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Abstract

In this article we derive the inside-outside duality for two time-harmonic, elastic scattering
problems. First we consider a rigid scattering object inside an isotropic, homogeneous back-
ground medium and second, we consider a penetrable, inhomogeneous scattering object inside
this background medium. For the first scattering problem we make use of the particular behavior
or certain eigenvalues of the corresponding far field operator to characterize interior Dirichlet
eigenvalues of the negative Navier operator. Then we adapt this technique to determine interior
transmission eigenvalues that correspond to the second scattering problem.

1 Introduction

A typical problem in inverse, elastic scattering theory is to determine the shape of a rigid obstacle
from far field measurements. An obvious attempt to approach this problem is to extend the available
methods for acoustic scattering theory to the present case. Results of this approach are for example
extensions of the linear sampling method and the factorization method to elastic scattering problems
[2, 1, 13]. However these methods can fail at interior eigenvalues of the negative Navier-operator
−∆∗. The Navier-operator can be considered as the extension of the Laplacian for elastic scattering
models. Therefore it also shares important properties with the Laplacian. For example, if we
assume Dirichlet boundary conditions, the Navier operator has a set of infinitely many, discrete
eigenvalues which tend to infinity. As for the Laplacian, this property is an immediate consequence
of the coercivity of these operators, see e.g. [22]. Due to the sensitivity of the above-mentioned
reconstruction techniques at interior eigenvalues, there is a natural interest in determining these
eigenvalues from far field data without knowledge of the scattering object. In the first part of this
article we will show how the inside-outside duality for rigid obstacles can potentially be used to
determine these eigenvalues or at least guarantee certain frequency bands that contain no interior
eigenvalues. As in the case of acoustic scattering by impenetrable scattering objects [19], the inside-
outside duality yields a full characterization of Dirichlet eigenvalues of the negative Navier operator.

In the second part of this article, we consider scattering by penetrable, inhomogeneous scatter-
ing objects. This scattering problem corresponds to an interior transmission eigenvalue problem,
which has been examined in [7, 8, 6]. In these studies, the well-posedness of the interior transmis-
sion eigenvalue problem has been examined and the existence of at most a countable set of interior
transmission eigenvalues has been shown under strict conditions for the material parameters. These
results have been generalized in [5], where the existence of an infinite, discrete set of interior trans-
mission eigenvalues has been shown for general settings that include the setting we consider in this
article. The study of the interior transmission eigenvalue problem is interesting in relation to the
application of the linear sampling method [9, 4, 11] and the factorization method [10]. As in the case
of rigid obstacles, these methods can fail at interior transmission eigenvalues. We will show that the
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inside-outside duality can be used to provide a sufficient condition for the determination of interior
transmission eigenvalues. As for other scattering scenarios that involve penetrable scattering objects
[16, 19, 20, 21, 24], a full characterization of interior transmission eigenvalues by the inside-outside
duality is to date only possible if we assume certain conditions for the material parameters.

We assume that the three-dimensional space R3 is filled with an isotropic, homogeneous back-
ground medium that is described by the constant Lamé parameter µ and λ and has normalized mass
density ρ = 1. The propagation of time-harmonic elastic waves in this space is described by the
Navier equation

∆∗u+ ω2u = 0, (1)

where ω > 0 is the frequency and the Navier operator ∆∗ is given by

∆∗ := µ∆ + (λ+ µ)∇ div . (2)

Note that since the displacement field u is vector-valued, the Laplace operator ∆ is applied component-
wise and ∇u = (∇u1,∇u2,∇u3)T is the Jacobi matrix of u. To guarantee propagation of an elastic
wave in this medium, we require the Lamé constants to satisfy µ > 0, λ+ 2µ > 0. The displacement
field u can be decomposed as u = up +us, where up describes its longitudinal (pressure) part and us

describes its transversal (shear) part. Note that both of these parts solve the Helmholtz equations

(∆up + k2
p)up = 0, (∆us + k2

s )us = 0,

with positive wavenumbers

k2
p =

ω2

λ+ 2µ
, k2

s =
ω2

µ
. (3)

Now we consider the exterior time-harmonic Dirichlet scattering problem. For an impenetrable
scattering object D ⊂ R3 with Lipschitz boundary, we seek a solution u ∈ H1

loc(R3 \D,C3) to

∆∗u+ ω2u = 0 in R3 \D, u = 0 on ∂D. (4)

The total field u = us + ui is the sum of a scattered field us and an incident plane wave ui. To
define the incident plane wave more precisely, we introduce longitudinal and transversal plane waves
as incoming waves with direction of propagation θ ∈ S2 := {x ∈ R3 : |x| = 1} by

uip(x, θ) = qpe
ikpx·θ, uis(x, θ) = qse

iksx·θ, x ∈ R3. (5)

Here qp and qs are polarization vectors that are parallel, or orthogonal, to θ respectively. Both plane
waves are entire solutions of the Navier equation and so is the linear combination

ui(x, θ) = uip(x, θ) + uis(x, θ). (6)

We require the scattered field us to fulfill the Kupradze radiation condition

lim
r→∞

(
∂usp
∂r
− ikpu

s
p

)
= 0, lim

r→∞

(
∂uss
∂r
− iksu

s
s

)
= 0, r = |x|, (7)

uniformly in all directions. Here the radiation condition is defined in terms of the longitudinal
wave usp = −k−2

p ∇ div us and the transversal wave uss = us − usp. Note that solutions that fulfill
Kupradze’s radiation condition are in this article called radiating solutions. We now introduce two
function spaces of longitudinal and transversal vector fields on S2 by

L2
p(S2) := {gp : S2 → C3 : gp(θ)× θ = 0, |gp| ∈ L2(S2)},
L2

s (S2) := {gs : S2 → C3 : gs(θ) · θ = 0, |gs| ∈ L2(S2)}.
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Note that a function g(θ) ∈ L2(S2)3 possesses a decomposition

g(θ) = gs(θ) + gp(θ), gs(θ) := θ × g(θ)× θ, gp(θ) := (g(θ) · θ)θ, (8)

such that gs ∈ L2
s (S2) and gp ∈ L2

p(S2). Radiating solutions to the Navier equation have the
asymptotic behavior

us(x) =
eikp|x|

|x|
u∞p (x̂) +

eiks|x|

|x|
u∞s (x̂) +O

(
1

|x|2

)
, |x| → ∞, (9)

uniformly in all directions x̂ := x/|x|. Here u∞p and u∞s are the longitudinal and transversal far
fields and we will call the sum u∞ := u∞p + u∞s the far field of u. In order to introduce the far field
operator we will first generalize the incident field and introduce the Herglotz wave field vin

g for a
function g ∈ L2(S2)3 by

vin
g (x) :=

∫
S2

(
eikpx·θgp(θ) + eiksx·θgs(θ)

)
ds(θ), x ∈ R3. (10)

We now define the far field operator as the far field of the solution vg to the exterior Dirichlet
scattering problem, where the incident wave field is the the Herglotz wave function vin

g , i.e. F :
L(S2)3 → L2(S2)3 is given by

Fg := v∞g , (11)

where v∞g = v∞g,p + v∞g,s. This far field operator has some crucial properties which are necessary to
derive the inside-outside duality. We know from [1, Theorem 3.3, Theorem 3.4] that the far field
operator F is compact and normal and that its eigenvalues λj lie on a circle in the complex plane
with center 2πi/ω and radius 2π/ω. As we will show in Theorem 2, the eigenvalues (λj)j∈N converge
to zero from the left side. We represent the eigenvalues λj of the far field operator F in polar
coordinates, i.e.

λj = |λj |eiϑj , ϑj ∈ [0, π], (12)

where we set ϑj = 0 if λj = 0. By this representation, each eigenvalue λj corresponds to a phase
ϑj and since the eigenvalues converge to zero from the left side, there is one distinct eigenvalue λ∗
with a smallest phase

ϑ∗ := min
j∈N

ϑj . (13)

Note that the eigenvalues λj = λj(ω) and their phases ϑj = ϑj(ω) depend on the frequency ω. The
inside-outside duality now states that ω2

0 is a Dirichlet eigenvalue of −∆∗ if, and only if, ϑ∗(ω)→ 0
as ω approaches ω0, see Theorem 5 and Theorem 6 for a precise statement.

