Banach spaces such that Y is densely and compactly
embedded in X . In the present analysis we are concerned with the following quasilinear
integro-differential equation







du
dt
(t) +A(t, u(t))u(t) =

∫ t

0
k(t, s)A(s, u(s))u(s)ds + f(t, ut), 0 < t ≤ T,

u0 = φ ∈ C([−T, 0], X),
(1)

where A(t, u) is a linear operator in X , depending on t and u, defined on an open subset
W of Y . We denote by J = [0, T ], k is a real valued function defined on J×J → R and f
is defined from J × C([−T, 0], X) into Y . Here C([a, b], Z), for −∞ ≤ a ≤ b <∞, is the

∗ Corresponding author: mailto:jay.dabas@gmail.com

c© 2011 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 397
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Banach space of all continuous functions from [a, b] into Z endowed with the supremum
norm

‖χ‖C([a,b],Z) := sup
a≤s≤b

‖χ(s)‖Z, χ ∈ C([a, b], Z).

For u ∈ C([−T, t], X), we denote by ut ∈ C([−T, 0], X) a history function defined by

ut(θ) = u(t+ θ), θ ∈ [−T, 0].

By a strong solution to (1) on [0, T ′], 0 < T ′ ≤ T, we mean an absolutely continuous
function u from [−T, T ′] into X such that u(t) ∈ W with u0 = φ and satisfies (1) almost
everywhere on [0, T ′].

Kato [8] has proved the existence of a unique continuously differentiable solution to
the quasilinear evolution equation in X

du

dt
+A(u)u = f(u), 0 < t ≤ T, u(0) = u0, (2)

under the assumptions that there exists an open subsetW of Y such that for each w ∈W
the operator A(w) generates a C0-semigroup in X , A(·) is locally Lipschitz continuous
on W from X into X , f defined from W into Y , is bounded and globally Lipschitz
continuous from Y into Y , and there exists an isometric isomorphism S : Y → X such
that

SA(w)S−1 = A(w) +B(w), (3)

where B(w) is in the set B(X) of all bounded linear operators from X into X.
Crandall and Souganidis [6] have established the existence of a unique continuously

differentiable solution to the quasilinear evolution equation (2) with f = 0 under more
general assumptions on A(w). Kato [10] has proved the existence of a strong solution to
the quasilinear evolution equation

du

dt
+A(t, u)u = f(t, u), 0 < t ≤ T, u(0) = u0, (4)

under similar conditions on A(t, u) and f(t, u) as considered by Crandall and Souganidis
[6].

Recently Oka [11] has dealt with the abstract quasilinear Volterra integrodifferential
equation

{

du
dt
(t) +A(t, u(t))u(t) =

∫ t

0
b(t− s)A(s, u(s))u(s)ds + f(t), t ∈ [0, T ],

u(0) = φ,
(5)

in a pair of Banach spaces X ⊃ Y , where b : [0, T ] → R is a scalar kernel and A(t, w) is
a linear operator in X , depending on t and w, defined on an open subset W of Y . Oka
has proved the existence, uniqueness and continuous dependence on the data.

Our analysis is motivated by the work of Bahuguna [1]. In [1] the author considered
the following quasilinear integrodifferential equation in a Banach space

du(t)

dt
+A(u(t))u(t) =

∫ t

0

a(t− s)k(s, u(s))ds+ f(t), 0 < t < T, u(0) = u0, (6)

by using the application of Rothe’s method, the author has established the existence and
uniqueness of a strong solution which depends continuously on the initial data.
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We shall use Rothe’s method to establish the existence and uniqueness results.
Rothe’s method, introduced by Rothe [15] in 1930, is a powerful tool for proving the
existence and uniqueness of a solution to a linear, nonlinear parabolic or a hyperbolic
problem of higher order. This method is oriented towards the numerical approximations.
For instance, we refer to Rektorys [14] for a rich illustration of the method applied to
various interesting physical problems. It has been further developed for nonlinear differ-
ential and Volterra integro-differential equations (VIDEs) see [1–4, 7, 14] and references
cited in these papers.

In the present study we extend the application of the method of lines to a class of
nonlinear VIDEs. In earlier works on the application of the method of lines to integro-
differential equations, only bounded perturbations to the heat equation in the integrands
have been dealt with. In the problem considered in our paper we have a differential oper-
ator appearing in the integrand and hence we have the case of unbounded perturbation.

2 Preliminaries

Let X and Y be as in the first section. Let Z be either X or Y . We use ‖ ‖Z to denote
the norm of Z and by B(X,Y ) the set of all bounded linear maps on X to Y , with
associated norm ‖ ‖B(X,Y ). We write B(X) for B(X,X) and corresponding norm by
‖ ‖B(X). The domain of the operator T is denoted by D(T ). We denote by C(J0, Z) and
Lip(J0, Z) the sets of all continuous and Lipschtz continuous functions from a subinterval
J0 of J into Z, respectively. Let Br(z0, r) be the Z-ball of radius r at z0 ∈ Z, i.e. the
set {z ∈ Z | ‖z − z0‖Z ≤ r}.

For a real number β,N(Z, β) represents the set of all densely defined linear operators
L in Z such that if λ > 0 and λβ < 1, then (I+λL) is one to one with a bounded inverse
defined everywhere on Z and

‖(I + λL)−1‖B(Z) ≤ (1 + λβ)−1,

where I is the identity operator on Z. The Hille-Yosida theorem states that L ∈ N(Z, β) if
and only if −L is the infinitesimal generator of a strongly continuous semigroup e−tL, t ≥
0 on Z satisfying ‖e−tL‖B(Z) ≤ eβt, t ≥ 0.

A linear operator L on D(L) ⊆ Z into Z is said to be accretive in Z if for every
u ∈ D(L)

〈Lu, u∗〉 ≥ 0 for some u∗ ∈ F (u),

where F : Z → 2Z
∗

, Z∗ is the dual of Z

F (z) = {z∗ ∈ Z | 〈z, z∗〉 = ‖z‖2 = ‖z∗‖2},

and 〈z, f〉 is the value of f ∈ Z∗ at z ∈ Z. If L ∈ N(Z, β) then (L + βI) is m-accretive
in Z, i.e. (L+βI) accretive and the range R(L+λI) = Z for some λ > β. (see corollary
1.3.8 and the remarks preceding it in Pazy [13], p.12). If Z∗ is uniformly convex then F
is single-valued and uniformly continuous on bounded subsets of Z.

In most of this paper X and Y will be related via a linear isometric isomorphism
S : Y → X. We assume, in addition, that the embedding of Y in X is compact and the
dual of X∗ is uniformly convex. Further, we make the following hypotheses.

(A1) There exists an open subset W of Y and u0 ∈ W . Furthermore, there exists β ≥ 0
such that A : [0, T ]×W → N(X, β).
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(A2) Y ⊆ D(A(t, w)), for each (t, w) ∈ [0, T ]×W , which implies that A(t, w) ∈ B(Y,X)
by the closed graph theorem. For each w ∈ W, t → A(t, w) is continuous in
B(Y,X)-norm, and for each t ∈ [0, T ], t → A(t, w) is Lipschitz continuous in the
sense that

‖(A(t1, w1)−A(t2, w2))v‖B(Y,X) ≤ µA[|t1 − t2|+ ‖w1 − w2‖X ]‖v‖Y ,

where µA is a constant and there exists a constant γA such that

‖A(t, w)v‖B(Y,X) ≤ γA‖v‖Y ,

for all v ∈ Y and (t, w) ∈ [0, T ]×W .

(A3) There is a family {S} of isometric isomorphism Y onto X such that

SA(t, w)S−1 = A(t, w) + P (t, w),

where P : [0, T ] ×W → B(X), ‖P (t, w)‖B(X) ≤ γP for (t, w) ∈ [0, T ] ×W, with
γP > 0, is a constant and

‖P (t, w1)− P (t, w2)‖B(X) ≤ µP ‖w1 − w2‖Y , ∀ w1, w2 ∈W,

where µP is a positive constant.

(A4) The function k : J × J → R and f : J × C([−T, 0], X) → Y satisfy the Lipschitz
conditions

|k(t2, s)− k(t1, s)| ≤ Lk|t2 − t1|,

‖f(t, u)− f(s, v)‖X ≤ Lf [|t− s|+ ‖u− v‖C([−T,0],X)],

where Lk and Lf are Lipschitz constant.

For all u, v ∈ BX(u0, R). Let R > 0 be such that WR = BY (u0, R) ⊆W and let

R0 =
R

6
(1 + e2θT )−1, (7)

M1 = TkT (γA + γPCe)R+ Lf [T + ‖ũ0 − φ‖C([−T,0],X)] + ‖f(0, φ)‖X , (8)

M2 = TkT (γA + γPCe)R+ Lf [T + ‖ũj−1 − φ‖C([−T,0],X)] + ‖f(0, φ)‖X , (9)

where Ce is a positive embedding constant, θ = β + ‖P‖X and kT = sups,t∈J |k(t, s)|.
Let z0 ∈ Y and T0, 0 < T0 ≤ T be such that for i = 1, 2

‖Su0 − z0‖X ≤ R0, (10)

T0[γA‖z0‖Y + γP ‖z0‖X +Mi] ≤ R0. (11)

We notice that (10) and (11) imply that

(1 + e2θT )[‖Su0 − z0‖X + T0{γA‖z0‖Y + γP ‖z0‖X +Mi}] ≤
R

3
. (12)

We shall use later the following lemma due to Crandall and Souganidis [6].
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Lemma 2.1 Let S : Y → X be a linear isometric isomorphism, Q ∈ N(X, β), Y ⊂
D(Q), domain of Q, P ∈ B(X), the space of all bounded linear operators on X and
SQ = QS + PS. Set θ = β + ‖P‖B(X). Then for every y ∈ X and λ > 0 such that
λθ < 1, the problem

x+ λQx = y, x̃+ λ(Qx̃+ P x̃) = y,

has a unique solution x and x̃ in X. Moreover

‖x‖X ≤ (1− λθ)−1‖y‖X , ‖x̃‖X ≤ (1− λθ)−1‖y‖X,

and if y ∈ Y , then x ∈ Y and

‖x‖Y ≤ (1− λθ)−1‖y‖Y .

We have the following main result.

Theorem 2.1 Suppose that (A1)-(A4) hold. Then there exists a unique strong so-
lution u to (1) such that u ∈ Lip(J0, X), J0 = [0, T0]. Furthermore, if v0 ∈ BY (u0, R0)
then there exists a strong solution v to (1) on [0, T0] with the initial point v(0) = ψ such
that

‖u(t)− v(t)‖X ≤ C‖u0 − v0‖X , t ∈ [0, T0], (13)

where C is positive constant.

3 Construction of the Scheme and the Convergence

To apply Rothe’s method, we use the following procedure. For any positive integer n we
consider a partition tnj defined by tnj = jh; h = T0

n
, j = 0, 1, 2, . . . , n. We set un0 = φ(0)

for all n ∈ N . Let wn
0 = Sun0 for n ≥ N where N is a positive integer such that θ(T0

N
) < 1

2 .
We consider the following scheme

δunj +A(tnj−1, u
n
j−1)u

n
j = h

j−1
∑

i=0

knji A(t
n
i , u

n
i )u

n
i + fj, (14)

where

δunj =
unj − unj−1

h
, knji = k(tnj , t

n
i ) and fn

j = f(tnj , ũ
n
j−1), 1 ≤ i ≤ j ≤ n.

