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The paper presents the study on the ascent trajectory optimization problem accomplished during a research 

activity on Multidisciplinary Design Optimization (MDO) for launch vehicles, undertaken by Universität Bremen 

and Politecnico di Milano within ESA’s PRESTIGE PhD program. 
The trajectory optimization problem represents just a part of the overall MDO process when the control variables 

are treated on the same level of the design variables in a black-box optimization approach. However, given an 

efficient problem formulation and optimization strategy, it can be inserted as a nested optimization loop in the 

overall process of design optimization of the entire launch vehicle. 

In order to tackle Mixed Integer Non Linear Programming problems required by a MDO framework, several 

optimization strategies have been integrated: from global and stochastic to local and deterministic, from single to 

multiobjective.  

The description of the optimization strategies is followed by an overview of the ascent trajectory model, 

constituted of 3-DoF simulation, a phase structure including standard guidance laws for the generation of first guess 

pitch and yaw profiles, variable thrust, coast phases, and definition of path and final orbit constraints. Results are 

presented for several test cases (Ariane 5 and VEGA to GTO and LEO orbits), with a comparative analysis of those 
obtained with global and local optimization approaches, and with different formulations of the problem. Finally, 

lessons learned on particular modeling aspects that allow improving the problem’s smoothness for more efficient and 

robust local optimization are discussed. 

 

 

I. INTRODUCTION 

Multidisciplinary Design Optimization has been 

increasingly studied since the 80’s in aerospace 

engineering1 with the main purpose of reducing 

monetary and schedule costs for the design of complex 

airplanes or space vehicles. 

Multidisciplinary Design Optimization (MDO) is 
intended as the coupling together of two or more 

analysis disciplines with numerical optimization 

methods. It has been defined by the NASA Langley 

Research Center (LaRC), Multidisciplinary Design 

Optimization Branch (MDOB) as “a methodology for 

the design of complex engineering systems and 

subsystems that coherently exploits the synergy of 

mutually interacting phenomena”. 

The traditional sequential design approach of 

optimizing each discipline separately, which can lead to 

sub optimal solution, is substituted by analyzing the 
interactions between the disciplines and concurrently 

optimize every subsystems achieving globally optimal 

design2,3. 

Through the MDO approach in fact, the design 

space can be more rapidly explored, investigating a high 

number of possible solutions and obtaining Pareto 

optimal fronts under different objectives, such as mass, 

cost, reliability, or mission flexibility. Designers can 
then select the most promising solutions to be used as 

good starting points for concepts refinements with more 

traditional design methodologies. 

MDO is a very challenging field of research for both 

engineers and mathematicians. Exploiting the 

interaction between the different disciplines, introducing 

existing or developing new models, solving 

multiobjective optimization problems with discrete and 

continuous variables and performing an overall efficient 

and robust design process are the main issues of a MDO 

problem for both groups of scientists. 
The main obstacle to the successful application of 

the MDO approach lays in the difficult task of finding a 
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compromise between models simplicity and accuracy, 

which applies both for the multidisciplinary modeling 

and at the disciplinary level. This paper focuses on the 

Trajectory Optimization problem that it is just a crucial 

part of the overall MDO process, which is described in 

more details in Ref. 7. 

The aim is to perform a simple, fast and robust 

trajectory optimization to be nested inside the 

multidisciplinary analysis cycle for improving the 
performance of the overall optimization. The selected 

trajectory model, problem formulation and optimization 

algorithm are analyzed. In particular the paper discusses 

the following topics: 

• Section II: brief overview of the MDO framework 

developed for the design of Expendable Launch 

Vehicles. 

• Section III: brief overview over the selected 

optimization strategy for both the MDO problem and 

the trajectory optimization subproblem. 

• Section IV: description of the ascent trajectory 
optimization problem, from the modeling to its 

optimization formulation. 

• Section V: details of the applicative test case 

selected for the verification of the results (Ariane 5 

to GTO and VEGA to LEO).  

• Section VI: model and formulation of the 

optimization problem enhancements. 

• Section VII: critical analysis of the numerical 

results obtained with the modification proposed in 

Section VI for the applicative cases presented in 

Section V. 

• Section VIII: conclusion and remarks on the 

conducted study. 

 

II. FRAMEWORK 

The European Space Agency (ESA) proposed in 2009 to 

co-fund together with the Aerospace Engineering 

Department of Politecnico di Milano and the Center for 

Industrial Mathematics of Universität Bremen a joint 

research in the field of Multidisciplinary Design 

Optimization (MDO). 