The second scattering problem we are going to consider is scattering by penetrable, inhomoge-
neous bodies. For a real-valued mass density ρ ∈ L∞(R3) such that ρ = 1 in the exterior of D, we
seek a solution u ∈ H1

loc(R3,C3) to the equation

∆∗u+ ω2ρu = 0 in R3, (14)

such that
[u]∂D = 0 and [Tνu]∂D = 0,

where ν denotes the ourward normal to ∂D and [·]∂D the jump of a vector-valued function over the
boundary ∂D. Finally Tν is the stress tensor, given by

Tν := 2µν · ∇+ λν div +µν × curl .
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The total field u = us + ui is the sum of a scattered field us and the incident field ui that has been
defined in (6). The scattered field us is assumed to satisfy Kupradze’s radiation condition (7). Then
the scattered field us has a representation in terms of its far field u∞ as in (9). Choosing the incident
field to be the Herglotz wave field vg, defined in (10) for a function g ∈ L2(S2)3, the far field operator
F is defined in (11). The far field operator retains the properties that we have already mentioned
for the exterior Dirichlet scattering problem, i.e. it is compact and normal and its eigenvalues lie on
a circle in the complex plane with center 2πi/ω and radius 2π/ω, see [10]. The scattering problem is
related to an interior transmission eigenvalue problem for elastic scattering. To state this problem,
we define

H2
0 (D,C3) := {u ∈ H2(D,C3) : u = 0, Tνu = 0 on ∂D}.

Then the squared frequency ω2 is called an interior transmission eigenvalue if there are non-trivial
functions u,w ∈ L2(D,C3) such that w − v ∈ H2

0 (D,C3) and

∆∗u(x) + ω2ρu(x) = 0 in D,

∆∗w(x) + ω2w(x) = 0 in D,
u(x)− w(x) = 0 on ∂D,

Tνu(x)− Tνw(x) = 0 on ∂D.

(15)

It has been shown that there exists an infinite number of discrete interior transmission eigenvalues
with infinity as the only possible accumulation point, see [5]. We want to determine these interior
transmission eigenvalues by the inside-outside duality. To indicate our main result, note that for
positive mass densities ρ ∈ L∞(D) the eigenvalues (λj)j∈N of the far field operator F converge to
zero from the right, see Lemma 9 below. Then there is one distinct eigenvalue λ∗ with a largest
phase

ϑ∗ := max
j∈N

ϑj . (16)

Again, we denote the dependence of the phases on the frequency by ϑj = ϑj(ω). The first part of our
main result now states the following: If ω2

0 is an interior transmission eigenvalue and the expression
α(ω0) in (45) does not vanish, then ϑ∗(ω) → π as ω → ω0. On the other hand, if ϑ∗(ω) → π for
ω → ω0, then ω2

0 is an interior transmission eigenvalue, see Theorem 12 and Theorem 13 for a precise
statement.

Before we proceed with the discussion of the exterior Dirichlet scattering problem, we introduce
some technical details. For a elastic wave equations we will later seek solutions in the space of
vectorial Sobolev functions H1(D,C3). For our purpose we equip the space with the norm

‖u‖2H1(D,C3) := ‖u‖2L2(D,C3) + ‖div u‖2L2(D,C) + ‖∇u‖2L2(D,C3×3).

Using now Green’s first theorem and Gauss’ integral theorem for the operator ∆∗ from (2), we obtain
Betti’s first formula, i.e. for two functions u, ϕ ∈ H1(D,C3) such that ∆∗u ∈ L2(D,C3), we get that∫

D
∆∗u · ϕdx = −

∫
D

(µ∇u : ∇ϕ+ (µ+ λ) div udivϕ) dx+

∫
∂D

Tνu · ϕds. (17)

Here, A : B denotes the Frobenius scalar product of the matrices A,B, defined by A : B =
∑

i,j aijbij .
After this preliminary considerations, we will in the next section consider elastic scattering by an
impenetrable scattering object with Dirichlet boundary conditions.

2 The Exterior Dirichlet Problem

In this section we assume the presence of an impenetrable scattering object D ⊂ R3 within the
homogeneous background medium, such that the exterior of D is connected and the boundary ∂D
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is Lipschitz. Then ω2 is a Dirichlet eigenvalue of −∆∗ if there exists a solution v ∈ H1
0 (D,C3) such

that
∆∗v + ω2v = 0 in D and v = 0 on ∂D.

This eigenvalue problem is understood in a weak sense, i.e. v ∈ H1
0 (D,C3) needs to satisfy∫

D

(
µ∇v : ∇ϕ+ (λ+ µ) div v divϕ− ω2v · ϕ

)
dx = 0

for all ϕ ∈ H1(D,C3). Closely related to this problem is the exterior Dirichlet boundary value
problem (4) which is also understood in a weak sense, i.e. in the formulation for the scattered field,
we seek a radiating solution us ∈ H1

loc(R3 \D,C3) to∫
R3\D

(
µ∇us : ∇ϕ+ (λ+ µ) div us divϕ− ω2us · ϕ

)
dx = 0 (18)

for all test functions ϕ ∈ H1(R3 \ D,C3) with compact support in R3 \ D such that us = −ui on
the boundary ∂D, where ui(x, θ) is the incident plane wave with direction θ ∈ S2, defined in (6). In
this section we will proceed as follows: First we will state a factorization of the far field operator F
from (11) and examine the properties of the arising operators in Lemma 1. Then we will use these
properties to show in Lemma 2 that the eigenvalues λj of the far field operator converge to zero only
from the left side. Using a particular characterization of the smallest phase, we will then calculate
the necessary auxiliary derivative in Lemma 4 in order to state the first part and the second part of
the inside-outside duality in Theorem 5 and Theorem 6.

We start by discussing a factorization of the far field operator and introduce the elastic single
layer potential

SLϕ(x) :=

∫
∂D

ΦN (x, y)ϕ(y) ds(y), x ∈ R3 \ ∂D, (19)

where ΦN is the fundamental solution to the Navier equation,

ΦN (x, y) :=
k2

s

4πω2

eiks|x−y|

|x− y|
I +

1

4πω2
∇x∇x

[
eiks|x−y|

|x− y|
− eikp|x−y|

|x− y|

]
, x, y ∈ R3, x 6= y, (20)

and I denotes the identity matrix. This operator is linear and bounded from H−1/2(∂D,C3)
into H1(BR,C3). Denoting by [·]|± the trace of a function taken from the outside (+) or the
inside (−), it holds that SLϕ|± = Sϕ in H1/2(∂D,C3), where the elastic single layer operator
S : H−1/2(∂D,C3)→ H1/2(∂D,C3) is given by

(Sϕ)(x) :=

∫
∂D

ΦN (x, y)ϕ(y) ds(y), x ∈ ∂D.

Furthermore for a function ϕ ∈ H−1/2(∂D,C3), the jump relation

TνSLϕ|− − TνSLϕ|+ = ϕ (21)

holds, see [17] for the mapping properties and [18, Ch.V, § 3, 4, 5] for the jump relations of the
operator.

We denote the duality pairing 〈H−1/2(∂D,C3), H1/2(∂D,C3)〉 by (·, ·) and summarize the prop-
erties of S in the following lemma. For a proof, we refer to [1].
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Lemma 1. Let ω2 be no Dirichlet eigenvalue of the Navier equation.
(a) For all ϕ ∈ H−1/2(∂D,C3) it holds that Im (ϕ, Sϕ) ≤ 0.
(b) It holds that (ϕ, Sϕ) = 0 if and only if ϕ = 0.
(c) Denote by Si the single-layer operator for the frequency ω = i. Then Si is compact, self-adjoint
and positive definite, i.e. for a constant c > 0

(ϕ, Siϕ) ≥ c‖ϕ‖H−1/2(∂D,C3) ∀ϕ ∈ H−1/2(∂D,C3).

(d) The difference S − Si is compact from H−1/2(∂D,C3) into H1/2(∂D,C3).

As a second ingredient for a factorization we introduce the injective, bounded operator
A : H1/2(∂D,C3) → L2(S2)3 by Af = v∞, where v∞ is the far field of the radiating solution
v ∈ H1

loc(R3 \D) to the problem

∆∗v + ω2v = 0 in R3 \D, v = f on ∂D.

Using for example a boundary integral equation approach, see [17, 18], it can be shown that this
problem is uniquely solvable. Before we state the factorization, note finally that the solution operator
A has dense range in L2(S2)3. Now we can state a factorization of the far field operator. It holds
that

F = −4πAS∗A∗. (22)

A proof for this factorization and the properties of these operators can be found in [1]. Using this
factorization and the properties of the operator S from Lemma 1, one can easily adapt the arguments
from the proof of [19, Lemma 12] to show that the eigenvalues of the far field operator converge to
zero only from the left.