We define ũn0 (t) = φ(t) for t ∈ [−T, 0], ũn0 (t) = φ(0) for t ∈ [0, T0] and for 2 ≤ j ≤ n

ũnj−1(θ) =

{

φ(tnj + θ), θ ≤ −tnj ,

uni−1 + (t− tj−1)δu
n
i , θ ∈ [−tnj+1−i,−t

n
j−i], 1 ≤ i ≤ j.

(15)

For notational convenience, we occasionally suppress the superscript n, throughout, C
will represent a generic constant independent of j, h and n. Our first result is concerned
with the solvability of (14) in WR.

Lemma 3.1 For each n ≥ N, there exists a unique uj , j = 1, 2, . . . , n, in WR satis-
fying (14).
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Proof Lemma 2.1 implies that there exists a unique u1 ∈ Y such that

u1 + hA(t0, u0)u1 = u0 + h2k10A(t0, u0)u0 + hf1. (16)

Applying S on both the sides in (16) using (A3) and letting w1 = Su1, we have

(w1 − z0) + hA(t0, u0)(w1 − z0) + hP (t0, u0)(w1 − z0)

= (w0 − z0)− hA(t0, u0)z0 − hP (t0, u0)z0

+h2k10[A(t0, u0) + P (t0, u0)]w0 + hSf1.

The estimates in Lemma 2.1 imply that

‖w1 − z0‖X ≤ (1− hθ)−1[‖w0 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M1}].

Since hθ < 1
2 , we have

‖w1 − z0‖X ≤ e2hθ[‖w0 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M1}].

Therefore,

‖w1 − z0‖X ≤ (1 + e2hθ)[‖w0 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M1}] ≤ R,

in view of the estimates (12). Hence, u1 ∈ WR. Now, suppose that uj ∈ WR for
i = 1, 2, . . . , j − 1. Again, Lemma 2.1 implies that for 2 ≤ j ≤ n, there exists a unique
uj ∈ Y such that

uj + hA(tj−1, uj−1)uj = uj−1 + h2
j−1
∑

i=0

kjiA(ti, ui)ui + hfj. (17)

Proceeding as before and letting wj = Suj, we get the estimate

‖wj − z0‖X ≤ e2hθ[‖wj−1 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M2}].

Reiterating the above inequality, we get

‖wj − z0‖X ≤ e2jhθ[‖w1 − z0‖X + jh{γA‖z0‖Y + γP ‖z0‖X +M2}].

Hence

‖wj − z0‖X ≤ (1 + e2Tθ)[‖w1 − z0‖X + T0{γA‖z0‖Y + γP ‖z0‖X +M2}] ≤ R.

The above inequality and equations (16) and (17) imply that uj ∈ WR satisfy (14) for
1 ≤ j ≤ n, n ≥ N . This completes the proof of the lemma. 2

Lemma 3.2 There exists a positive constant C, independent of j, h and n such that

‖δuj‖X ≤ C, j = 1, 2, . . . , n; n ≥ N.

Proof In (14) for j = 1, we get

δu1 + hA(t0, u0)δu1 = −A(t0, u0)u0 + hk10A(t0, u0)u0 + f1.
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Using Lemma 2.1 we have

‖δu1‖X ≤ e2hT [(1 + hkT )γA‖u0‖Y + fT ] := C1,

where fT = Lf [T + ‖ũ0 − φ‖C([−T,0],X)] + ‖f(0, φ)‖X . Now, from (14) for 2 ≤ j ≤ n, we
have

δuj + hA(tj−1, uj−1)δuj = δuj−1 − [A(tj−1, uj−1)−A(tj−2, uj−2)]uj−1

+ hkjj−1A(tj−1, uj−1)uj−1

+ h

j−2
∑

i=0

[kji − kj−1i]A(ti, ui)ui + fj − fj−1.

Applying Lemma 2.1 and using (A2) and (A4) we get

‖δuj‖X ≤ e2hθ
[

(1 + µAhR)‖δuj−1‖X + µAhR+ hγAR{|kjj−1|

+

j−2
∑

i=0

|kji − kj−1j |} + ‖fj − fj−1‖Y
]

≤ e2hθ
[

(1 + µAhR)‖δuj−1‖X +M3h+ Lfh‖δũj−1‖C([−T,0],X)

]

,

where M3 = µAR+ γAR(kT + LkT ) + LfT . Denoting by C2 = µAR+ Lf , we have

max
1≤i≤j

‖δui‖X ≤ e2hθ
[

(1 + C2h) max
1≤i≤j−1

‖δui‖X +M3h
]

.

Reiterating the above inequality, we get

max
1≤i≤j

‖δui‖X ≤ e2jhθ(1 + C2h)
j
[

‖δu1‖X +M3T
]

,

hence
‖δuj‖X ≤ e2(θ+C2)T [C2 +M3T ] := C.

This completes the proof of the lemma. 2

Definition 3.1 We define the Rothe sequence {Un} ∈ C([−T, T ], Y ) given by

Un(t) =

{

φ(t), t ∈ [−T, 0],

uj−1 +
uj−uj−1

h
(t− tj−1), t ∈ [tj−1, tj ], j = 1, 2, . . . , n.

(18)

Further, we define a sequence of functions {Xn} from [−T, T ] into Y given by

Xn(t) = φ(t) for t ∈ (−T, 0], Xn(t) = uj for t ∈ (tj−1, tj ]. (19)

Remark 3.1 Each of the functions {Xn(t)} lies in WR for all t ∈ (−h, T0] and {Un}
is Lipschitz continuous with uniform Lipschitz constant, i.e.,

‖Un(t)− Un(s)‖X ≤ C|t− s|, t, s ∈ J0.

Furthermore, ‖Un(t)−Xn(t)‖X ≤ C
n
. Also, we define

Kn(t) = h

j−1
∑

i=0

kjiA(ti, ui)ui, t ∈ (tj−1, tj], (20)

fn(t) = f(tj , ũ
n
j−1), t ∈ (tj−1, tj ]. (21)

An(t, u) = A(tj−1, u), t ∈ (tj−1, tj), j = 1, 2, . . . , n. (22)
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Lemma 3.3 Under the given assumptions we have

(a) {Kn(t)} is uniformly bounded;

(b)
∫ t

0
An(s,Xn(s− h))Xn(s)ds = u0 − Un(t) +

∫ t

0
Kn(s)ds+

∫ t

0
fn(s)ds;

(c) d
−

dt
Un(t) +An(t,Xn(t− h))Xn(t) = Kn(t) + fn(t), t ∈ (0, T0],

where d−

dt
is the left-derivative.

Proof (a) This is a direct consequence of the assumptions (A2)-(A4).

(b) For 2 ≤ j ≤ n and t ∈ (tj−1, tj ], by Definition 3.1, we have

∫ t

0

An(s,Xn(s− h))Xn(s)ds

=

j−1
∑

i=1

∫ ti

ti−1

An(s,Xn(s− h))Xn(s)ds +

∫ t

tj−1

An(s,Xn(s− h))Xn(s)ds

= −

j−1
∑

i=1

(ui − ui−1)−
1

h
(t− tj−1)(uj − uj−1) + h

j−1
∑

i=1

[

h

i−1
∑

p=0

kipA(tp, up)up

]

+ (t− tj−1)[h

j−1
∑

p=0

kipA(tp, up)up] + h

j−1
∑

i=0

fn
i − (t− tj−1)f

n
j

= u0 − Un(t) +

∫ t

0

Kn(s)ds+

∫ t

0

fn(s)ds.

When j = 1, t ∈ (0, t1], we have

∫ t

0

An(s,Xn(s− h))Xn(s)ds = tA(t0, u0)u1

= −
t

h
(u1 − u0) + thk10A(t0, u0)u0 + tfn

1

= u0 − Un(t) +

∫ t

0

Kn(s)ds+

∫ t

0

fn(s)ds.

(c) for t ∈ (tj−1, tj ],

An(t,Xn(t− h))Xn(t) = A(tj−1, uj−1)uj and
d−un

dt
(t) =

1

h
(uj − uj−1).

Therefore,

d−u

dt
(t)−An(t,Xn(t− h))Xn(t) =

1

h
(uj − uj−1)−A(tj−1, uj−1)uj

= h

j−1
∑

i=0

kjiA(ti, ui)ui + fn
j

= Kn(t) + fn(t).

This completes the proof of the lemma. 2

In the next lemma we prove the local uniform convergence of the Rothe sequence.
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Lemma 3.4 There exists a subsequence {Unk} of the sequence {Un} and a function
u in Lip(J0, X) such that

Unk → u in C(J0, X),

with supremum norm as k → ∞.

Proof Since {Xn(t)} is uniformly bounded in Y , the compact imbedding of Y implies
that there exists a subsequence {Xnk} of {Xn} and a function u : J0 → X such that
Xnk(t) → u(t) in X as k → ∞. The reflexivity of Y implies that u(t) is the weak limit of
Xnk(t) in Y hence u(t) ∈ Y in fact inWR since Xnk(t) ∈ WR. Now, X

nk(t)−Unk(t) → 0
in X, Unk(t) → u(t) as k → ∞. The uniform Lipschitz continuity of {Unk} on J0 implies
that {Unk} is an equicontinuous family in C(J0, X) and the strong convergence of Unk(t)
to u(t) in X implies that {Unk(t)} is relatively compact in X . We use the Ascoli-Arzela
theorem to assert that Unk → u in C(J0, X) as k → ∞. Since Unk are in Lip(J0, X) with
uniform Lipschitz constant, u ∈Lip(J0, X). This completes the proof of the lemma. 2

Lemma 3.5 Let ψ : [0, T ] → X be given by ψ(t) = A(t, u(t))u(t). Then ψ is Bochner
integrable on [0, T ].

Proof Proof of this lemma can be established in similar way as that of Lemma 4.6
in Kato [9]. 2

Lemma 3.6 Let {Kn(t)} be the sequence of functions defined by (20) and

K(ψ)(t) =

∫ t

0

k(t, s)ψ(s)ds.

We have Knk(t) → K(ψ)(t), uniformly on [0, T0] as k → ∞.

Proof For notational conveneince, we shall use the index n in place of nk for the
subsequence nk of n. We first show that Kn(t) −K(ψn)(t) → 0 uniformly on [0, T0] as
n → ∞ where ψn : [0, T0] → X is given by ψn(t) = A(t,Xn(t))Xn(t). For t ∈ (tj−1, tj ],
we have

Kn(t)−K(ψn)(t) = h

j−1
∑

i=0

knjiA(ti, ui)ui −

∫ t

0

k(t, s)A(s,Xn(s))Xn(s) ds

=

j−1
∑

i=1

[

∫ ti

ti−1

[kjiA(ti, ui)− k(t, s)A(s,Xn(s))] ds

]

ui

+ hk(tj , t0)A(t0, u0)u0 −

[

∫ t

tj−1

k(t, s)A(s, uj)ds

]

uj.