Different optimization algorithms, MDO 
architectures and engineering methods have been 

developed during the research activity to identify the 

most suitable for Expendable Launch Vehicles (ELV) 

design, up to the early preliminary level of detail and 

considering extensions to more complex applications 

such as manned and reusable systems4,5,6. 

A research in this field stems from the consideration 

that, when looking at the future of space exploration, the 

area with the higher potential for the development of 

new vehicles is surely that involving space 

transportation and space launch systems, both for 

manned and unmanned scenarios.  
 

The engineering modeling of launch systems is a 

particularly complex task, even restricting the targeted 

vehicles to classical (i.e. simple cylindrical stages and 

boosters with no wings) launchers. In the first step of 

the research described here, the models are kept simple 

enough to allow execution of a full MDA on a single 

processor personal computer in a few seconds.  
The following disciplinary models have been 

implemented, making use of freely available external 

tools or developing new ones from scratch, sequentially 

executed within the MDA cycle: Propulsion, Geometry, 
Aerodynamic, Weights, Trajectory, Cost and Reliability 

for targeting from a conceptual level and up to early 

preliminary the design of ELV7.  

The straightforward Black Box Optimization MDO 

architecture has been selected. It consists in an efficient 

global optimization strategy on top of the 

multidisciplinary analysis able to explore the entre 

search space. The MDA takes as inputs the design and 

disciplinary variables and returns as outputs to the top-

level optimizer the design objectives and constraints. 

The optimizer then recursively calls the model 
evaluation procedure moving towards feasibility and 

optimality. 

Whereas all other disciplines involve discrete 

optimization variables, the ascent trajectory dynamics is 

governed by continuous control parameters, hence an 

optimal solution can be found employing efficient local 

optimization techniques. For this reason, in the 

presented framework, the paper will focus on the 

research developed for designing a robust model and 

selecting an efficient optimization strategy for the 

ascent trajectory optimization sub-problem, to include 

as a nested loop within the MDA cycle. 
 

III. THE OPTIMIZATION STRATEGIES 

In order to tackle Mixed Integer Non Linear 

Programming problems required by a MDO framework, 

several optimization strategies have been integrated: 

from global and stochastic to local and deterministic, 

from single to multiobjective. 

Global Stochastic Multi Objective approach is based 

on the collaborative hybridization of three different 

Evolutionary Algorithms: Non-Dominated Sorting 

Genetic Algorithm (NSGA-II)8, Double Grid Multi 
Objective Particle Swarm Optimization (DGMOPSO)9, 

and Multi Objective Ant Colony Optimization for 

continuous domains (MOACOr)10. The selection of the 

algorithms has been based on their efficiency, in terms 

of function evaluations required for convergence, and 

robustness on a set of benchmark mathematical 

problems9. The idea of the hybrid algorithm is to steer 

the algorithm toward the strategy that achieved the best 

results, in terms of contribution to the current Pareto 

Front, in the previous iteration. The initial population is 

equally divided in three groups and each group evolves 
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with one of the evolutionary techniques. The results are 

then recombined, the fast non-dominated sorting 

operator of NSGA-II algorithm is applied to the joint 

population and the ordered non-dominated fronts are 

added to the archive until the maximum size is reached. 

Two hybridization coefficients are employed to steady 

the hybrid algorithm toward the evolutionary strategy 

that is achieving the best results: the percentage of 

population that evolves with each algorithm is 
proportional to the percentage of individuals in the 

current archive that derive from it5. 

Global Stochastic Single Objective approach: is 

based on the original Particle Swarm Optimization 

(PSO)11. It has been shown to be generally more 

efficient than the more traditional single-objective 

genetic algorithms.  

Local Determinist Single Objective approach is a 

combined SQP (Sequential quadratic programming) and 

primal-dual IP (Interior-Point) method, which was 

designed to solve sparse large-scale NLP problems with 
more than hundreds of millions of variables and 

constraints. It has been developed in the library 

WORHP (“We Optimize Really Huge Problems”) by 

the joint work of the teams from the University of 

Bremen and the team from the University of 

Würzburg12,13. Its robustness was proved by the CUTEr 

test set, consisting of 920 sparse large-scale and small 

dense problems, of which WORHP is able to solve 915. 

Moreover WORHP successfully solved several space 

application problems, e.g. reentry, ascent and low thrust 

trajectory optimization problems. 
 

IV. THE ASCENT TRAJECTORY 

OPTIMIZATION PROBLEM 

The trajectory and guidance block can be considered 

at a lower level in a MDO nested optimization loops 

(NOL) as already mentioned in the previous paragraph. 