Theorem 2. Assume that ω2 is no Dirichlet eigenvalue of −∆∗. Then the eigenvalues (λj)j∈N of
F converge to zero from the left side, i.e. Reλj < 0 for j ∈ N large enough.

Recall the representation of the eigenvalues λj in polar coordinates in (12) and the definition
of the smallest phase ϑ∗ in (13). Due to the compactness and normality of the far field operator
and the distinct structure of the eigenvalues, a particular characterization of the cotangent of the
smallest phase holds.

Lemma 3. If ω2 is no Dirichlet eigenvalue of −∆∗, then

cotϑ∗ = max
g∈L2(S2)3

Re (Fg, g)L2(S2)3

Im (Fg, g)L2(S2)3
.

The maximum is attained at any eigenvector g∗ to the eigenvalue λ∗ of F with smallest phase.

Proof. For the convenience of the reader, we include the proof idea. For a full proof, see see [19,
Theorem 3]. Let gj ∈ L2(S2)3 be the eigenfunctions of F corresponding to the eigenvalues λj and the
phases ϑj . Since the eigenfunctions form a complete orthonormal basis of L2(S2)3, we can represent
g ∈ L2(S2)3 as g =

∑
j∈N(g, gj)gj . Since Fg =

∑
j∈N λj(g, gj)gj this shows in particular that

(Fg, g) =
∑
j∈N

λj |(g, gj)|2, (23)

and therefore

Re (Fg, g) =
∑
j∈N

Re (λj)|(g, gj)|2 and Im (Fg, g) =
∑
j∈N

Im (λj)|(g, gj)|2.
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Setting rj = |λj | we furthermore have that Re (λj) = rj cos(ϑj) and Im (λj) = rj sin(ϑj). Now we
can calculate

Re (Fg, g)

Im (Fg, g)
=

∑
j∈N Re (λj)|(g, gj)|2∑
j∈N Im (λj)|(g, gj)|2

=

∑
j∈N cos(ϑj)rj |(g, gj)|2∑
j∈N sin(ϑj)rj |(g, gj)|2

≤ cos(ϑ∗)

sin(ϑ∗)
= cot(ϑ∗),

where the inequality in the latter calculation is due to a monotonicity argument that relies on
the special structure of the eigenvalues λj in the complex plane, see [19, Lemma 4]. Due to the
orthonormality of the eigenfunctions, the inequality becomes an equality be choosing g = g∗. �

Using the factorization F = −4πAS∗A∗ and the denseness of the range of A∗ in H−1/2(∂D,C3),
this characterization can also be expressed using the single-layer operator S. Since (Fg, g)L2(S2)3 =

−(S∗A∗g, A∗g) = −(ϕ, Sϕ) for ϕ = A∗g ∈ H−1/2(∂D,C3), it follows that

cotϑ∗ = max
ϕ∈H−1/2(∂D,C3)

Re (ϕ, Sϕ)

Im (ϕ, Sϕ)
. (24)

We will from now on indicate the dependency of relevant quantities on the frequency ω by writing
S = Sω, SL = SLω, λj = λj(ω), ϑ = ϑ(ω) and so on. In the next lemma we compute an auxiliary
derivative that is important for the proof of the first part of our final result in Theorem 5.

Lemma 4. Assume that ω2
0 is a Dirichlet eigenvalue of −∆∗ in D. Then Sω0 has a non-trivial

kernel and for all elements ϕ0 in this kernel it holds that (ϕ0, Sω0ϕ0) = 0. Furthermore, the mapping
ω → (ϕ0, Sωϕ0) is differentiable in ω0 and

α(ω0) :=
d

dω
(ϕ0, Sωϕ0)

∣∣∣
ω=ω0

= 2

∫
D
|vω0 |2 dx, where vω0 = SLω0ϕ0. (25)

Proof. For arbitrary ω ∈ R, we have that vω ∈ H1
loc(R3,C3) is a solution of ∆∗vω + ω2vω = 0 in

R3. If ω = ω0, the far field v∞ω0
of vω0 vanishes as a consequence of the proof of Lemma 6.1 in [1]

and by Rellich’s Lemma, vω0 vanishes in the exterior of D such that vω0 ∈ H2
0 (D,C3) is a Dirichlet

eigenfunction of −∆∗, i.e. ∆∗vω0 + ω2
0vω0 = 0 in D and u = 0 on ∂D. Furthermore by applying the

chain rule, we have that the derivative v′ω0
:= ( d/ dω vω)|ω=ω0

∈ H1
loc(R3,C3) solves

∆∗v′ω0
+ ω2

0v
′
ω0

+ 2ω0vω0 = 0 in R3 (26)

in a weak sense. In particular Betti’s formula in (17) shows that∫
D

(
µ∇v′ω0

: ∇φ+ (µ+ λ) div v′ω0
div φ

)
dx =

∫
D

(
ω2

0v
′
ω0
· φ+ 2ω0vω0 · φ

)
dx (27)

for all φ ∈ C∞0 (D,C3). Now we use the jump relation for the single layer potential from (21) to
compute

d

dω
(ϕ0, Sωϕ0) =

(
ϕ0,

d

dω
Sωϕ0

)
=

(
ϕ0,

d

dω
vω

)
=

(
Tνvω|− − Tνvω|+,

d

dω
vω

)
.

Since vω0 vanishes in the exterior of D, the exterior surface traction also vanishes, so that Tνvω0 |+ =
0. Therefore we get

d

dω
(ϕ0, Sωϕ0)

∣∣∣
ω=ω0

=

(
Tνvω|− − Tνvω|+,

d

dω
vω

)∣∣∣∣
ω=ω0

=
(
Tνvω0 |−, v′ω0

)
,
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where v′ω0
:= ( d/dω vω)|ω=ω0

. Since vω0 ∈ H2
0 (D,C3), we can use Betti’s formula (17) and ∆∗vω0 =

−ω2
0vω0 to obtain

d

dω
(ϕ0, Sωϕ0)

∣∣∣
ω=ω0

=

∫
D

(
∆∗vω0 · v′ω0

+ µ∇vω0 : ∇v′ω0
+ (µ+ λ) div vω0 div v′ω0

)
dx

=

∫
D

(
−ω2

0vω0 · v′ω0
+ µ∇vω0 : ∇v′ω0

+ (µ+ λ) div vω0 div v′ω0

)
dx

=

∫
D

(
−ω2

0vω0 · v′ω0
+ ω2

0v
′
ω0
· vω0 + 2vω0vω0

)
dx = 2

∫
D
|vω0 |2 dx,

where we used (27) for φ = vω0 for the second to last equality. �

We can now state the first and second part of the inside-outside duality. The first part makes use
of the positivity of the derivative α(ω0), which we calculated in the last lemma, to set up a Taylor
expansion for the characterization of the cotangent smallest phase.

Theorem 5 (Inside-Outside Duality - Part 1). Let ω2
0 be a Dirichlet eigenvalue of −∆∗. Then it

holds that limω↗ω0 ϑ∗(ω) = 0.

Proof. For the conveniece of the reader, we include the proof from [19, Lemma 7]. Since ω2
0 is an

interior Dirichlet eigenvalue, there exists a function ϕ0 ∈ H−1/2(∂D,C3) such that (ϕ0, S(ω0)ϕ0) =
0. Assume that I = (ω0 − ε, ω0 + ε) is an interval that does not contain other Dirichlet eigenvalues.
Recall the characterization

cotϑ∗(ω) = max
ϕ∈H−1/2(∂D,C3)

Re (ϕ, Sωϕ)

Im (ϕ, Sωϕ)
for k ∈ I \ {ω0}.