Since ‖A(t, uj)uj‖X ≤ γAR, and k : [0, T0] → R being Lipschitz continuous imply that
the last two terms on the right hand side tend to zero strongly and uniformly on [0, T0]
as n→ ∞ we have

‖Kn(t)−K(ψn)(t)‖X ≤ γAR

[

j−2
∑

i=0

∫ ti+1

ti

|kji − k(t, s)|ds

]

.
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Now, since k satisfies (A4), k(t, s) is uniformly continuous in t as well as in s on [0, T0].
Hence for each ǫ > 0 we can choose n sufficiently large such that for |t1− t2|+ |s1− s2| <
h = T

n
, ti, si ∈ [0, T0], i = 1, 2, we have

|k(t1, s1)− k(t2, s2)| <
ǫ

γART
.

Then for sufficiently large n, we have

‖Kn(t)−K(ψn)(t)‖X ≤
ǫ

γART
γARjh < ǫ,

Which show that Kn(t) − K(ψn)(t) → 0 as n → ∞, uniformly on [0, T0]. Now we
show that K(ψn)(t) → K(ψ)(t) uniformly as n → ∞. For any v ∈ X , We note that
〈A(t, u(t))u(t), v〉 is continuous hence we may write

〈

K(ψ)(t), v
〉

=

∫ t

0

k(t, s)〈A(s, u(s))u(s), v〉 ds.

Now, for any v ∈ X ,

〈K(ψn)(t), v〉 =

j−2
∑

i=0

∫ ti+1

ti

k(t, s)〈A(s, ui+1)ui+1, v〉ds

+

∫ t

tj−1

k(t, s)〈A(t, uj)uj , v〉ds.

This implies that 〈K(ψn)(t), v〉 → 〈K(ψ)(s), v〉, as n → ∞. This completes the proof of
the lemma.2

3.1 Proof of Theorem 2.1.

Proof First we show that Am(t,Xm(t−h))Xm(t)⇀ A(t, u(t))u(t) in X as m→ ∞,
where ‘⇀′ denotes the weak convergence in X ,

A(tj−1, X
m(t− h))Xm(t)− A(t, u(t))u(t)

= [A(tj−1, X
m(t− h))−A(t, u(t))]Xm(t) +A(t, u(t))[Xm(t)− u(t)].

Since,

‖[A(tj−1, X
m(t− h))−A(t, u(t))]Xm(t)‖X ≤ µAR[|tj−1 − t|+ ‖Xm(t− h)− u(t)‖X ],

as m→ ∞ the right hand side of the above equation tends to zero. Since Xm(t) → u(t)
in X uniformly on J0 and A(t, u(t)) ∈ N(X, β), βI +A(t, u) is m-accretive in X . We use
Lemma 2.5 due to Kato [9] and the fact that

‖A(t, u(t))[Xm(t− h)− u(t)]‖X ≤ 2µAR,

to assert that A(t, u(t))Xm(t) ⇀ A(t, u(t))u(t) in X and, hence, Am(t,Xm(t −
h))Xm(t) ⇀ A(t, u(t))u(t) in X as m → ∞. Now we show that A(t, u(t))u(t) is weakly
continuous on J0, let {tp} ⊂ J0 be a sequence such that tp → t, as p → ∞. Then
u(tp) → u(t) in X as p → ∞ and we can follow the same arguments as above to prove
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that A(tp, u(tp))u(tp) ⇀ A(t, u(t))u(t) in X as p → ∞. Now from Lemma 3.3 for each
x∗ ∈ X∗ we have

〈Um(t), x∗〉 = 〈u0, x
∗〉+

∫ t

0

〈−Am(s,Xm(s− h))Xm(s) +Km(s) + fm(s), x∗〉ds.

Letting m→ ∞ using bounded convergence theorem and Lemma 3.6 we get

〈U(t), x∗〉 = 〈u0, x
∗〉+

∫ t

0

〈−A(s, u(s))u(s) +K(ψ)(s) + f(s, us), x
∗〉ds.

Continuity of the integrand implies that 〈u(t), x∗〉 is continuously differentiable on J0.
The Bochner integrability of A(t, u(t))u(t) implies that the strong derivative of u(t) exists
a.e. on J0 and

du

dt
+A(t, u(t))u(t) =

∫ t

0

k(t, s)A(s, u(s))u(s)ds + f(t, ut), a.e on J0.

Since u(0) = u0, u is a strong solution to (1). Now for the uniqueness of the solution of
(1). Let v be another strong solution to (1) on J0. Let U = u− v, then for a.e. t ∈ J0

〈

dU

dt
(t), F (U(t))

〉

+ 〈βI +A(t, u(t))U(t), F (U(t))〉

= β‖U(t)‖2X + 〈(A(t, u(t)) −A(t, v(t)))v(t), F (U(t))〉

+

〈
∫ t

0

k(t, s)[A(s, u(s))−A(s, v(s))]u(s)ds, F (U(t))

〉

+

〈
∫ t

0

k(t, s)A(s, v(s))[u(s) − v(s)]ds, F (U(t))

〉

+〈f(t, ut)− f(t, vt), F (U)〉.

Using m-accretivity of βI +A(t, u(t))u(t) and Assumptions (A2) and (A4) we get

1

2

d

dt
‖U(t)‖2X ≤ CT ‖U‖2C([0,t],X),

where CT = β+µAR+ kT (γACe +µAR)+Lf . Integrating the above inequality on (0, t)
and taking the supremum we get

1

2
‖U(t)‖2C([0,t],X) ≤ CT

∫ t

0

‖U‖2C([0,s],X)ds.

Applying the Gronwall’s inequality we get U = 0 on J0.

Continuous dependence. Let v0 ∈ BY (u0, R0). Then

‖Sv0 − z0‖X ≤ ‖Sv0 − Su0‖X + ‖Su0 − z0‖X ≤ 2R0.

Hence

(1 + e2θT )[‖Sv0 − z0‖X + T0{γA‖z0‖Y + γA‖z0‖X +M}] ≤ 3R0 =
R

2
.
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We can proceed as before to prove the existence of vnj ∈WR satisfying scheme (14) with
unj and u0 replaced by vnj and v0 respectively. Convergence of vnj to v(t) can be proved in
a similar manner. Let U = u− v then following the steps used to prove the uniqueness,
we have for a.e. t ∈ J0

1

2

d

dt
‖U(t)‖2X ≤ CT ‖U‖2C([0,t],X).

Integrating the above inequality on (0, t) and taking the supremum we get

1

2

d

dt
‖U(t)‖2C([0,t],X) ≤

1

2
T ‖U(0)‖2X + CT

∫ t

0

‖U(t)‖2C([0,s],X).

Applying the Gronwall’s inequality we get

‖U(t)‖2C([0,t],X) ≤ C‖U(0)‖2X ,

where C is a positive constant. This completes the proof of the theorem.2

4 Application

For illustration, we consider the existence and uniqueness of a solutions for the following
model



















a0(x, u)
∂u
∂t

+
∑m

j=1 aj(t, x, u)
∂u
∂xj

=
∫ 0

−T
g(t, u(t+ θ, x)dθ,

+
∑m

j=1

∫ t

0
k(t− s)aj(s, x, u)

∂u
∂xj

ds, 0 < t ≤ T, x ∈ R
m,

u(θ, x) = φ0(θ, x) for θ ∈ [−T, 0] and x ∈ R
m,

(23)

where the unknown u = (u1, . . . , uN ) is an N-vector, a0 and aj , j = 1, 2, . . . ,m, are
N × N symmetric matrix-valued smooth functions on Ω × R

N and [0, T ] × Ω × R
N ,

respectively, where Ω ⊂ R
m is a bounded domain with sufficiently smooth bounday. We

set

Y = Hs(Ω,RN ), Z = Hs−1(Ω,RN ), X = H0(Ω,RN ), W = Br(Y ),

S = (1−∆)s/2, s > m/2 + 1,

A(t, w) = a0(x,w)
−1

m
∑

j=1

aj(t, x, w)
∂

∂xj
,

and use the variable norm

‖v‖2w =

∫

Ω

a0(x,w)v.vdx.

We suppose that for j = 1, 2, . . . ,m, aj(t, x, u) are simultaneously diagonalizable by a
common nonsingular C1 matrix q(t, x, w) and a0(x,w) is positive-definite. The function
g : R+ × R

N → R is continuous and Lipschitzian with respect to the second argument,
the function φ0 : [−r, 0]× Ω → R will be specified later.

Note that A(t, w) ∈ G(Xw, 1, β) with β depending on ‖w‖Y , and G(Xw , 1, β) denotes
the set of all (negative) generators A of C0-semigroups on Xw such that ‖e−tA‖ ≤Meβt

for t > 0. Again verification of the conditions is straightforward, except that we have to
prove that −A(t, w) is the generator of C0-semigroup (for details see [8]).
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Let f : [0, T ]× C([−T, 0], X) → Y be defined by

f(t, χ)(x) =

∫ 0

−T

g(t, χ(θ)(x)dθ, t ≥ 0.

The initial data φ ∈ C([−T, 0], X) is defined by

φ(θ)(x) = φ0(θ, x) for θ ∈ [−T, 0].

Then (23) takes the following abstract form







d
dt
u(t) +A(t, u(t))u(t) =

∫ t

0
k(t− s)A(s, u(s))u(s)ds + f(t, ut), 0 < t ≤ T,

u0 = φ ∈ C([−T, 0], X).
(24)
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1 Introduction

During the last two decades such recursive procedures as backstepping-like designs be-
came very popular when solving various problems of adaptive and robust nonlinear
control [5, 9, 17, 18, 23]. It is worth mentioning that, despite of the fruitfulness of the
backstepping-like algorithms, the most works devoted to them address the triangular or
pure-feedback form systems [13]

{

ẋi = fi(x1, ..., xi+1), i = 1, . . . , n− 1;
ẋn = fn(x1, ..., xn, u)

(1)

that are feedback linearizable, i.e., to those which satisfy the condition | ∂fi
∂xi+1

| 6= 0,

i = 1, . . . , n; or even have the strict-feedback form
{

ẋi = bixi+1 + θiϕi(x1, ..., xi), i = 1, . . . , n− 1;
ẋn = bnu+ θnϕn(x1, ..., xn)

(with bi 6= 0). Indeed, whatever the problem is (Lyapunov stabilization, adaptive stabi-
lization etc.), the classical version of the backstepping requires system (1) to satisfy the
following two properties:

(A) The virtual control xi+1 = αi(t, x1, ..., xi) obtained at the i-th step (i = 1, . . . , n)
should be well-defined as an implicit function obtained from some nonlinear equation of
the form fi(x1, ..., xi+1) = Fi(t, x1, ..., xi) to be resolved w.r.t. xi+1, where Fi(t, x1, ..., xi)
is some function of the previous coordinates x1, ..., xi (and maybe of t).

(B) Each virtual control xi+1 = αi(t, x1, ..., xi) obtained at the i - th step should be
smooth enough because one needs to take its derivatives at the next steps i = 1, . . . , n.