The trajectory optimization variables are not shared 

with other subsystems so the variables that define the 

design of the launcher, needed for the computation of 

the equation of motion, can be frozen at system level 

and a nested optimization loop can be performed instead 

that a simulation during the multidisciplinary analysis. 
The advantages of this approach are mainly two: 

• the number of the optimization variables of the 

system level MDO problem decrease 

substantially  

• The trajectory optimization variables are 

continuous and if a good first guess is available 

a more efficient local optimization approach 

can be employed. 

On the other hand a fast and robust trajectory 

optimization has to be performed at each evaluation of 

the MDA.  
 

Dynamics and guidance models 

Three Degrees of Freedom (DoF) dynamics and limited 

environmental models (rotating Earth with zero-order 

gravity model, US 76 atmosphere, no wind), are 

considered appropriate for the level of accuracy 

required in a MDO context.  

The trajectory is integrated from launch to orbit 

insertion with a Runge-Kutta-Fehlberg 45 algorithm. 

The rotational dynamics is neglected, implicitly 

assuming that the launcher is capable of providing the 
necessary pitch and yaw profile without steering losses. 

A static controllability verification is however 

performed on the basis of the CoG position and pitching 

moment coefficient. Moreover, in case of non axial-

symmetric launchers the roll angle is fixed (velocity and 

longitudinal axis in the symmetry plane), so that the 

aerodynamic coefficients are function only of Mach 

number and total angle of attack. Complementary 

models include the evaluation of the aero-thermal loads 

at stagnation point, structural loads (dynamic pressure, 

axial and lateral accelerations), thrust and Isp variation 
due to altitude, and static controllability verification. 

 

Optimization problem 

Parameterized pitch and yaw angles as well as thrust 

throttling are used as control variables, while a scaling 

factor for the reference payload mass is included among 

the optimization variables and also represents the 

maximization cost function in a performance based 

optimization. The last stage burnout can be activated as 

additional optimization variable and the ignition time 

for an orbital circularization burn complete the set of 
trajectory design variables, allowing to reach high 

circular or moderately eccentric orbits. 

Constraints are imposed on the final orbital 

parameters as well on the path constraints: maximum 

dynamic pressure, maximum heat flux before payload 

fairing jettison, maximum axial acceleration, maximum 

angle of attack, static controllability (available thrust 

torque larger than aerodynamic moment). 

The first guess is provided by standard guidance 

laws, composed of vertical launch, exponential pitch 

push-over, gravity turn and bilinear tangent law for 

pitch and target inclination for yaw. Pitch and yaw 
profiles are obtained with linear interpolation of the 

nodal values in a limited range around the first guess 

solution. In this way local optimization processes are 

started with a reasonable first guess (i.e. a “flying” 

trajectory rather than one ending in a crash on the 

planet), allowing for fast convergence to the final 

optimum. 

With direct methods the optimal control problem is 

transformed in a nonlinear problem of the form 
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where n is the total number of optimization variables 

that depends on the discretization used for the controls 

and the launcher configuration, x1 is the payload scaling 

factor, li and ui are respectively the lower and the upper 

bound of the box constraints of the optimization 

variable xi and gi the above mentioned constraints on 

final target orbit and path constraints. 

In the implementation of the optimization problem 

the design and control variables are scaled between 0 
and 1 as well as the constraints values that are scaled 

with their reference values. 

 

Three main figures of merit of the local trajectory 

optimization process have been considered: 

• Robustness in terms of repeatability of the 

results. This can be evaluated mainly in two 

ways: varying the first guess, the algorithm 

parameters (in case of deterministic strategies) 

or the seed (in case of stochastic strategies) and 

verifying that the same or comparable optimal 
solutions are obtained; or varying the launch 

vehicle’s design parameters and verifying that 

the sensitivity of the optimal payload 

performance matches what physically 

expectable. The easiest way is to vary the 

upper stage’s dry mass and verify that the same 

variation in payload is achieved. 

• Performance in terms of optimal value and 

constraints violation. 

• Computational efficiency: average time 

required to reach the optimal solution. 
Although all these aspects are extremely important 

for a successful trajectory optimization tool, robustness 

seems the most critical within MDO problems. In fact, a 

trajectory framework that does not allow for reliable 

evaluation of the payload performance may artificially 

bias the multidisciplinary optimization towards given 

design solutions, for which the trajectory optimization 

proceeds better. 

The ascent trajectory has been optimized with both 

the global PSO and the local WORHP algorithms for 

the Ariane5 ECA to GTO and VEGA to LEO as test 

cases. The use of the available multiobjective strategies 
has been considered inefficient for the kind of problem.  