Now we define f(ω) = (ϕ0, Sωϕ0) for ω ∈ I and note that the last Lemma states that this function
is differentiable at ω0. Taylor’s theorem states that

f(ω) = f(ω0) + α(ω − ω0) + r(ω),

where f(ω0) = 0 by construction and the remainder r(ω) satisfies r(ω) = o(|ω − ω0|) as ω → ω0.
Further, note that Im (r(ω)) ≤ 0 due to Lemma 1, because the last lemma shows that the derivative
α = df/dω at ω0 is real-valued and Im f(ω) ≤ 0. Hence,

cotϑ∗(ω) = max
ϕ∈H−1/2(∂D,C3)

Re (ϕ, Sωϕ)L2(S2)

Im (ϕ, Sωϕ)L2(S2)

ϕ=ϕ0

≥ α(ω − ω0) + Re (r(ω))

Im (r(ω))
. (28)

Note is particular, that the choise ϕ = ϕ0 is possible since the maximum is taken over the whole
space H−1/2(∂D,C3). Now we use that α is positive. Therefore ω ↗ ω0 implies that α(ω−ω0) ≤ 0
tends slower to zero than 0 < Im (r(ω)) = o(|ω−ω0|), that is, [α(ω−ω0)+Re (r(ω))]/Im (r(ω))→∞.
Obviously, cotϑ∗(ω)→∞ for ϑ∗(ω) ∈ (0, π) implies that ϑ∗(ω)→ 0. �

Theorem 6 (Inside-Outside Duality - Part 2). Assume that the interval I = (ω0 − ε, ω0) contains
no ω such that ω2 is a Dirichlet eigenvalue of −∆∗. If limω↗ω0 ϑ∗(ω) → 0, then ω2

0 is a Dirichlet
eigenvalue of −∆∗ in D.

Proof. Arguing by contradiction, we assume that limω↗ω0 ϑ∗(ω) = 0 but ω2
0 is no Dirichlet eigenvalue

of −∆∗. Using the characterization of the smallest phase from (24), this implies that

max
ϕ∈H−1/2(∂D)

Re (ϕ, Sωϕ)L2(S2)

Im (ϕ, Sωϕ)L2(S2)
−→∞ as ω ↗ ω0.
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Then it follows that there is a sequence ωj ↗ ω0 ∈ I and a sequence ϕj ∈ H−1/2(∂D,C3) with
‖ϕj‖H−1/2(∂D,C3) = 1 such that

0 > Im (ϕj , Sωjϕj)→ 0 and Re (ϕj , Sωjϕj) ≤ 0 (29)

as j becomes large. Since the sequence (ϕj)j∈N is bounded, we find a subsequence, also denoted by
(ϕj)j∈N, which weakly converges to a ϕ0 ∈ H−1/2(∂D,C3). From [1] we know that

Im (ϕj , Sωjϕj) = −ωj‖v∞j ‖2L2(S2)3 , (30)

where vj = SLωjϕj . Since the mapping from ϕj to v∞j is compact, it follows that v∞j converges
strongly to a function v∞0 , which is the far field of the function v0 = SLω0ϕ0. The far field vanishes
due to equation (30). Since we assumed that ω2

0 is no Dirichlet eigenvalue of −∆∗, we conclude that
v0 = 0 everywhere and therefore ϕ0 also vanishes so that ϕj ⇀ 0. Now we can apply Betti’s first
formula for a ball BR := {x ∈ R3 : |x| ≤ R} which contains the scatterer D, to compute that

(ϕj , Sωjϕj) =

∫
∂D

vj · (Tνvj |− − Tνvj |+) ds

=

∫
BR

(
µ∇vj : ∇vj + (λ+ µ) div vj div vj − ω2|vj |2

)
dx−

∫
∂BR

Tνvj · vj dS.

Note that the last integral tends strongly to zero as vj converges strongly to zero on ∂BR by elliptic
regularity and compact embedding results, see also the proof of [19, Theorem 8] for the acoustic
case. Note also that since vj converges weakly to v0 = 0 in H1(BR,C3), it strongly converges to
zero in L2(BR,C3). Now we can use (29) and use the real part of the last equation to obtain

0 ≥ Re (ϕj , Sωjϕj) =

∫
BR

(
µ∇vj : ∇vj + (µ+ λ) div vj div vj − ω2

j vj · vj
)

dx−Re

∫
|x|=R

Tνvj ·vj dS

or equivalently∫
BR

(µ∇vj : ∇vj + (λ+ µ) div vj div vj) dx ≤ ω2
j

∫
BR

|vj |2 dx− Re

∫
|x|=R

Tνvj · vj dS → 0

as j → ∞. Therefore vj converges strongly to zero in H1(BR,C3) by our definition of the H1-
norm and also the trace vj |∂D = Sωjϕj tends strongly to zero in H1/2(∂D,C3). Since ω2

0 is no
Dirichlet eigenvalue of −∆∗, the single layer boundary operator S is an isomorphism and therefore
we conclude that ϕj → 0 as j → ∞. But this is a contradiction to our assumption that ‖ϕj‖ = 1
for all j ∈ N. �

3 Scattering by Penetrable Inhomogeneous Media

As in the previous section, we assume that the scattering object is embedded in an isotropic and
homogeneous elastic background medium that is described by the Lamé constants λ, µ and has
normalized constant mass density equal to one. Embedded in the medium is a penetrable, inho-
mogeneous scattering object D ⊂ R3 with Lipschitz boundary. The scattering object has the same
Lamé parameter as the background medium and its mass density is given by a bounded function
ρ ∈ L∞(D) such that contrast q = ρ − 1 is positive and bounded away from zero, i.e. there ex-
ists a positive constant q0 such that q(x) ≥ q0 almost everywhere in D. We consider a variational
formulation of equation (14) and seek a radiating solution u ∈ H1

loc(R3,C3) to∫
R3

(
µ∇u : ∇ϕ+ (µ+ λ) div u divϕ− ω2ρu · ϕ

)
dx = 0 (31)

9



for all ϕ ∈ H1
loc(R3,C3) with compact support, where we extended q = ρ− 1 by zero outside of D.

Recall from the introduction that the total field u = ui + us can be decomposed into the incoming
plane wave ui from (6) and a scattered field us that fulfills the radiation condition (7) and can
therefore be represented in terms of its far field as in (9). Recall in this context also the definition
of the far field operator in (11). Let us consider the equation for the scattered field and slightly
generalize the scattering problem by allowing any source terms f ∈ L2(D,C3). We seek a radiating
solution v ∈ H1

loc(R3,C3) to the problem∫
R3

(
µ∇v : ∇ϕ+ (µ+ λ) div v divϕ− ω2ρv · ϕ

)
dx = −ω2

∫
D
qf · ϕdx (32)

for all test functions ϕ ∈ H1
loc(R3,C3) with compact support. Choosing f = −ui then yields the

original scattering problem. Existence and uniqueness of a solution to this problem can for example
be shown by an integral equation approach, see, e.g. [23, 25]. Recall the definition of interior
transmission eigenvalues in (15). This eigenvalue problem is understood in a variational sense, i.e.
ω2 is an interior transmission eigenvalue if there is a pair (u,w) ∈ L2(D,C3)×L2(D,C3), such that
u− w ∈ H2

0 (D,C3) and∫
D
u ·
(
∆∗ϕ− ω2ρϕ

)
dx = 0,

∫
D
w ·
(
∆∗ϕ− ω2ϕ

)
dx = 0 ∀ϕ ∈ C∞0 (D,C3) (33)∫

D
u ·
(
∆∗ϕ− ω2ρϕ

)
dx =

∫
D
w ·
(
∆∗ϕ− ω2ϕ

)
dx ϕ ∈ C∞(D,C3). (34)

We know from [7] that there is only a discrete set of interior transmission eigenvalues. As with
acoustic scattering, interior transmission eigenvalues are related to the properties of the far field
operator F . Whenever ω2 is no interior transmission eigenvalue, then the far field operator F is
injective or conversely, when F is not injective, then ω2 must be an interior transmission eigenvalue.
From now on we proceed as follows: First we derive a factorization for the far field operator and
examine the properties of the arising operators in Lemma 8. Then we will use these properties
to show that the eigenvalues λj of F converge to zero from one specific side in Lemma 9. Using
a characterization of the cotangent of the largest phase similar to the last section, we will then
calculate a crucial auxiliary derivative in Lemma 11. Finally we will use this auxiliary derivative to
prove the inside-outside duality in Theorem 12 and Theorem 13.