This necessarily leads to the conditions like | ∂fi
∂xi+1

| 6= 0, i = 1, . . . , n, (to comply with

(A)) and like fi ∈ Cn or fi ∈ Cn−i+1 (to comply with (B)).
Works [3, 4, 18, 22, 25, 26] were devoted to the issue of how to obviate the first re-

striction | ∂fi
∂xi+1

|6=0, at least for some special cases: when fi(x1, ..., xi+1) are polynomials

w.r.t. xi+1 of odd degree (see work [22]); when fi = xpi+1+ϕi(x1, ..., xi) (see works [18,26]
devoted to the problem of global stabilization of such systems into the origin as well as
further works by some of these authors devoted to various adaptive and robust control
problems for this class); partial-state stabilization under the assumption that the ”con-
trollable part” satisfies some additional “growth conditions” (see work [25] and conditions
(A3),(i),(ii),(iii)); the problem of feedback triangulation under the assumption that the
set of regular points is open and dense in the state space (see [3]).

A natural generalization of these cases is the so-called “generalized triangular form”
(GTF), when the only assumption is that fi(t, x1, ..., xi, ·) is a surjection whereas xi and
u are vectors not necessarily of the same dimension (and the dynamics is of class C1 or
Cn depending of the problem to be explored). In works [16,21] it was proved that, first,
the systems of this class are globally robustly controllable, in particular, their bounded
perturbations are globally controllable as well (see [16]) and, second, they are globally
asymptotically stabilizable into every regular point (see [21]). Note that, although the
methods proposed in [14–16, 21] are called “backstepping”, their only common feature
with the classical backstepping designs is the induction over the dimension of the system
and treatment xi+1 as the virtual control at the i-th step. As to the construction, the
approach proposed in [14–16, 21] is absolutely different. This especially applies to [16]
and to the preceeding related works [14, 15] devoted to the problem of global robust
controllability.
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It is worth mentioning that, despite of the importance of the Volterra equations in
applications, the controllability problem for the Volterra systems was investigated in few
works only. Works [1, 2] are devoted to the complete controllability of perturbations of
linear Volterra systems. In these papers, some natural analogs of the integral criterion
of the controllability for linear ODE systems were obtained.

In works [14, 15] the problem of global robust controllability was successively solved
for the nonlinear Volterra systems of the triangular form

ẋi = fi(t, x1, ..., xi+1) +

∫ t

t0

gi(t, s, x1(s), ..., xi+1(s))ds, i = 1, . . . , n,

(where xn+1 = u is the control, and (x1, ..., xn) is the state) including the global control-
lability of their bounded perturbations. Although, as we highlighted above, the inductive
construction proposed in these works differs totally from the classical backstepping de-
signs, the following two assumptions, which are similar to (A) and (B), are essential in
this construction:

(A’) For every x1(·), ..., xi(·) of class C
1 the integral equation

ẋi = fi(t, x1(t), ..., xi+1(t)) +
t
∫

t0

gi(t, s, x1(s), ..., xi+1(s))ds,

should be resolvable w.r.t. xi+1(·) on the whole time interval [t0, T ].
(B’) The properties of the linearized control systems (and those of the Frechet deriva-

tive of the input-output map) are essential, which is why fi and gi should be of class C1

at least.
The goal of the current paper is to remove these restrictions (A’) and (B’) and to show

how a modification of the methods proposed in [16,21] can be applied to the problem of
global controllability of the Volterra systems. In many modern applications one has to
deal with large scale interconnected systems - see, for instance [6,10,19]. Developing our
technique, we solve the problem of global controllability for large scale interconnections
of generalized triangular non-smooth Volterra systems.

2 Preliminaries

The first result of the current paper (Theorem 3.1 below) is concerned with the control
systems of the Volterra integro-differential equations:

ẋ(t) = f(t, x(t), u(t)) +

t
∫

t0

g(t, s, x(s))ds, t ∈ I = [t0, T ], (2)

where u ∈ Rm = Rmν+1 is the control, x = (x1, ..., xν)
T
∈ Rn is the state with xi ∈ Rmi ,

mi ≤ mi+1 and n = m1 + . . . ,+mν , functions f and g have the form

f(t, x, u) =









f1(t, x1, x2)
f2(t, x1, x2, x3)

. . .
fν(t, x1, ..., xν , u)









and g(t, s, x) =









g1(t, s, x1)
g2(t, s, x1, x2)

. . .
gν(t, s, x1, ..., xν)









(3)

with fi ∈ Rmi , gi ∈ Rmi and satisfy the conditions:
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(i) f ∈ C(I × Rn × Rm;Rn), g ∈ C(I2 × Rn;Rn),
(ii) f and g satisfy the local Lipschitz condition w.r.t. (x, u), i.e., for every compact

set K ⊂ Rn×Rm there is lK > 0 such that, for every (x1, u1) ∈ K and every (x2, u2) ∈ K
it holds

|f(t, x1, u1)− f(t, x2, u2)| ≤ lK(|x1 − x2|+ |u1 − u2|) and

|g(t, s, x1)− g(t, s, x2)| ≤ lK |x1 − x2| for all t ∈ I, s ∈ I

(iii) For each i = 1, . . . , ν, each t ∈ I and each (x1, ..., xi)
T in Rm1+...+mi , we have

fi(t, x1, ..., xi,R
mi+1) = Rmi .

Given x0 ∈ Rn, and u(·) ∈ L∞(I;Rm), let t 7→ x(t, x0, u(·)) denote the trajectory of
(2), defined by this control u(·) and by the initial condition x(t0) = x0 on the maximal
interval J ⊂ I of the existence of the solution. As in [15], we say that a system of the
Volterra integro-differential equations is globally controllable in time I = [t0, T ] in class
Cµ(I;Rm) (µ ≥ 0), iff for each initial state x0 ∈ Rn and each terminal state xT ∈ Rn

there is a control u(·) in Cµ(I;Rm) which “steers x0 into xT w.r.t. the system”, i.e., the
trajectory x(·) of the system with this control u(·) such that x(t0) = x0 is well-defined
on I and satisfies x(T ) = xT .

In our second result (Theorem 3.2 in the next Section) we consider a large scale
interconnection of systems like (2) in the form

Ẋi(t) = Fi(t,Xi(t), Ui(t)) +

t
∫

t0

Gi(t, s,Xi(s))ds +H(t,X(t), U(t))+

+

t
∫

t0

R(t, s,X(s), U(s))ds, i = 1, . . . , q, t ∈ I = [t0, T ], (4)

where X = [X1, . . . , Xq]
T ∈ RN is the state with Xi = [xi,1, . . . , xi,νi ]

T ∈ Rni and

with xi,j ∈ Rmi,j and U = [U1, . . . , Uq]
T

∈ RM is the control with Ui ∈ Rmi,νi+1 (and

N =
q
∑

i=1

ni =
q,νi
∑

i=1,j=1

mi,j ; M =
q
∑

i=1

νi+1).

We assume that functions Fi and Gi have the form

Fi(t,Xi, Ui)=









Fi,1(t, xi,1, xi,2)
Fi,2(t, xi,1, xi,2, xi,3)

. . .
Fi,νi (t, xi,1, ..., xi,νi , Ui)









,

Gi(t, s,Xi)=









Gi,1(t, s, xi,1)
Gi,2(t, s, xi,1, xi,2)

. . .
Gi,νi(t, s, xi,1, ..., xi,νi )









. (5)

We define

F (t,X, U) =









F1(t,X1, U1)
F2(t,X2, U2)

. . .
Fq(t,Xq, Uq)









, G(t, s,X) =









G1(t, s,X1)
G2(t, s,X2)

. . .
Gq(t, s,Xq)









,
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and assume that the following conditions hold:
(I) F ∈ C(I × RN × RM ;RN ), G ∈ C(I2RN ;RN ).
(II) There exists L > 0 such that, for every (X1, U1) ∈ K and every (X2, U2) ∈ K it

holds
|F (t,X1, U1)− F (t,X2, U2)| ≤ L(|X1 −X2|+ |U1 − U2|),

|G(t, s,X1)−G(t, s,X2)| ≤ L|X1 −X2| for all t ∈ I, s ∈ I

(global Lipschitz property with respect to (X,U)).
(III) For each i = 1, . . . , q, each j = 1, . . . , νi, each t ∈ I and each (xi,1, ..., xi,j)

T in
Rmi,1+...+mi,j , we have Fi,j(t, xi,1, ..., xi,j ,R

mi,j+1) = Rmi,j .
Also we assume that functions H and R satisfy the conditions:
(IV) H ∈ C(I × RN × RM ;RN ), R ∈ C(I2 × RN × RM ;RN ), and for each compact

set Q ⊂ RN × RM , there exists LQ > 0 such that, for all (t, s) ∈ I2, (X1, U1) ∈ Q,
(X2, U2) ∈ Q, we have:

|H(t,X1, U1)−H(t,X2, U2)| ≤ LQ(|X
1 −X2|+ |U1 − U2|),

|R(t, s,X1, U1)−R(t, s,X2, U2)| ≤ LQ(|X
1 −X2|+ |U1 − U2|),

(V) There exists H0 > 0 such that H and R satisfy the inequalities |H(t,X, U)| ≤ H0

and |R(t, s,X, U)| ≤ H0 for all (t, s,X, U) ∈ I2 × RN × RM .

Note that Fi and Gi have the “general traingular form”, while H and R have an
arbitrary form and are “cross terms”, which characterize the interconnections of the
isolated Xi-subsystems.

3 Main Results

Theorem 3.1 Suppose that system (2) has the form (3) and satisfies conditions
(i),(ii),(iii). Then system (2) is globally controllable in class C∞(I;Rm).

Theorem 3.2 Suppose that functions Fi and Gi have the form (5), satisfy
(I),(II),(III), and suppose that H and R satisfy (IV), (V). Then system (4) is globally
controllable in time I by means of controls of class C∞(I;RM ).

Remark 3.1 Let us compare the results of [15] with our Theorems 3.1 and 3.2. First,
in [15], functions f and g are required not only to be continuous but also to have all their
partial derivatives, w.r.t. x and u, which are required to be continuous whereas we
require (i) and (ii) only ((I) and (II) respectively for Theorem 3.2); (ii) or (II) being the
standard condition needed to guarantee the existence and the uniqueness of the solution
of the “Cauchy problem” for the Volterra systems. Second, our system (2) is MIMO and
furthermore xi and u are vectors of different dimensions whereas, in [15], the system is
SISO (i.e., xi and u are scalar) or at least xi and u should be of the same dimension
(see Remark 3.1 from [15]). Third (and this is essential), our current Assumption (iii) is
much more general than the corresponding Assumption (ii) (or (II), p. 747) from [15].
In this sense, our current Theorem 3.1 and Theorem 3.2 generalize Theorem 3.3 and
Theorem 3.2 from [15] respectively. However: firstly, in our case, function g has a bit
more specific form than function g from [15] (gi does not depend on xi+1 in the current
paper); secondly, since we replace the assumption of C1 smoothness with that of local
Lipschitzness, we do not obtain stronger results on robustness (Theorem 3.1 from [15]).
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Example 3.1 Consider the system given by















ẋ1(t) = (x2(t) + x1(t))| sin x2(t)|+
t
∫

0

√

s2x21(s) + 1ds,

ẋ2(t) = u(t)| cosu(t)|+
t
∫

0

√

ets(x21(s) + x22(s)) + 1ds,

(6)

t ∈ [0, T ]. It is clear that system (6) satisfies our Assumptions (i)-(iii) and therefore is
globally controllable by Theorem 3.1. On the other hand, system (6) does not satisfy the
Assumptions from [15] and the results of [15] are not applicable to system (6).