A comparison of the performance of the two 

algorithms on the provided model led to further 

improvements on its robustness and regularity presented 

in the flowing sections. 

 

V. APPLICATIVE TEST PROBLEMS 

The optimization problems for Ariane 5 ECA and 

VEGA slightly differ in terms of variables and flight 

phases.  

The trajectory model for the Ariane5 ECA to GTO 
launched from Kourou, is divided in 5 phases: vertical 

take off, pitch over maneuver (constant optimized yaw 

and linear pitch followed by exponential decay of angle 

of attack until gravity turn condition is met), first stage 

flight with boosters (pitch follows the gravity turn and 

yaw the target inclination), first stage flight without 

boosters (pitch and yaw are both optimized), second 

stage flight (pitch follows the bilinear tangent law and 

yaw is optimized). The throttle of the liquid engines is 

constant at 100% and the solid boosters have a 

simplified two-level thrust profile. Hence, only 
trajectory optimization variables related to payload mass 

and pitch and yaw profiles are used, for a total of 11 

continuous variables listed in Table 1 with relative 

bounds. 

 

Var Description LB UB 

XPL Payload scaling factor [-] 0.5 1.5 

∆ψPO Launch azimuth, in terms of 

yaw deviation with respect to 

the target inclination law [deg] 

-10 10 

∆ΨEPC Yaw deviation with respect to 

the target inclination law 

during EPC’s flight (no 

boosters) [deg] 

-10 10 

∆ΨECA Yaw deviation with respect to 
the target inclination law 

during ECA’s flight [deg] 

-10 10 

∆θPO Maximum pitch-over angle 

[deg] 

1 5 

tPO Pitch-over duration [s] 2 10 

tPO,decay Pitch-over decay time [s] 1 5 

∆θEPC Pitch deviation with respect to 

gravity turn during EPC’s 

flight (no boosters) [deg] 

-10 20 

∆θBTL,i Pitch discontinuity (with 

respect to the pitch at the end 

of EPC’s flight) at the 

beginning of the bilinear 

tangent law phase for upper 

stage’s pitch [deg] 

-50 50 

∆θBTL,f Pitch value at the end of the 

bilinear tangent law for upper 
stage’s pitch [deg] 

0 50 

ζBTL Bilinear tangent law’s shape 

parameter (ζ=0 � linear, ζ>0: 

super-linear, ζ<0: sub-linear) 

[-] 

-1 1 

Table 1 Description of the optimization variables 

and their bounds for the complete considered search 

space of the trajectory optimization problem for Ariane 

5 ECA’s flight to GTO 

 

All constraints are active with reference values 

reported in Table 1. An error of 10 km on the final 

semiaxis, 0.01 on the eccentricity and 0.5 degree on the 

inclination are allowed. 
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 Lower  

Bound 

Upper 

Bound 

Target semiaxis (Km) 24475-10  24475+10 

Target eccentricity (-) 0.7292-0.01 0.7292+0.01 

Target inclination (deg) 6-0.5 6+0.5 

Maximum axial 

acceleration (g)  

-∞ 4.55 

Maximum heat flux 
before payload fairing 

jettison (MW/m2) 

-∞ 30 

Maximum dynamic 

pressure (Pa) 

-∞ 57000 

Controllability violation -∞ 1.5 

Maximum angle of 

attack (deg) 

-∞ 5 

Table 2 Ariane 5 trajectory constraints bounds 

 

VEGA’s ascent to a polar LEO from Kourou is 

divided in 9 phases each with different guidance laws 

for pitch and yaw: vertical take off, pitch over maneuver 

(constant optimized yaw and linear pitch followed by 

exponential decay of angle of attack until gravity turn 

condition is met), first and second stage flight (pitch 

follows the gravity turn and yaw the target inclination), 

third stage flight (optimized pitch and yaw), fourth stage 
flight (pitch follows the bilinear tangent law and yaw is 

optimized), coast phase between Z23 and Z9 flights and 

coast phase of the upper stage until circularization burn 

with pitch and yaw tangential to the velocity and null 

thrust, circularization burn with upper stage at full 

thrust. As in the previous case the trajectory 

optimization variables are related to payload mass, pitch 

and yaw profiles, with the addition of the coast times 

and circularization burn time, for a total of 15 variables 

listed in Table 3. 