We will now show that the eigenvalues converge to zero from one specific side. To this end
we first derive a factorization of the far field operator and examine the properties of the arising
operators of this factorization. The definition of the Herglotz wave field in (10) implies the existence
of a Herglotz wave operator H : L2(S2)3 → L2(D,C3), which is given by

Hg = vg where vg(x) =

∫
S2

[
gp(θ)eikpx·θ + gs(θ)e

iksx·θ
]

ds(θ), x ∈ D,

where gp and gs have been defined in (8). The adjoint of the Herglotz operator H∗ : L2(D,C3) →
L2(S2)3 is then given by

H∗ϕ(θ) =

∫
D

(
ϕp(x)e−ik

e
px·θ dx+ ϕs(x)e−ik

e
sx·θ dx

)
, θ ∈ S2,

where ϕs(x) = θ × ϕ(x) × θ and ϕp(x) = (ϕ(x) · θ)θ for θ ∈ S2. Let us define a volume potential
V : L2(D,C3)→ H2

loc(R3,C3) by

V h(x) =

∫
D

ΦN (x, y)h(y) dy,

10



where ΦN is the fundamental solution of the Navier equation from (20) such that V h solves

(∆∗ + ω2)V h = −h, in R3,

see [22]. We also know from the proof of [13, Lemma 3.1] that H∗h is the far field w∞ of the function
w = V h. As the final ingredient for our factorization, we introduce the operator T : L2(D,C3) →
L2(D,C3) by

Tf = ω2q(f − v)

where v is the radiating solution of (32). Then we can prove the following factorization.

Theorem 7. It holds that F = H∗TH.

Proof. We follow the standard procedure and introduce an auxiliary operator G : L2(D,C3) →
L2(S2)3 that maps a function f onto the far field v∞ of the solution of v to (32). Then by the
superposition principle, we have that F = GH. As we noted above, H∗h is the far field of the
function w = V h. Now we write (32) equivalently as∫

R3

(
µ∇v : ∇ϕ+ (µ+ λ) div v divϕ− ω2v · ϕ

)
dx = −

∫
D
ω2q(f − v) · ϕdx. (35)

From the discussion above, it then follows that G = H∗T . Since F = GH, this implies the factor-
ization of the far field operator. �

Before we proceed we want to give a characterization of the closure of the range of the Herglotz
wave operator. If we denote by R(H) this closure in L2(D,C3), then it holds that

X := R(H) =

{
w ∈ L2(D,C3) :

∫
D
w · (∆∗φ+ ω2φ) dx = 0 φ ∈ C∞0 (D,C3)

}
(36)

as a consequence of, e.g., [3, Theorem 4.2]. Now we summarizes important properties of the middle
operator T in the following lemma.

Lemma 8. (a) For all f ∈ L2(D,C3) and ω > 0 it holds that Im (Tf, f)L2(D,C3) ≥ 0.
(b) If Im (Tw,w)L2(D,C3) = 0 for a non-trivial w ∈ X and ω > 0, then ω2 is an interior transmission
eigenvalue with corresponding transmission eigenpair (w− v, w), where v ∈ H1

loc(R3,C3) is the weak
radiating solution to (32).
(c) If ω2 > 0 is an interior transmission eigenvalue with corresponding transmission eigenpair (u,w),
then w ∈ X and (Tw,w)L2(D,C3) = 0.
(d) The operator T can be written as T = ω2q(Id +C) for a compact operator C : L2(D,C3) →
L2(D,C3).

Proof. (a) In order to simplify notation below, we introduce a sesquilinear form Ψ by

ΨΩ,ρ̃(u, ϕ) :=

∫
Ω

(
µ∇u : ∇ϕ+ (λ+ µ) div u divϕ− ω2ρ̃u · ϕ

)
dx (37)

for an open set Ω ⊂ R3 and functions ρ̃ ∈ L∞(Ω), u, ϕ ∈ H1(Ω,C3). Now we start with an auxiliary
calculation. We choose a cut-off function φ ∈ C∞(R3) with compact support such that φ = 1 in
a ball BR := {x ∈ R3 : |x| < R}, where the radius of the ball in chosen large enough so that D
is contained in BR. Then we set the test function ϕ = φv in (35), where v is the solution to this
problem. Then we get that

ΨBR,1(v, v) + ΨR3\BR,1(v, v) = −ω2

∫
D
q(f − v) · v dx,

11



where Ψ was defined in (37). Note that v is a smooth solution of the Navier equation outside the
ball BR, i.e. ∆∗v + ω2v = 0. We apply Betti’s formula to obtain that

ΨR3\BR,1(v, ϕ) =

∫
|x|=R

Tνv · v ds

and therefore we have in total that

ΨBR,1(v, v) +

∫
|x|=R

Tνv · v ds = −ω2

∫
D
q(f − v) · v dx. (38)

After this preliminary considerations, we come to our main assert. Choose an arbitrary f ∈
L2(D,C3). We have by definition, that

(Tf, f)L2(D,C3) = ω2(q(f − v), f)L2(D,C3).

Define now g ∈ L2(D,C3) by g := f − v, and v ∈ H1
loc(R3,C3) solves (32). Then we get that

(Tf, f)L2(D,C3) = (ω2g, g + v)L2(D,C3) = ω2(qg, g)L2(D,C3) + ω2

∫
D
qg · ϕ dx.

Resubstituting g and then using equation (38) shows that

(Tf, f)L2(D,C3) = (qω2g, g)L2(D,C3) + ΨBR,1(v, v) +

∫
|x|=R

Tνv · v ds (39)

which implies that

Im (Tf, f)L2(D,C3) = Im

∫
|x|=R

Tνv · v ds

since q and µ, λ are all real-valued. Now we can apply [25, Lemma 1] and get that

Im (Tf, f)L2(D,C3) = 2iω‖v∞‖L2(D,C3). (40)

(b) Assume there exists a non-trivial w ∈ R(H) such that Im (Tw,w)L2(D,C3) = 0 and let v be
the solution of (35) for f = w. Then we conclude from the (a)-part of this proof that the far field
v∞ vanishes and by Rellich’s Lemma v vanishes outside of D, which implies that v ∈ H2

0 (D,C3).
Setting u = w + v, we calculate for φ ∈ C∞0 (D,C3) that∫

D
u ·
[
∆∗φ+ ω2(1 + q)φ

]
dx =

∫
D
v ·
[
∆∗φ+ ω2(1 + q)φ

]
+

∫
D
w ·
[
∆∗φ+ ω2(1 + q)φ

]
=

∫
D

(
µ∇v : ∇φ+ (µ+ λ) div v div φ− ω2v · φ

)
dx− ω2

∫
D
qw · φ dx = 0,

where we used that w ∈ X solves the Navier equation ∆∗w + ω2w = 0. From this calculation, we
conclude that (u,w) fulfills (33) and substituting u = w + v shows that (34) also holds, such that
(u,w) is an transmission eigenvalue pair and ω2 is the corresponding interior transmission eigenvalue.
(c) Let ω2 > 0 be a transmission eigenvalue with eigenpair (u,w) ∈ L2(D,C3) × L2(D,C3). We
will show that (Tw,w)L2(D,C3) = 0. Since w ∈ X = R(H), there exists a sequence gj ∈ L2(S2)
such that the corresponding Herglotz wave functions wj converge to w in L2(D,C3). Since ω2 is a
transmission eigenvalue, (34) implies that v = u− w ∈ H2

0 (D,C3) satisfies∫
D

[∆∗v + ω2v] · φ dx = ω2

∫
D
q(w − v) · φ dx

12



for all φ ∈ L2(D,C3). Choosing φ = w yields∫
D

[∆∗v + ω2v] · w dx = ω2

∫
D
q(w − v) · w dx = (Tw,w)L2(D,C3).

As w ∈ R(H) there is a sequence (wj)j∈N of Herglotz wave functions such that wj → w as j →∞.
This implies that ‖w − wj‖L2(D,C3) → 0 as j → ∞. Since wj solves the Navier equation and
v ∈ H2

0 (D,C3), we get∫
D

[∆∗v + ω2v] · w dx = lim
j→∞

∫
D

[∆∗v + ω2v] · wj dx = 0

by Betti’s first identity. In consequence, (Tw,w)L2(D,C3) = 0.
(d) This is clear due to the compactness of the embedding of H1(D,C3)→ L2(D,C3). �

The properties of the operator T and the specific structure of the eigenvalues λj of F imply that
the eigenvalues converge to zero from the right side, see [16, Lemma 4] for a proof.

Theorem 9. Assume that ω2 is no interior transmission eigenvalue. Then the eigenvalues λj of F
converge to zero from the right, i.e. Reλj > 0 for j ∈ N large enough.