Remark 3.2 Note that, if g = 0 in (2), then (2) is reduced to the class of the so-
called “generalized triangular form” of ODE control systems considered in [16, 20, 21].
However, in the case of ODE, stronger results were obtained in these works: global
robust controllability (Theorem 3.1 from [16]), global asymptotic stabilization by means
of smooth controls (Theorem 2.1 from [21]), and global discontinuous stabilization in the
sense of Clarke-Ledyaev-Sontag-Subbotin (Theorem 3.4 from [16]).

4 Backstepping in the Non-smooth Case

Let us first reduce Theorem 3.1 to a backstepping process which can be compared with
that from [16].

Let p be in {1, . . . , ν}. Define k := m1 + . . . + mp and consider the following k -
dimensional control system

ẏ(t) = ϕ(t, y(t), v(t)) +

t
∫

t0

ψ(t, s, y(s))ds, t ∈ I = [t0, T ], (7)

where y := (x1, . . . , xp)
T
∈ Rk = Rm1+...+mp is the state, v ∈ Rmp+1 is the control and

ϕ(t, y, v) =









f1(t, x1, x2)
f2(t, x1, x2, x3)

. . .
fp(t, x1, ..., xp, v)









, ψ(t, s, y) =









g1(t, s, x1)
g2(t, s, x1, x2)

. . .
gp(t, s, x1, ..., xp)









, (8)

for all (t, y, v) in I × Rk × Rmp+1. Given y0 ∈ Rk, and v(·) ∈ L∞(I;Rmp+1), let t 7→
y(t, y0, v(·)) denote the trajectory, of (7), defined by the control v(·) and by the initial
condition y(t0, y

0, v(·)) = y0 on the maximal interval J ⊂ I of the existence of the
solution. We reduce the proof of Theorems 3.1 to the following theorem.

Theorem 4.1 Let p be in {1, ..., ν}. Suppose for each y0 ∈ Rk and each δ > 0, there
is a family of functions {y(ξ, ·) = (x1(ξ, ·), ..., xp(ξ, ·))}ξ∈Rk such that:

1) The map ξ 7→ y(ξ, ·) is of class C(Rk;C1(I;Rk))
2) For each ξ ∈ Rk, each t ∈ I and each 1 ≤ i ≤ p− 1 we have:

ẋi(ξ, t) = fi(t, x1(ξ, t), . . . , xi+1(ξ, t)) +

t
∫

t0

gi(t, s, x1(ξ, s), . . . , xi(ξ, s))ds
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(if p = 1, then, the set of equalities is empty and, by definition, Condition 2) holds true)

3) y(ξ, t0) = y0 and |y(ξ, T )− ξ| < δ for all ξ ∈ Rk

Then, for each (y0, y0p+1) ∈ Rk × Rmp+1 , and each ε > 0, there exists a family of
controls {v̂(ξ,β)(·)}(ξ,β)∈Rk×R

mp+1 such that

4) The map (ξ, β) 7→ v̂(ξ,β)(·) is of class C(Rk × Rmp+1 ;C∞(I;Rmp+1))

5) For each (ξ, β) ∈ Rk × Rmp+1 , we have v̂(ξ,β)(T ) = β and v̂(ξ,β)(t0) = y0p+1.

6) |y(T, y0, v̂(ξ,β)(·))− ξ| < ε for all (ξ, β) ∈ Rk × Rmp+1.

Let us prove that Theorem 3.1 follows from Theorem 4.1. Indeed, suppose Theo-
rem 4.1 holds true.

Suppose p = 1 and k = m1, and take an arbitrary y01 ∈ Rm1 . Given an arbitrary
δ > 0, find any family {y(η, ·)}η∈Rm1 = {x1(η, ·)}ξ∈Rm1 such that Conditions 1)-3) of

Theorem 4.1 hold. Then, for p = 1, we have: for every ε > 0 and every (y01 , y
0
2) ∈ Rm1+m2 ,

there exists a family of controls {v̂(η,β)(·)}(η,β)∈Rm1×Rm2 such that Conditions 4), 5), 6)
of Theorem 4.1 hold with p = 1.

Suppose p = 2. Given any y0 = (y01 , y
0
2) ∈ Rm1+m2 , and any δ > 0, define ε := δ,

and for this ε > 0 find the family {v̂(η,β)(·)}(η,β)∈Rm1×Rm2 obtained at the previous

step (with p = 1). From Conditions 4)-6) applied to p = 1 it follows that the family
{y(ξ, ·)}ξ=(η,β)∈Rm1×Rm2 defined by

y(η, β, t) := (y(t, y01 , v̂(η,β)(·)), v̂(η,β)(t)) for all t ∈ I, ξ = (η, β) ∈ R
m1 × R

m2

satisfies the Conditions 1), 2), 3) of Theorem 4.1 with p = 2. Then we can apply Theorem
4.1 to p = 2, etc. Arguing by induction over p = 1, . . . , ν, we obtain for p = ν that for
each ε > 0, each x0 ∈ Rn, and each α = y0ν+1 ∈ Rmν+1 there exists a family of controls
{v̂(ξ,β)(·)}(ξ,β)∈Rn×R

mν+1 such that Conditions 4), 5), 6) of Theorem 4.1 hold for p = ν.

Fix an arbitrary β ∈ Rmν+1 and define the family of controls {uξ(·)}ξ∈Rn as follows:
uξ(t) := v̂(ξ,β)(t) for all t ∈ I, ξ ∈ Rn. Then {uη(·)}η∈Rn satisfies the conditions:

(a) ξ 7→ uξ(·) is of class C(R
n;C∞(I;Rmν+1))

(b) For each ξ ∈ Rn, the trajectory t 7→ x(t, x0, uξ(·)) is well-defined and
|x(T, x0, uξ(·))− ξ| < ε.

Given any ε > 0, an arbitrary x0 ∈ Rn, and an arbitrary xT ∈ Rn, let {uξ(·)}ξ∈Rn

be a family of controls such that (a), (b) hold. By conditions (a),(b) the map ξ 7→
ξ − x(T, x0, uξ(·)) + xT is well-defined and of class C(Rn;Rn). From condition (b), it

follows that this continuous function maps the compact convex set Bε(xT ) into Bε(xT ).

Then, by the Brouwer fixed-point theorem, there exists ξ∗ ∈ Bε(xT ) ⊂ Rn such that
ξ∗ = ξ∗ − x(T, x0, uξ∗(·)) + xT , i.e., x(T, x0, uξ∗(·)) = xT . Thus, for every x0 ∈ Rn, and
every xT ∈ Rn, there is a control uξ∗(·) ∈ C∞(I;Rmν+1) such that xT = x(T, x0, uξ∗(·)),
i.e., Theorem 3.1 follows from Theorem 4.1.

Let us prove Theorem 3.2. Given any U(·) = [U1(·), . . . , Uq(·)]
T

in L∞(I;RN ) and
X0 ∈ RN let t 7→ X(t,X0, U(·)) denote the trajectory of system

Ẋi(t) = Fi(t,Xi(t), Ui(t)) +

t
∫

t0

Gi(t, s,Xi(s))ds i = 1, . . . , q, t ∈ I = [t0, T ],
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defined by the initial condition X(t0) = X0 and by the control U = U(·). Then arguing
as above (for each Xi-subsystem separately), we construct a family {Uξ(·)}ξ∈RN such
that the following conditions hold:

(c) ξ 7→ Uξ(·) is of class C(R
N ;C∞(I;RM ))

(d) For each ξ ∈ RN , the trajectory t 7→ X(t, x0, Uξ(·)) is well-defined and
|X(T,X0, Uξ(·))− ξ| < ε.

For each ξ ∈ RN , by X(ξ, ·) denote the trajectory, of (4), defined by the control
Uξ(·) and by the initial condition X(ξ, t0) = X0. Using the Gronwall-Bellmann lemma,
we easily obtain that t 7→ X(ξ, t) is well-defined for all t ∈ I, ξ ∈ RN and there exists
D > 0 such that |X(ξ, t)−X(t,X0, uξ(·))| ≤ D for all t ∈ I and ξ ∈ RN , and therefore,
by condition (d), we obtain: |X(ξ, T )− ξ| ≤ D + ε for all ξ ∈ RN . Taking an arbitrary
XT ∈ RN and applying the Brouwer fixed-point theorem to the map ξ 7→ ξ −X(ξ, T ) +

XT , which maps the closed ball BD+ε(XT ) into BD+ε(XT ), we obtain the existence

of ξ∗ ∈ BD+ε(XT ) ⊂ RN such that XT = X(ξ∗, T ), which means that the control
Uξ∗(·) ∈ C∞(I;RM ) steers X0 into XT in time I w.r.t. system (4). Since X0 and XT

are chosen arbitrarely, the proof of Theorem 3.2 is complete.

5 Proof of Theorem 4.1

Fix an arbitrary p in {1, . . . , ν}, an arbitrary (y0, y0p+1) ∈ Rk × Rmp+1 , and an arbi-
trary ε > 0. Define δ := ε

4 and assume that {y(ξ, ·)}ξ∈Rk satisfies Assumptions 1)-3) of
Theorem 4.1.

To prove Theorem 4.1, we change the approach from [15] and [16] as follows. Along
with system (7), we consider the following k-dimensional control system of the Volterra
equations















ẋi(t) = fi(t, x1(t), ..., xi+1(t)) +
t
∫

t0

gi(t, s, x1(s), ..., xi(s))ds, i = 1, . . . , p− 1,

ẋp(t) = w(t) +
t
∫

t0

gp(t, s, x1(s), ..., xp(s))ds,

t ∈ I

(9)

with states y = (x1, ..., xp)
T

∈ Rk and controls w ∈ Rmp . Given y ∈ Rk, and w(·) ∈
L∞(I;Rmp), let t 7→ z(t, y, w(·)) denote the trajectory, of (9), defined by the control w(·)
and by the initial condition z(t0, y, w(·)) = y on some maximal interval J ⊂ I of the
existence of the solution.

For all ξ ∈ Rk, define

ω(ξ, t) = ẋp(ξ, t)−

t
∫

t0

gp(t, s, x1(ξ, s), ..., xp(ξ, s))ds, t ∈ I. (10)

Then
y(ξ, t) = z(t, y0, ω(ξ, ·)) for all t ∈ I, ξ ∈ R

k. (11)

Then, using the Gronwall-Bellmann lemma, we get the existence of δ(·) in C(Rk; ]0,+∞[)
such that, for each ξ ∈ Rk and each w(·) ∈ L∞(I;Rmp), we have:

∀ t ∈ I |z(t, y0, w(·)) − y(ξ, t)| < δ,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (4) (2011) 411–424 419

whenever ‖ w(·)− ω(ξ, ·)‖L∞(I;Rmp ) < δ(ξ). (12)

In order to complete the proof of Theorem 4.1, it suffices to prove the following Propo-
sition, which is similar to Lemma 5.1 from [16].