Recall the representation of the eigenvalues (λj)j∈N in polar coordinates in (12) and the definition
of the largest phase ϑ∗ := maxj∈N ϑj in (16). Since the far field operator retains normality and
compactness and due to the distinct properties of its eigenvalues, we can easily adapt the proof of
Lemma 3 to show that if ω2 is no interior transmission eigenvalue, then

cotϑ∗ = min
g∈L2(S2)3

Re (Fg, g)L2(S2)3

Im (Fg, g)L2(S2)3
, (41)

see also [19, Theorem 13]. As in the previous section, we use the factorization of F = H∗TH and
rewrite the characterization of the largest phase in (41) to obtain

cotϑ∗ = max
f∈L2(D,C3)

Re (THf,Hf)L2(D,C3)

Im (THf,Hf)L2(D,C3)
= max

ϕ∈X

Re (Tϕ, ϕ)L2(D,C3)

Im (Tϕ, ϕ)L2(D,C3)
,

whereX = R(H) was defined in (36). From now on the dependency of all quantities on the frequency
ω becomes important. We indicate it by writing T = Tω, X = Xω, λj = λj(ω),Ψ... = Ψ...,ω etc. At
this point we have done all the necessary preliminary work for the proof of the second part of the
inside-outside duality. However, the proof of the first part of the inside-outside duality in Theorem
5 shows that the maximum in the latter expression is required to be taken over the whole space
L2(D,C3) instead of just over the frequency-dependent subspace Xω. To deal with this problem we
introduce a projection operator. Therefore assume that there is a projection Pω : L2(D,C3)→ Xω

that is differentiable with respect to ω. We can use this projection to rewrite the characterization
for the largest phase as

cotϑ∗(ω) = max
w∈L2(D,C3)

Re (TωPωw,Pωw)L2(D,C3)

Im (TωPωw,Pωw)L2(D,C3)
.

To show that there exists a projection Pω : L2(D,C3) → Xω we give an explicit representation
of Pω. First we denote by W the completion of C∞0 (D,C3) with respect to the norm ‖ϕ‖W :=
‖∆∗ϕ + ω2ϕ‖L2(D,C3). Note that this completion is well-defined, since if ‖∆∗ϕ + ω2ϕ‖L2(D,C3) = 0
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for ϕ ∈ C∞0 , the compact support of ϕ in D and representation formulas for solutions of the Navier-
equation as in [12] imply that ϕ = 0. Now we define Pω by

Pωw = w − (∆∗ŵ + ω2ŵ)

where ŵ ∈W solves the W -coercive variational problem∫
D

(∆∗ŵ + ω2ŵ) · (∆∗ϕ+ ω2ϕ) dx =

∫
D
w · (∆∗ϕ+ ω2ϕ) dx ∀ϕ ∈W.

If w ∈ Xω, then the right side of the last equation vanishes and the coercivity of the sesquilinear
form on W implies that ŵ = 0, showing that Pωw = w. On the other hand for an arbitrary
w ∈ L2(D,C3) we have that Pωw ∈ Xω due to the definition of ŵ, which shows that Pω is projection
onto Xω. The differentiability of this function is a consequence of the differentiability of the map
ω → ŵ = ŵ(ω). Assume now that ω2

0 is an interior transmission eigenvalue such that there exists
a non-trivial function w0 ∈ Xω0 such that (Tω0w0, w0)L2(D,C3) = 0. To prove the first part of the
inside-outside duality as in the proof of [16, Lemma 5.1] we need to calculate the derivative

α(ω0) :=
d

dω
(TωPωw0, Pωw0)L2(D,C3)

∣∣∣
ω=ω0

. (42)

We start by calculating an auxiliary derivative, which neglects the projection operator.

Lemma 10. Let ω2
0 > 0 be an interior transmission eigenvalue with eigenpair (u0, w0) ∈ L2(D,C3)×

Xω0 . Then v0 = u0 − w0 ∈ H2
0 (D,C3) is the radiating solution to

∆∗v0 + ω2
0v0 = −ω2qw0 (43)

and the mapping ω → (Tωw0, w0)L2(D,C3) is differentiable at ω0 such that

d

dω
(Tωw0, w0)

∣∣∣∣
ω=ω0

=
2

ω0

∫
D

(µ∇v0 : ∇v0 + (λ+ µ) div v0 div v0) dx

Proof. Note that (43) holds due to the properties of the eigenpair (u0, w0), see also the proof of
Lemma 8 for details. For arbitrary ω > 0 we define vω ∈ H1

loc(R3,C3) as the radiating solution to∫
R3

(
µ∇vω : ∇ϕ+ (µ+ λ) div vω divϕ− ω2ρvω · ϕ

)
dx = ω2

∫
D
qw0 · ϕ dx (44)

for all ϕ ∈ C∞0 (R3). Note that if ω = ω0 then vω0 = v0 ∈ H2
0 (D,C3) is the radiating solution to

(43) by Betti’s formula.The map ω 7→ vω is Fréchet-differentiable and v′ω0
:= [dv/dω vω]|ω=ω0

∈
H1

loc(R3,C3) solves∫
R3

(
µ∇v′ω0

∇ϕ+ (µ+ λ) div v′ω0
divϕ− ω2

0ρv
′
ω0
· ϕ
)

dx = −
∫
D

2ω0qw0 · ϕdx+

∫
D

2ω0ρvω0 · ϕdx

=
2

ω0

∫
D

(µ∇vω0 : ∇ϕ+ (λ+ µ) div vω0 divϕ) dx

for all ϕ ∈ H1
loc(R3) with compact support. Moreover, for ω = ω0 the solution vω0 ∈ H2

0 (D)
has compact support and hence (44) holds in this case even for all ϕ ∈ H1

loc(R3,C3). Using that
(Tω0w0, w0)L2(D,C3) = 0, we have

d

dω
(Tωw0, w0)L2(D,C3)

∣∣∣∣
ω=ω0

=

∫
D
qω2

0v
′
ω0
· w0 dx−

∫
D

2ω0q(w0 − vω0)w0 dx

=

∫
R3

(
µ∇v′ω0

∇vω0 + (µ+ λ) div v′ω0
div vω0 − ω2

0ρv
′
ω0
· vω0

)
dx

=
2

ω0

∫
D

(µ∇vω0 : ∇vω0 + (λ+ µ) div vω0 div vω0) dx

which shows the assertion. �
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Lemma 11. Let ω2
0 be an interior transmission eigenvalue with eigenpair (u0, w0) ∈ L2(D,C3)×Xω0.

Then the map ω → (TωPωw0, Pωw0)L2(D,C3) is differentiable in ω0 such that

α(ω0) =
d

dω
(TωPωw0, Pωw0)L2(D,C3)

∣∣∣∣
ω=ω0

=
2

ω0

∫
D

(µ∇v0 : ∇v0 + (λ+ µ) div v0 div v0) dx

+4ω0Re

∫
D
v0 · w0 dx,

(45)

where v0 ∈ H2
0 (D,C3) is again the radiating solution to (43).

Proof. Let vω ∈ H1
loc(R3,C3) be defined as in the proof of the last lemma, such that v0 = vω0 . By

definition of the projection Pω and the space Xω, we have that wω := Pωw0 ∈ Xω solves the Navier
equation, i.e. ∫

D
wω · [∆∗ϕ− ω2ϕ] dx = 0 ∀ϕ ∈ C∞0 (D,C3).

Using the differentiability of the projection operator Pω, the derivative P ′ω of Pω with respect to ω
is given by d/dω(Pωw0) = w′ω , where w′ω ∈ L2(D,C3) solves∫

D
w′ω · [∆∗ϕ− ω2ϕ] dx = 2ω

∫
D
ϕ · wω dx (46)

for all ϕ ∈ C∞0 (D,C3). Applying the chain rule, we get

d

dω
(TωPωw0, Pωw0) = (T ′ωPωw0, Pωw0) + (TωP

′
ωw0, Pωw0) + (TωPωw0, P

′
ωw0)

= (T ′ωPωw0, Pωw0) + (T ∗ωPωw0, P ′ωw0) + (TωPωw0, P
′
ωw0).

Furthermore the symmetry of the sesquilinear form in (44) for the choice ϕ = vω implies that T is
self-adjoint on the kernel of w0 → (Tw0, w0)L2(D,C3) such that Tω0w0 = T ∗ω0

w0, for details see the
proof of Theorem [16, Lemma] for acoustic scattering. Using the result of the last lemma, we obtain[

d

dω
(TωPωw0, Pωw0)L2(D,C3)

] ∣∣∣∣
ω=ω0

=

∫
D

(µ∇vω0 : ∇vω0 + (λ+ µ) div vω0 div vω0) dx

+2Re (Tω0w0, P
′
ω0
w0)L2(D,C3).

Now we can use that vω0 ∈ H2
0 (D,C3) and partial integration to get

2Re (Tω0w0, P
′
ω0
w0)L2(D,C3) = 2Re

[∫
D
ω2qw0 · w′ω0

dx−
∫
D
ω2qvω0 · w′ω0

dx

]
= 2Re

[∫
D

[∆∗vω0 + ω2
0(1 + q)vω0 ] · w′ω0

dx− ω2
0

∫
D
qvω0 · w′ω0

dx

]
= 2Re

∫
D

[∆∗vω0 + ω2
0vω0 ] · w′ω0

dx = 2Re

∫
D

2ω0vω0 · w0 dx,

where we used (46). This shows our claim. �

After this preliminary considerations, we can now state the first and second part of the inside-
outside duality. The proof of the first part of the inside-outside duality again makes use of the
derivative α to set up a Taylor expansion of the characterization of the cotangent of the largest
phase ϑ∗ as in the proof of Theorem 5. For a proof which includes a projection Pω, we refer to the
proof of [16, Lemma 5.1].
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Theorem 12 (Inside-Outside Duality - Part 1). Let ω2
0 be an interior transmission eigenvalue and

α(ω0) be the expression in (45). Then the following statement holds:

lim
ω↗ω0

ϑ∗(ω) = π if α(ω0) > 0 and lim
ω↘ω0

ϑ∗(ω) = π if α(ω0) < 0.

Theorem 13 (Inside-outside duality - Part 2). Assume that ω0 > 0 and that I = (ω0−ε, ω0+ε)\{ω0}
does not contain interior transmission eigenvalues. If ϑ∗(ω) → π for I 3 ω → ω0, then ω2

0 is an
interior transmission eigenvalue.

Proof. Assume that ϑ∗(ω)→ π for I 3 ω → ω0. We have that

cot(ϑ∗) = min
w∈Xω

Re (Tωw,w)L2(D,C3)

Im (Tωw,w)L2(D,C3)
→ −∞ for I 3 ω → ω0.

Thus, there is a sequence {ωj}j∈N ⊂ I such that ωj → ω0 and wj ∈ Xωj with ‖wj‖L2(D,C3) = 1 such
that 0 < Im (Tωjwj , wj)L2(D,C3) → 0 as j → ∞ and Re (Tωjwj , wj)L2(D,C3) ≤ 0 for j large enough.
Let vj ∈ H1

loc(R3,C3) be the corresponding radiating solution to∫
R3

(
µ∇vj : ∇ϕ+ (µ+ λ) div vj divϕ− ω2

j ρvj · ϕ
)

dx = ω2
j

∫
D
qwj · ϕdx (47)

for test functions ϕ in H1
loc(R3,C3) with compact support. Since the sequence wj is bounded in

L2(D,C3) there exists a weakly convergent subsequence wj ⇀ w0 in L2(D,C3) as j → ∞. In
particular w0 ∈ Xω0 and vj ⇀ v0 weakly in H1(BR,C3) for all radii R > 0, where v0 ∈ H1

loc(R3,C3)
is the corresponding weak radiating solution to (47) with ωj , wj replaced by ω0, w0. In the proof of
Lemma 8 we have already shown that

Im (Tωjwj , wj)L2(D,C3) =
ωj
4π2
‖v∞j ‖2L2(S2)3 , j ∈ N.

The left hand side converges to zero and the right hand side to ω0/(4π
2) ‖v∞0 ‖L2(S2)3 . We conclude

that v∞0 = 0 and v0 vanishes in the exterior of D by Rellich’s Lemma.
Assume now that ω2

0 > 0 is not an interior transmission eigenvalue. Then it follows from Lemma
8(b) that w0 and v0 vanish everywhere, such that wj and vj converge weakly to zero as j →∞. We
define gj = wj − vj and recalling the arguments of the proof of Lemma 8, we get that

(Tωjwj , wj)L2(D,C3) = −ω2
j (qgj , gj)L2(D,C3) + ΨBR,1,ωj (vj , vj) +

∫
|x|=R

Tνv · v ds

Now we can use (29) and use the real part of the last equation to obtain

0 ≥ Re (Tωjwj , wj) = ΨBR,1,ωj (vj , vj) + Re

∫
|x|=R

Tνvj · vj dS

or equivalently∫
BR

(µ∇vj : ∇vj + (λ+ µ) div vj div vj) dx ≤ ω2
j

∫
BR

|vj |2 dx+ Re

∫
|x|=R

Tνvj · vj dS, j ∈ N.

As ‖vj‖L2(BR,C3) → 0 and ‖vj‖H1/2(∂BR,C3) → 0 as j → ∞ due to the compact embedding of
H1(BR,C3) in L2(BR,C3) and the smoothness of vj in a neighborhood of ∂BR, the right-hand side
of the latter inequality converges to zero as j tends to infinity. Therefore, vj converges strongly to
zero in H1(BR,C3) due to the definition of the H1-norm. Then it follows that wj → 0 in L2(D,C3).
But this is a contradiction to our assumption that ‖wj‖ = 1 for all j ∈ N. �
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Remark 14. Up to this point, the theory could be generalized by allowing constant Lamé parameters
that are different in the interior and the exterior of the scattering object by using vector-valued
product spaces. We neglect this extension however as the derivation would be very technical while not
contributing to the general understanding of the underlying arguments. Furthermore the existence
proof of interior transmission eigenvalues with non-trivial derivative from the next section would not
be possible anymore.

4 Conditions for the Material Parameter

In this section we want to show that there exist interior transmission eigenvalues ω2
0 for which the

derivative α(ω0) in (45) is positive. While the results in this section are certainly not conclusive
and only hold under severe restrictions for the density ρ, they mainly serve to show that there exist
interior transmission eigenvalues at all for which the derivative α does not vanish. In this section
we proceed as follows: Following [14, Section 2], we first we prove an existence results for interior
transmission eigenvalues if the contrast q = ρ − 1 ∈ L∞(D) is large enough. Then we show under
which conditions the derivative α(ω0) does not vanish and finally we bring these two results together
to show the existence of interior transmission eigenvalues with non-trivial derivative α.

We will start by showing an existence result for interior transmission eigenvalues, given that
the contrast q is large enough. To this end we equip the space H2

0 (D,C3) with the inner product
(φ, ψ)H2

0 (D,C3) = (1/q ∆∗φ,∆∗ψ)L2(D,C3). To see that this is indeed an inner product, we need to
show definiteness. Assume that for any function φ ∈ H2

0 (D,C3) that

(φ, φ)H2
0 (D,C3) = (1/q ∆∗φ,∆∗φ)L2(D,C3) = 0.

Since 1/q > 0 in D, we conclude that ∆∗φ = 0 almost everywhere in D. In particular it follows that
(∆∗φ, φ)L2(D,C3) = 0, which by Betti’s formula (17) implies that

‖∇φ‖2L2(D,C3×3) + ‖div φ‖L2(D,C3) = 0.

Since φ has zero boundary conditions, this in turn implies that φ = 0 and therefore shows the
definiteness of the scalar product.
The interior transmission eigenvalue problem (15) can equivalently be written as a fourth-order
equation for v = u− w ∈ H2

0 (D,C3), which yields

(∆∗ + ω2)
1

q
(∆∗ + k2ρ)v = 0,

which in its weak formulation reads

aω(v, ψ) :=

∫
D

1

q

[
∆∗v + ω2ρv

]
· [∆∗ψ + ω2ψ] dx = 0 ∀ψ ∈ H2

0 (D,C3). (48)

Arguing as in [14, Section 2], we have that ω2 is an interior transmission eigenvalue if and only if
there exists a non-trivial function v ∈ H2

0 (D,C3) such that aω(v, ψ) = 0 for all ψ ∈ H2
0 (D,C3).

To give an existence result, we define µ1 as the smallest eigenvalue of the bi-Navier operator, i.e.
(∆∗)2v̂ = µ1v̂ in D for an eigenfunction v̂ ∈ H2

0 (D,C3). Furthermore let γ = γ(µ, λ) be a constant
such that

µ‖∇u‖2L2(D,C3×3) + (λ+ µ)‖div u‖2L2(D,C) ≥ γ‖u‖
2
L2(D,C3) ∀u ∈ H2

0 (D,C3).