Proposition 5.1 Assume that {y(ξ, ·)}ξ∈Rk is a family such that Conditions 1)-3)

of Theorem 4.1 hold. Then, for system (7), there exist functions M(·) ∈ C(Rk; ]0,+∞[)
and a family {u(ξ, ·)}ξ∈Rk of controls defined on I such that:

1) For each ξ ∈ Rk, the control u(ξ, ·) is a piecewise constant function on I and the
map ξ 7→ u(ξ, ·) is of class C(Rk;L1(I;R

mp+1)).

2) For each ξ ∈ Rk, the trajectory t 7→ y(t, y0, u(ξ, ·)) is defined for all t ∈ I, and for
each ξ ∈ Rk we have

|ω(ξ, t)− fp(t, y(t, y
0, u(ξ, ·)), u(ξ, t))| < δ(ξ), t ∈ I

3) For each ξ ∈ Rk, we have: ‖ u(ξ, ·)‖L∞(I;Rmp+1) ≤M(ξ).

Indeed, if Proposition 5.1 is proved, then, combining (10), (11), (12) with the form
of the dynamics of (7),(9), we get

|y(t, y0, u(ξ, ·))− y(ξ, t)| < δ for all t ∈ I, ξ ∈ R
k. (13)

Using partitions of unity and arguing as in [15], [16], we get the existence of a family
{v̂(ξ,β)(·)}(ξ,β)∈Rk×R

mp+1 of controls such that Conditions 4) and 5) of Theorem 4.1 hold

and such that for each (ξ, β) ∈ Rk × Rmp+1 we have

|y(t, y0, v̂(ξ,β)(·)) − y(t, y0, u(ξ, ·))| < δ for all t ∈ I, (14)

(t 7→ y(t, y0, v̂(ξ,β)(·)) being defined on I for all (ξ, β) in Rk × Rmp+1). Since δ = ε
4 ,

from (13), (14) and from Assumption 3) of Theorem 4.1 it follows that the family
{v̂(ξ,β)(·)}(ξ,β)∈Rk×R

mp+1 also satisfies Condition 6) of Theorem 4.1. This completes the
proof of Theorem 4.1.

Remark 5.1 The main distinctions of the proof of Proposition 5.1 in comparison
with that of Lemma 5.1 from [16] are as follows:

(⋆) In the current paper, we deal with the Volterra systems whereas [16] is devoted
to the case of ODE.

(⋆⋆) In the current work, the parameter ξ characterizes the terminal state and the
system should be steered to starting from the initial point y0 ∈ Rk. In [16], the con-
struction starts with the initial condition z(ξ, T ) = ξ given at the terminal instant T,
and then the control strategy is adjusted inductively ( [16], Lemma 6.1) while time is
decreasing (from t = T until the initial instant t = t1) in order to reach a certain small
neighborhood of the initial state. However, for the Volterra systems, such an invertion of
time is not possible in general (and one cannot consider the Cauchy initial condition at
terminal instant T ). Therefore the direct repetition of the argument from [16], Section
6 would not suit.

(⋆ ⋆ ⋆) In the current work, we consider the non-smooth case (the right-hand side of
(2) satisfies the local Lipschitz condition only).



420 S. DASHKOVSKIY AND S.S. PAVLICHKOV

5.1 Proof of Proposition 5.1

Following [16], choose any sequence {Rq}
∞
q=1⊂N such that R1 = 1, Rq+1 > Rq+1, q ∈ N.

Define

δq :=
1

2
min

ξ∈BRq+1
(0)
δ(ξ), Mq := max

ξ∈BRq (0)
‖ y(ξ, ·)‖C(I;Rk) + 4δ + 1, q ∈ N; (15)

Kq := {y ∈ R
k| |y| ≤Mq}; dq :=Mq+2 + 1, q ∈ N; (16)

Wq := {ω ∈ R
mp | |ω| ≤ max

ξ∈BRq (0)
‖ ω(ξ, ·)‖C(I;Rmp ) + 1}, q ∈ N; (17)

Ξ1 := BR1(0); Ξq+1 = BRq+1(0)\BRq
(0), q ∈ N; (18)

E1 := BR1(0)× I ×K1;

Eq+1 := Eq

⋃

((

BRq+1(0) \BRq
(0)

)

× I ×Kq+1

)

, q ∈ N; (19)

E :=

∞
⋃

q=1

Eq. (20)

Given an arbitrary q ∈ N, and arbitrary N ∈ N, define

Λq

N := {(t, y, v) ∈ I ×Kq+1 × R
mp | ∃v ∈ R

mp+1(|v|≤N) ∧ (|ω − fp(t, y, v)| <
δq
3
}.

Then every Λq
N is open as a subset of the metric space I ×Kq+1 × Rmp whose metric is

generated by the norm of R×Rk×Rmp . Since I×Kq+1×Wq is compact w.r.t. this metric

space, using condition (iii) and the inclusions Λq

N ⊂ Λq

N+1 and I×Kq+1×Wq ⊂
∞
⋃

N=1

Λq

N ,

we obtain the existence of N0(q) ∈ N such that I ×Kq+1 ×Wq ⊂ Λq

N0(q)
. Without loss

of generality, we assume that N0(q) ≤ N0(q+1).
Define

Uq := {v ∈ R
mp+1 | |v| ≤ N0(q)}. (21)

Then Uq ⊂ Uq+1, q ∈ N and, by the construction, for each (t, y, ω) ∈ I×Kq+1×Wq there

exists v ∈ Uq such that |ω−fp(t, y, v)| <
δq
3 . Let {Lq}

∞
q=1 ⊂ R and L(·) ∈ C(Rk; ]0,+∞[)

be such that 0 < Lq+1 ≤ Lq, q ∈ N and

2Lq(|ϕ(t, y, v)|+(T−t0)|ψ(t, s, y, v)|+1)≤1 ∀(t, s, y, v)∈I2×Bdq
(0)×Uq+2, q∈N, (22)

Lq+1 ≤ L(ξ) ≤ Lq, whenever ξ ∈ Ξq, q ∈ N. (23)

Then we denote by ̥ the following semi-ring of sets ( [12, vol. 2, p. 17])

ΣΘ(·),ϑ(·),AΘ,Aϑ
:= {(η, s, z) ∈ R

k×R×R
k | ϑ(η, z) ≤ s≤Θ(η, z)}\{(η, s, z) ∈ R

k×R×R
k

|(s = Θ(η, z)) ∧ ((η, z) ∈ AΘ) or (s = ϑ(η, z))∧((η, z) ∈ Aϑ)},

where Θ(·), and ϑ(·) range over the set of all the functions from class C(Rk ×Rk; I) such
that for all (ξ, y, z) ∈ Rk × Rk × Rk

|Θ(ξ, y)−Θ(ξ, z)| ≤ L(ξ)|y − z| and |ϑ(ξ, y)− ϑ(ξ, z)| ≤ L(ξ)|y − z|,
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and AΘ ⊂ Rk × Rk, Aϑ ⊂ Rk × Rk range over the set of all subsets of Rk × Rk.
For each (ξ, t, y) ∈ E, let q ∈ N be such that ξ ∈ Ξq. From (18)-(20) it follows

that y ∈ Kq+1. By (17), and by the definition of Uq, there exists vξ,t,y ∈ Uq such that

|ω(ξ, t)− fp(t, y, vξ,t,y)| <
δq
3 .

Using the compactness of each Eq in Rk × I × Rk and the properties of semirings of
sets (see Lemma 2 in [12, vol.2, p. 18]), we repeat the construction from [16, p.1435-
1436] and obtain the existence of a sequence {(ξr, tr, yr)}

∞
r=1, sequences {Sr}

∞
r=1 ⊂ ̥ and

{Σl}
∞
l=1 ⊂ ̥ of sets from ̥ and sequences of natural indices 1 ≤ r1 < r2 < . . . < rq < . . .

and 1 ≤ l1 < l2 < . . . < lq < . . . such that first

(ξr, tr, yr) ∈ Sr and ∀(η, s, z) ∈ Sr (|η − ξ| <
1

4
) ∧ (|z − y| <

1

4
), (24)

∀(η, s, z) ∈ Sr |ω(η, s)− fp(s, z, vξr,tr,yr
)| < δ(η), (25)

(this group of inequalities characterizes the size of Sr and the properties of the feedback
controller to be constructed), second

E⊂

∞
⋃

r=1

Sr; and Eq⊂

rq
⋃

r=1

Sr, for all q ∈ N, (26)

Sr

⋂

E1 6= ∅, if 1 ≤ r ≤ r1; and Sr

⋂

((

BRq+1(0)\BRq
(0)

)

× I ×Kq+1

)

6= ∅,

if rq + 1 ≤ r ≤ rq+1, (27)

Sr

⋂





rq
⋃

j=1

Sj



 = ∅, if r ≥ rq+1 + 1, q ∈ N. (28)

(this group of inclusions and inequalities characterizes the local finiteness of the countable
covering {Sr}

∞
r=1 of E), and third

(A1)
rq
⋃

r=1
Sr =

lq
⋃

l=1

Σl for all q ∈ N (which implies that
∞
⋃

l=1

Σl =
∞
⋃

r=1
Sr);

(A2) Σl′
⋂

Σl′′ = ∅ for all l′ 6= l′′;
(A3) for each r ∈ N, there is a finite set of indices P (r)⊂N such that Sr =

⋃

l∈P (r)

Σl.

This group of conditions characterizes the relationship between the original countable
covering {Sr}

∞
r=1 of E and its derivative covering {Σl}

∞
l=1 ⊂ ̥, of E by mutually disjoint

sets Σl, obtained by using the properties of semiring ̥ [12, vol. 2, p. 18].
From (A1), (A2), (A3), it follows that for every l ∈ N there exists r(l) ∈ N such that

Σl ⊂ Sr(l), and such that, if 1 ≤ l ≤ l1, then 1 ≤ r(l) ≤ r1, and if lq + 1 ≤ l ≤ lq+1

(q ∈ N), then rq + 1 ≤ r(l) ≤ rq+1. Since Σl ⊂ Sr(l), we obtain from (24), (26), (27):

(

B 1
2
(ξ) × I × R

k
)

⋂

Σl = ∅, whenever l /∈ Ω(ξ), l ∈ N, ξ ∈ R
k, (29)

where Ω(ξ) is the finite number of indices given by

Ω(ξ) :=

{

{l}l3l=1, if ξ ∈ Ξ1 ∪ Ξ2;

{l}
lq+2

l=lq−1+1, if ξ ∈ Ξq+1, q ≥ 2.
(30)
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Define
v(ξ, t, y) = vξr(l),tr(l),yr(l)

, whenever (ξ, t, y) ∈ Σl, l ∈ N. (31)

Then, from (25), (31), and from the inclusion Σl⊂Sr(l), we obtain:

|ω(η, s)− fp(s, z, v(η, s, z))| < δ(η) for all (η, s, z) ∈

∞
⋃

l=1

Σl (32)

Lemma 5.1 1) For every ξ ∈ Rk, there are a unique z(ξ, ·) ∈ C(I;Rk) such that

z(ξ, t0) = ξ, (33)

a unique finite sequence of indices {νj(ξ)}
N(ξ)
j=1 = {νj}

N(ξ)
j=1 ⊂ Ω(ξ) such that N(ξ) ≤

|Ω(ξ)|, and νµ 6= νj whenever µ 6= j, and a unique finite sequence t0 = τ∗1 (ξ) < τ∗2 (ξ) <
. . . < τ∗