It is clear that such a constant γ exists, since applying the Poincaré-inequality component-wise, we
have that there is a constant γ0 such that γ0‖u‖L2(D,C3) ≤ ‖∇u‖L2(D,C3×3). Then we can show that
an interior transmission eigenvalue exists if the contrast q is large enough. Recall for this purpose
that q(x) ≥ q0 for a constant q0 > 0 for almost all x ∈ D.
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Theorem 15. If q ∈ L∞(D,C3) is large enough such that

µ1 <
(1 + q0/2)2γ2

1 + q0
, (49)

then there exists at least one transmission eigenvalue ω2
0 in the intervall (0, (1 + q/2)γ/(1 + q)).

Proof. We will follow [14] to show existence of interior transmission eigenvalues. First we rewrite
the bilinear form aω as

aω(v, ψ) =

∫
D

1

q
[∆∗v + ω2v] · [∆∗ψ + ω2ψ] dx+ ω2

∫
D
v · [∆∗ψ + ω2ψ] dx (50)

for all ψ ∈ H2
0 (D,C3). We can rewrite aω as

aω = a0 + ω2b1 + ω4b2,

where b1 and b2 are bilinear forms that are given by

b1(v, ψ) =

∫
D

1

q
[v∆∗ψ + ψ∆∗v] dx+

∫
D
v∆∗ψ dx,

b2(v, ψ) =

∫
D

q + 1

q
vψ dx, v, ψ ∈ H2

0 (D,C3).

and a0 is the inner product on H2
0 that we introduced above. We use Riesz’ representation theorem

and find bounded operators B1, B2 from H2
0 (D,C3) into itself such that

bj(v, ψ) = (Bjv, ψ)H2
0 (D,C3) ∀v, ψ ∈ H2

0 (D,C3), j = 1, 2.

Therefore we can write the equation aω(v, ψ) = 0 for all ψ ∈ H2
0 (D,C3) equivalently as

v + ω2B1v + ω4B2v = 0.

From the symmetry of bj we conclude that B1, B2 are self-adjoint. Furthermore these operators
are also compact, since they represent differential operators of order less than four, see [15] for the
corresponding acoustic case. Finally the operator B2 is positive. Now we define

Aω = Id3 +ω2B1 + ω4B2

and notice that this operator is self adjoint due to the self-adjointness of the operators that constitute
the operator. Furthermore its spectrum is real and discrete and due to the compactness of B1 and
B2, we can know that the only possible accumulation point is 1. Furthermore the eigenvalues depend
continuously on the frequency ω. Notice that the spectrum of the operator A0 = Id only consists of
{1}. If we now find a function v̂ ∈ H2

0 (D,C3) and a corresponding value ω̂, such that aω̂(v̂, v̂) < 0, we
know from the min-max principle that the smallest eigenvalue of Aω̂ is negative. Since the smallest
eigenvalue depends continuously on the frequency ω, it follows that there is a value ω between 0 and
ω̂ such that the kernel of Aω is non-trivial and therefore k2 is a transmission eigenvalue. We will
now construct such a function v̂. First we use (50) to estimate

aω(v, v) ≤ 1

q0

∫
D

[∆∗v + ω2v]2 dx+ ω2

∫
D
v ·∆∗v dx+ ω4‖v‖L2(D,C3)

=
1

q0

∫
D

[
(∆∗v)2 + ω2(2 + q0)v ·∆∗v

]
dx+

(1 + q0)ω4

q0
‖v‖2L2(D,C3)

=
1

q0

∫
D

[
(∆∗v)2 − ω2(2 + q0)(µ|∇v|2 + (λ+ µ)|div v|2)

]
dx+

(1 + q0)ω4

q0
‖v‖2L2(D,C3),
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where we used Betti’s formula. Let now v̂ be an eigenfunction of the bi-Navier operator (∆∗)2,
corresponding to an eigenvalue µ1, i.e. (∆∗)2v̂ = µ1v̂ in D. Therefore we obtain

aω(v̂, v̂) ≤ µ1 + ω4(1 + q0)

q0
‖v̂‖2L2(D,C3) −

ω2(2 + q0)

q0

[
µ‖∇v̂‖2L2(D,C3×3) + (λ+ µ)‖div v̂‖2L2(D,C3)

]
.

We can continue to estimate

aω(v̂, v̂) ≤ 1

q0

[
µ1 + ω4(1 + q0)− ω2(2 + q0)γ

]
‖v̂‖2L2(D,C3).

Following [14], we have

µ1 + ω4(1 + q0)− ω2(2 + q0)γ =

(
ω2
√

1 + q0 −
(1 + q0/2)√

1 + q0

)2

+ µ1 −
(1 + q0/2)2γ2

1 + q0
.

Choosing ω2 = (1+ q0/2)γ/(1+ q0), the first bracket vanishes such that if q0 is big enough such that

µ1 <
(1 + q0/2)2γ2

1 + q0
,

we can conclude that ak(v̂, v̂) < 0 and therefore there exists an interior transmission eigenvalue ω2
0

in the interval (0, (1 + q0/2)γ/(1 + q0)). �

For the remainder of this section we assume a constant contrast q = q0 in D. Recall that for the
eigenpair (u0, w0) ∈ L2(D,C3)×Xω0 , corresponding to the interior transmission eigenvalue ω2

0, the
derivative α(ω0) is given by

α(ω0) =
2

ω0

∫
D

(µ∇v0 : ∇v0 + (λ+ µ) div v0 div v0) dx+ 4ω0

∫
D
v0 · w0 dx,

where v0 is the radiating solution to (43). Then α̃(ω0) := ω0
2 α(ω0) is given by

α̃(ω0) =

∫
D

(µ∇v0 : ∇v0 + (λ+ µ) div v0 div v0) dx+ 2ω2
0

∫
D
v0 · w0 dx

= µ‖∇v0‖2L2(D,C3×3) + (λ+ µ)‖div v0‖2L2(D,C) + 2ω2
0

∫
D
v0 · w0 dx.

The following condition for the positivity of the derivative α holds.

Lemma 16. Let ω2
0 be an interior transmission eigenvalue and assume that

γ

(
2

q
+ 1

)
− 2

q + 1

q
ω2

0 > 0. (51)

Then α(ω0) > 0.

Proof. We start by rewriting the integral

2ω2
0

∫
D
v0 · w0 dx =

2

q
ω2

0

∫
D
qv0 · w0 dx

=
2

q

∫
D

(
µ∇v0 : ∇v0 + (λ+ µ) div v0 div v0 − ω2

0ρv0 · v0

)
dx

=
2

q

(
µ‖∇v0‖2L2(D,C3×3) + (λ+ µ)‖div v0‖2L2(D,C) − ρω

2
0‖v0‖2L2(D,C3)

)
.
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Using this expression, we obtain that

α̃(ω0) =

(
2

q
+ 1

)
µ‖∇v0‖2L2(D,C3×3) +

(
2

q
+ 1

)
(λ+ µ)‖div v0‖2L2(D,C) −

2

q
ρω2

0‖v0‖2L2(D,C3)

Using ρ = q + 1, we get that

α̃(ω0) ≥
[
γ

(
2

q
+ 1

)
− 2

q
(q + 1)ω2

0

]
‖v0‖L2(D,C3)

which yields the condition

γ

(
2

q
+ 1

)
− 2

q + 1

q
ω2

0 > 0

for the positivity of α̃(ω) and α(ω0). �

The condition in (51) shows that in our consideration transmission eigenvalues ω2
0 must not be

too large for the derivative α(ω0) to be positive. In the next corollary, we show that the derivative
is positive for the interior transmission eigenvalue from Theorem 15.

Corollary 17. Let the contrast q fulfill the condition (49). Then there exists at least one interior
transmission eigenvalue ω2

0 < (1 + q/2)γ/(1 + q) and for all interior transmission eigenvalues ω2
0

that fulfill this bound, its holds that α(ω0) > 0.

Proof. From Lemma 16 we know that α(ω0) > 0 if the condition

γ

(
2

q
+ 1

)
− 2

q
(q + 1)ω2

0 > 0

is fulfilled. Since ω2
0 ∈ (0, (1 + q/2)γ/(1 + q)), it suffices to show that

γ

(
2

q
+ 1

)
− 2

q
(q + 1)(1 + q/2)γ/(1 + q) = γ

(
2

q
+ 1

)
− 2

q
(1 + q/2)γ ≥ 0.

Dividing by γ and multiplying by q yields as a sufficient condition that

2 + q − 2(1 + q/2) ≥ 0,

which is obviously true. This shows that for the transmission eigenvalue ω2
0 the derivative is indeed

positive. �
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