N(ξ)(ξ) < τ∗
N(ξ)+1(ξ) = T such that:

1.a) ż(ξ, t) is defined and continuous at each t in I \ {τ∗1 (ξ), ..., τ
∗
N(ξ)(ξ)}, and

(ξ, t, z(ξ, t)) ∈ E and |ω(ξ, t)− fp(t, z(ξ, t), v(ξ, t, z(ξ, t)))| < δ(ξ), t ∈ I (34)

1.b) for each j = 1, . . . , N(ξ), we have:

(ξ, t, z(ξ, t)) ∈ Σνj for all t ∈]τ∗j (ξ), τ
∗
j+1(ξ)[, (35)

ż(ξ, t) = ϕ(t, z(ξ, t), v(ξ, t, z(ξ, t))) +

t
∫

t0

ψ(t, s, z(ξ, s), v(ξ, s, z(ξ, s)))ds

for all t ∈]τ∗j (ξ), τ
∗
j+1(ξ)[, (36)

τ∗j+1(ξ) = Θνj (ξ, z(ξ, τ
∗
j (ξ))), and τ∗j (ξ) = ϑνj (ξ, z(ξ, τ

∗
j+1(ξ))) (37)

2) Given any ξ ∈ Rk, and any l ∈ N, define t 7→ sl(ξ, t) and t 7→ tl(ξ, t) by

sl(ξ, t) = t− ϑl(ξ, z(ξ, t)), tl(ξ, t) = t−Θl(ξ, z(ξ, t)) for all t ∈ I. (38)

Then, for every ξ ∈ Rk, and every l ∈ N, first,

3(t− τ)

2
≥ sl(ξ, t)− sl(ξ, τ) ≥

t− τ

2
whenever t > τ, l ∈ N, (39)

3(t− τ)

2
≥ tl(ξ, t)− tl(ξ, τ)≥

t− τ

2
whenever t > τ, l ∈ N, (40)

for all t ∈ I and τ ∈ I, and, second, there are unique s∗l (ξ) ∈ I and t∗l (ξ) ∈ I such that
sl(ξ, s

∗
l (ξ)) = 0 and tl(ξ, t

∗
l (ξ)) = 0. Moreover, t0 = s∗ν1(ξ); τ

∗
i (ξ) = t∗νi−1

(ξ) = s∗νi(ξ) for
every i = 2, ..., N(ξ); and T = t∗νN(ξ)

(ξ).

The proof of the current Lemma 5.1, which is omitted, is by induction on i ∈
{1, . . . , N(ξ)} and is similar to that of Lemma 6.1 from [16]. The only difference is that
the induction argument starts with the initial instant t0 = τ∗1 (ξ) whereas in [16] it starts
with T = τ∗1 (ξ) down to t0. Having proved Lemma 5.1 one combines it with the implicit
function theorem and proves Lemma 5.2 (again by induction on i ∈ {1, . . . , N(ξ)}).
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Lemma 5.2 For all i ∈ {1, ..., N(ξ)}, functions η 7→ s∗νi(η), η 7→ t∗νi(η), η 7→
z(η, s∗νi(η)), and η 7→ z(η, t∗νi(η)) defined in the previous Lemma 5.1 are continuous at
every ξ ∈ Rk

The only differences of the proof of the current Lemma 5.2. in comparison with that
of Lemma 6.2 from [16] are as follows: first one should use the implicit function theorem
for the continuous monothone functions instead of C1 - case (due to nonsmoothness),
and second one needs to invert the time again in comparison with [16].

Finally, define the desired family of controls {u(ξ, ·)}ξ∈Rk by

u(ξ, t) = v(ξ, t, z(ξ, t)) whenever t ∈ I, ξ ∈ R
k. (41)

From Lemmas 5.1 and 5.2 it immediately follows that the family {u(ξ, ·)}ξ∈Rk defined
by (41) satisfies all the Conditions 1),2),3) of Proposition 5.1. The proof of Proposition
5.1 is complete. This completes the proof of Theorem 4.1 and respectively those of
Theorems 3.1 and 3.2.

6 Conclusion

The problem of global controllability of triangular integro-differential Volterra equations
with noninvertible input-output links and with nonsmooth (Lipschitz continuous) dy-
namics has been solved. In addition we proved the global controllability of large scale
interconnections of such systems when the cross-terms are bounded and Lipschitz con-
tinuous. The main distinctions of the current work in comparison with the thechniques
used in preceeding works [15, 16] are as follows. First, in contrast to [15, 16], since the
dynamics is not differentiable (but satisfies the local Lipschitz condition only) we can-
not refer to the properties of the Frechet derivative of the input-state map u(·) 7→ x(·)
that was essential in [15, 16] and cannot consider the linearized control system around a
trajectory (which characterizes this Frechet derivative). Second, in contrast to [15] the
input-output links xi+1(·) 7→ xi(·) are not invertible, which is why each virtual control
needeed at each step of the backstepping procedure cannot be obtained as in [15] by
solving the corresponding Volterra equations. To handle the second problem, we update
some auxilary construction from [16] to the case of Volterra nonsmooth systems and
to handle the first one we develop a backstepping design which is different from that
from [15, 16]. All the arguments that are similar to those from [15, 16] are omitted and
only essential changes are highlighted.
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Abstract: This paper presents a Sliding Mode Direct Torque Control (SM-DTC)
of a multiphase Induction Machine (IM) supplied with multiphase voltage source
inverter (VSI) controlled by a new algorithm of Space Vector Pulse Width Modulation
(SVPWM) for a high-performance multi-machine electric vehicle (EV) drive system.
The SM-DTC is one of the effective nonlinear robust control approaches; it provides
better dynamic performances of considered system. The new SVPWM algorithm
develops a new analysis of voltage vectors to synthesize required phase voltages for
driving multiphase IM with a minimum switch stress. Theoretical developments are
verified for EV with two-separate-wheel-drives based on two pentaphase induction
motors. The obtained results illustrate the effectiveness of the proposed drive system.
Moreover, this system can be easily extended to an n-phase multi-machine drive
system.
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1 Nomenclatures

s, r : Stator, rotor indexes.
α, β : Fixed stator reference frame indexes.
ref : Reference index.
V, i,Φ : Voltage, current, flux.
L : Inductance.
R : Resistance.
M : Mutual inductance.
σ : Total leakage coefficient.
np : Pole pair number.
v : Vehicle speed.
r : Wheel radius.
2d : Traction axle Length.
ρ : Radius of way curvature.
ω : Vehicle rotation speed.
Ω : Motor speed.
ΩR,ΩL : Speed of right and left motors.
Ω∗

R,Ω
∗
L : Reference speed of right and left motors.

T ∗
eR, T

∗
eL : Reference torque of right and left motors.

Ti : Simple time.
TL : Load torque.
y1, y2 : estimated stator flux components

2 Introduction

The research on development of electrical road vehicles aims to solve environment and
energy problems caused by using the internal combustion engine vehicles (ICV). The first
ones present many advantages as compared with the ICV ( [1]– [8]).

The principal advantage of EV is the electric motor drive system. Thus, the trend
within EV technology today is to develop Alternative Current (AC) motor drive sys-
tems for the next generation of such vehicles due to reduced size, weight, volume and
maintenance.

The induction motors (IM) are relatively of a high reliability, high efficiency even in
high speed range and low production cost. Therefore much attention is given to their
control for various applications with different control requirements [2].

Recently, The Direct Torque Control (DTC) is more frequent in IM control. It is based
on the decoupled control of stator flux and torque providing a quick and robust response
with a simple control construction in AC drive ( [5]– [9]). However, the conventional
DTC presents a serious problem in low speed and in variation of motor parameters
sensivity [10].

This paper presents a traction drive system for EV with two-independent-wheel-
drives. This system includes two pentaphase induction motor drives controlled using
hybrid control (SM-DTC). This control is one of the most effective nonlinear robust
control approaches; it provides good dynamic performances of considered system [15]. In
addition, this paper presents a new analysis of multiphase SVPWM for whatever number
of phases. In order to synthesize an arbitrary phase voltage in terms of the times applied
to the available switching vectors, the concept of orthogonal multi-dimensional vector
space is used. An appropriate vector sequences are chosen to minimize switching losses.
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Throughout this paper, the proposed algorithm is applied for supplying the pen-
taphase multimachine system proposed. The basic concepts can be easily extended to
an n-phase system. The computational cost of the proposed strategy is low; it is well
suited for real-time hardware implementation. The obtained results illustrate that with
this configuration of EV Drive, it is possible to improve the stability of the vehicle under
road conditions without any complicated mechanical components. Replacing the usual
mechanical differential by an Electrical Differential (ED) is the solution to face the dis-
advantage of mechanical differential. This possibility is taken into consideration in this
paper; the solution of ED is tested under different ways: straight-line, left and right
turning.

3 Vehicle with Two-Separate-Wheel-Drives

The proposed EV Drive control can be used for all electric traction systems with two
separate wheels drives. This system includes the elements represented in Figure 1. In this
structure we find: two induction motors, two PWM inverters, the mechanic transmission
system (motor to wheel), batteries, and control unit [3]. It is clearly noted that this
topology of structure reduces the mechanic transmission components (mechanical differ-
ential operation is assured by an adequate control strategy of the two motors). Besides,
this configuration offers the following advantages:

• Relatively, a good maneuverability: the torques of the two motors can be controlled
independently precisingly and quickly.

• Elimination of mechanical differential.

• A good repartition of drive power.

• With other castor wheels used, the drive wheels can be the directional wheels.

Figure 1: Traction system for electric vehicle with two-independent-wheel-drives.

4 Traction Drive System Proposed

Figure 2 illustrates the general scheme of the traction system proposed. The control of
induction motors 1 and 2 are assured by SM-DTC. The torque references are generated
by speed control of the two wheels, using SM controller. The speed references are gen-
erated by speed and direction orders. The speed and the direction orders are obtained,
respectively, by the accelerator or brake pedals, and the steering wheel.
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Figure 2: Scheme of the proposed drive system.

4.1 Electric differential

Figure 2 assumes that the linear speed of the vehicle v is imposed. The rotation speed
for each motor depends on the type of driving regime selected.

For the straight road regime, the rotation speed for each motor becomes:

ΩL = ΩR =
v

r
. (1)

For the turning regime, the angular speeds for each motor are different, for example
in the left turning these speeds are expressed as [4]:

ΩL =
2v

(

1 +
ρ+ d

ρ− d

)

r

=
v

r
−∆ω, ΩR =

2v
(

1 +
ρ+ d

ρ− d

)

r

=
v

r
+∆ω, ∆ω = d.

v

ρ.r
, (2)

where △ω is imposed when the vehicle crosses a turning way.

4.2 Sliding mode – direct torque control

The Classic DTC presents the advantage of a very simple control scheme of stator flux
and torque by two hysteresis controllers, which give the input voltage of the motor by
selecting the appropriate voltage vectors of the inverter through a look-up-table in order
to keep stator flux and torque within the limits of two hysteresis bands [5]. Figure 3
illustrates the general scheme for the classic DTC.
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Figure 3: Basic of the Direct Torque Control Scheme.

The fast dynamic response of the classic DTC was entirely preserved, while the steady-
state response was significantly improved even at a low switching frequency, but it was
very sensitive to parameter uncertainties due to depending upon motor parameters.

The sliding mode control (SMC) is a very effective approach to solve the problem
thanks to its well established design criteria, easy implementation, fast dynamic response,
and robustness to parameter variations. Figure 4 illustrates the general scheme for the
SM- DTC [11–14].

Figure 4: Structure of sliding mode DTC without switching table.

4.2.1 The induction motor model

The only difference between the five-phase motor model and the corresponding three-
phase motor model is the presence of x-y component equations. Rotor x-y components
are fully decoupled from d-q components and one from the other. Since rotor winding
is short-circuited, x-y components cannot appear in the rotor winding. Zero sequence
component equations for both stator and rotor can be omitted from further consideration
due to short-circuited rotor winding and star connection of the stator winding. Finally,
since stator x-y components are fully decoupled from d-q components and one from
the other, the equations for x-y components can be omitted from further consideration
as well. This means that the model of the five-phase induction motor in an arbitrary
reference frame becomes identical to the model of a three-phase induction motor.

The induction motor model, developed in the reference frame (α, β) is described by
(3). This model contains: four electrical variables (currents and flux), one mechanical
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variable and two control variables (stator voltages):






















































·
x

1
= γ.x

1
+

Γ

Tr

.x
3
+ np .Γ.x4

.x
5
+ δ.Vsα,

·
x

2
= γ.x2 +

Γ

Tr

.x
4
− np .Γ.x3

.x
5
+ δ.Vsβ ,

·
x

3
=

M

Tr

.x
1
−

1

Tr

.x
3
− np .x4

.x
5
,

·
x

4
=

M

Tr

.x
2
−

1

Tr

.x
4
+ np .x3

.x
5
,

·
x

5
= η. (x

2
.x

3
− x

1
.x

4
)−

TL

J
,

(3)

where the stator voltages and the states variables are:

V T
s = [Vsα, Vsβ ]

T , XT = [x
1
, x

2
, x

3
, x

4
, x

5
] ,T = [isα, isβ ,Φrα,Φrβ ,Ω]

T , (4)














δ =
1

σLs

, η =
npM

JLr

, γ = −

(

1

σTs

+
1− σ

σTr

)

,Γ =
1− σ

σM
,

σ = 1−
M2

LsLr

, Ts =
Ls

Rs

, Tr =
Lr

Rr

.

(5)

4.2.2 Switching surfaces selection

It is well known that the squared norm of the stator flux plays an important role in
the performance of a motor and is also closely related to the electromagnetic torque.
Therefore, we choose the control of the active torque uT and the square of the flux norm
uΦ = Φ2, which are defined as:

uT = x2.y1 − x1.y2, uΦ = y21 + y22 . (6)

Let’s define the errors as:

e1 = uT − uTref
, e2 = uΦ − uΦref

, (7)

where uTref
and uΦref

are the reference values of the active torque and the square of the
flux norm, respectively.

The sliding-mode control is first used to find the sliding surface S = 0. In the present
case, we adopt the integral function of the active torque and the square of the flux norm
errors to obtain:

S1 = e1 +K1

∫

e1dt, S2 = e2 +K2

∫

e2dt, (8)

with K1 and K2 are positive constants.

4.2.3 Convergence conditions

So that control variables converge exponentially to their reference values, it is necessary
for the surfaces to be null.

In addition, the realization of the sliding mode control is conditioned by checking the
Lyaponov condition ( [16]– [20]):

Si.
·

Si < 0, i = 1, 2, (9)

and the invariance condition
·

Si = 0, i = 1, 2. (10)
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4.2.4 Switching function synthesis

Our goal is to generate a control law using the sliding mode control theory.
The derivative of the surfaces S1 and S2 will be:

·

S = F +D.V, (11)

where

F =

[

F1

F2

]

;D =

[

Lr.y2
α.M

+ x2 −
Lr.y1
α.M

− x1

2.y1 2.y2

]

, (12)







F1 =

(

β

α+K1

)

.uT + np.x5.

(

φd +
Lr

α.M
.uΦ

)

−K1.uTref
−

·
uTref

,

F2 = 2.Rs.φd −
·
uΦref

−K2.uΦref
+K2.uΦ,

(13)

α = M −
LsLr

M
, β =

LsRr + LrRs

M
, φd = x1.y1 + x2.y2 (14)

and to check the stability condition of Lyaponov, it is necessary to have:

·

S = µ.Sgn (S) . (15)

By equalizing (15) and (11), we have the general control law:

V = −D−1.µ.Sgn (S)−D−1.F. (16)

We can write it as:
[

Vsα

Vsβ

]

=

[

Veqα

Veqβ

]

+

[

Vcα

Vcβ

]

(17)

with definition of the equivalent control as:

[

Veqα

Veqβ

]

= −D−1.

[

F1

F2

]

(18)

and the commutation control as:
[

Vcα

Vcβ

]

= −D−1.

[

µ1 0
0 µ2

]

.

[

Sgn (S1)
Sgn (S2)

]

. (19)

Because the commutation control is included in the general control, it is necessary to
choose µ1 and µ2 large enough: µ1 > |F1| , µ2 > |F2| .

4.2.5 Chattering problem

It is well known that sliding-mode technique generates undesirable chattering; this prob-
lem can be solved by replacing the switching function with the saturation function [10]:

Sat (Si) =











1, Si > λi,
−1, Si < −λi,
Si

λi

, |Si| < λi,
(20)

where λi > 0 is a smooth factor.
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5 SVPWM Algorithm Development

5.1 Principal of reference vector approximation

Similar to the SVM algorithm for three phase inverters, the reference space vector is
used to select the corresponding set of nearest adjacent voltage space vectors. The
adjacent vectors selected can synthesize a desired reference voltage vector using averaged
approximation.

Figure 5: Generation of the reference vector by using five vectors.

If the reference vector lies in the sector connecting the tips of vectors
−→
V1,

−→
V2, ...,

−→
Vn

(Figure 5), the average reference vector can be obtained with:

−→
V ref =

t1
Ti

−→
V 1 +

t2
Ti

−→
V 2 +

t3
Ti

−→
V 3 + ...+

tn
Ti

−→
V n, (21)

where t1, t2, ..., tn must satisfy the condition t1 + t2 + ...+ tn = Ti.

5.2 Switching vector sets selection

From the vectors limiting one sector, we choose the sequence of vectors achieving one
switch transition; there are (n+1) vectors. The sets of corresponding vectors are selected
to be used in SVPWM algorithm; there are (n+1)/2 sets. For example, for seven phase
inverter, Figures 6, 7, 8 present the sets selected with respect to the criteria of one switch
transition, in the three plans. It is clear that the sets covered all range of reference vectors.

5.3 Applying time of switching vectors calculation

The duty cycles corresponding to voltage vectors are proportional to their distance from
the reference vector.

5.4 Switching sequence arrangement

The row of applied nearest vectors depends on the sector number (even or odd). The row
is showed by the arrow in Figures 9, 10 for five and seven phase inverters respectively.

For one vector approximation, the row of the elements in the sequence is reversed in
the next half of the modulation period, as shown in Figures 11.
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Figure 6: The sets selected for a seven phase
inverter in the first plan.
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Figure 7: The sets selected for a seven phase
inverter in the second plan.
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Figure 8: The sets selected for a seven phase inverter in the third plan.

Figure 9: Vector sequence arrangement in
the five phase inverter.

Figure 10: Vector sequence arrangement
in the seven phase inverter
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Figure 11: Switching sequence arranged in symmetrical pattern.

6 Simulation Results

6.1 Test of SVPWM strategy

To validate the proposed algorithm, simulation examples are realized for 5 and 7 phases
inverters to indicate the simplicity of this algorithm for any number of phases as shown
in Figures 12 to 19, which represent respectively the reference vector location (Figures
12, 16), the phase voltage (Figures 13, 17), switching sequence arrangement (Figures 14,
18), phase voltage spectrum (Figures 15, 19). Higher phases of SVM will be simulated
with the same simplicity.

A deeper analysis of the resulting PWM voltage harmonics spectrum shows that the
low order harmonics remain relatively weak and the increase of the phase number has an
effect on the reduction of the harmonics content.
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Figure 12: The reference vector location in
the first plan for a five phase inverter .
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Figure 16: The reference vector location in
the first plan of a seven-phase-inverter.
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Figure 17: Phase voltage of a seven-phase-
VSI.
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Figure 18: Switch state of a seven-phase-
VSI.
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Figure 19: Phase voltage spectrum.

6.2 Test of speed and torque controls

Simulation results are obtained for a two identical squirrel cage pentaphase IM with
parameters shown in the appendix. The reference speed represents the motion that the
vehicle will have to cross. A trapezoidal form of speed is choosen, which allows simple
calculations and also represents a realizable form. This form includes three phases:

• Phase 1: Constant acceleration; speed increases linearly.
• Phase 2: Null acceleration: constant speed.
• Phase 3: Constant acceleration; speed decreases linearly.

Figures 20, 22 and 24 represent the speed, torque and flux responses for the pen-
taphase induction motor respectively. The inverter phase current and the phase voltage
of IM1 are shown in Figures 25, 26.
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Figure 20: Motor speed.

0.196 0.198 0.2 0.202 0.204 0.206

74

74.5

75

75.5

76

76.5

Time(s)

S
pe

ed
(r

d/
s)

Figure 21: Motor speed zoom.
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Figure 22: Motor torque.
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Figure 23: Motor torque zoom.
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Figure 25: Stator phase current of IM1.

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
−500

−400

−300

−200

−100

0

100

200

300

400

500

Time(s)

V
ol

ta
ge

(V
)

Figure 26: Inverter phase voltage.

It can be seen from Figures 20 that the motor speed tracks the reference very well
and a small deviation appears only at the begining of the transient.

6.3 Test of electric differential

In order to test the performance of electrical differential used in electric vehicle, we have
two interesting situations:

• The straight road regime, where both motors operate at the same speed.

• The turn regime, where each motor operates at a different speed.

Figures 27, 29 and 28, 30 represent the speed and torque responses for the two vehicle
induction motors in a straight road, right and left turn. They show the follow up of the
speed references and the motor speeds.
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Figure 27: Right Motor speed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−30

−20

−10

0

10

20

30

Time(s)

T
or

qu
e(

N
.m

)

Figure 28: Right motor torque.
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Figure 29: Left Motor speed.
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Figure 30: Left motor torque.

7 Conclusion

This paper describes a SM-DTC for a high-performance electric vehicle with two-
separate-wheel-drive based on two pentaphase induction motors supplied by two pen-
taphase SVPWM VSIs. The proposed system aims at the elimination of hard mechanic
devices (mechanic differential), and replacing it by soft ones (electric differential). Simu-
lation tests have been carried out on a pentaphase induction motor drive. The obtained
results illustrate that the sliding mode control provides a simple implementation in terms
of time calculation with high performance of speed and torque response.

Appendix

Induction motors data:

Rated power : 1Kw
Stator resistance : 4.85 Ω
Rotor resistance : 3.805 Ω
Stator inductance : 0.274 H
Rotor inductance : 0.274 H
Mutual inductance : 0.258 H
Motor-Load inertia : 0.031 Kg.m2

Pole pairs : 2
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