 

Var Description LB UB 

XPL Payload scaling factor [-] 0.5 1.5 

∆ψPO Launch azimuth, in terms of 

yaw deviation with respect to 
the target inclination law 

[deg] 

-10 10 

∆ΨZ23 Yaw deviation with respect 

to the target inclination law 

during Zefiro-23’s flight 

[deg] 

-10 10 

∆ΨZ9 Yaw deviation with respect 

to the target inclination law 

during Zefiro-9’s flight  

[deg] 

-10 10 

∆ΨAVUM Yaw deviation with respect 

to the target inclination law 

-10 10 

during AVUM’s flight [deg] 

∆θPO Maximum pitch-over angle 

[deg] 

1 5 

tPO Pitch-over duration [s] 2 10 

tPO,decay Pitch-over decay time [s] 1 5 

∆θZ23 Pitch deviation with respect 

to gravity turn during Zefiro-

23’s flight [deg] 

-10 20 

∆θZ9 Pitch deviation with respect 

to gravity turn during Zefiro-

9’s flight [deg] 

-10 20 

∆θBTL,i Pitch discontinuity (with 

respect to the pitch at the end 

of EPC’s flight) at the 

beginning of the bilinear 

tangent law phase for upper 
stage’s pitch [deg] 

-50 50 

∆θBTL,f Pitch value at the end of the 

bilinear tangent law for 

upper stage’s pitch [deg] 

-5 50 

ζBTL Bilinear tangent law’s shape 

parameter (ζ=0 � linear, 

ζ>0: super-linear, ζ<0: sub-

linear) [-] 

-1 1 

tcoast,Z Duration of coast phase 

between jettison of Zefiro-23 

and ignition of Zefiro-9 [s] 

30 100 

tCB,ign Circularization burn ignition 

deviation with respect to 

(tapocentre-0.5·tCB), in 

percentage of the total 

circularization burn time tCB 

[-] 

-0.1 0.1 

Table 3 Description of the optimization variables 

and their bounds for the complete search space of the 

trajectory optimization problem for VEGA’s flight to 

polar LEO 

 

 Lower  

Bound 

Upper 

Bound 

Target semiaxis (Km) 7878-10  7878+10 

Target eccentricity (-) 0.0-0.01 0.02+0.01 

Target inclination (deg) 90-0.5 90+0.5 

Maximum axial 

acceleration (g)  

-∞ 7.5 

Maximum heat flux 

before payload fairing 

jettison (MW/m2) 

-∞ 30 

Maximum dynamic 

pressure (Pa) 

-∞ 57000 

Controllability violation -∞ 1.5 

Maximum angle of 

attack (deg) 

-∞ 5 

Table 4 VEGA trajectory constraints bounds 
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Also in the VEGA test case all constraints are active 

with reference values reported in Table 4. The 

tolerances on the orbital parameters are the same as in 

the Ariane settings. 

 

VI. MODEL AND OPTIMIZATION PROBLEM 

ENHANCEMENT 

Global and local trajectory optimization processes 
have been performed identifying two main features of 

the model and the optimization problem formulation 

that largely influence the behaviour of the algorithms. In 

particular 

• Model: stopping criteria on the fulfilment of 

the target orbit constraints. 

• Problem formulation: use of equality or 

inequality constraints for the matching of the 

target orbit. 

Finally in this section a sensitivity analysis on the 

effect of the number and bounds of the optimization 
variables is discussed. 

 

Model enhancements 
Although the regularity of the objective and 

constraints functions is not an issue when dealing with 

stochastic global optimization algorithms, particular 

attention has to be paid to this aspect when applying 

gradient-based methods such as WORHP. 

While the objective is a linear function, therefore 

smooth by nature, the constraints are non linear 

functions. In particular, the final orbit constraints were 
found to be extremely non smooth with the models 

developed for the PSO trajectory optimization case. 

This issue was highlighted from the very poor 

robustness properties initially shown by the trajectory 

models when applying a local method. In particular, 

very small variations in any of the launcher design 

parameters, WORHP’s settings or first guess would 

result in a completely different solution being found, 

indicating the presence of a large number of local 

minima with very small regions of attraction. Path 

constraints on the other hand didn’t result an issue for 

the optimization problem, probably due to their 
dependency on a smaller set of optimization variables. 

The problem was identified by plotting the 

constraints surfaces as a function of two of the most 

influential optimization variables: the initial pitch-over 

angle and the payload scaling factor (which is also the 

optimization’s objective function) freezing the 

remaining optimization variables to the optimal values 

returned by WORHP and running different simulation 

on the grid nodes. 

The main issue highlighted by this analysis is shown 

in Figure 1for a flight of Ariane 5 ECA towards a 
standard GTO. The final orbit’s semiaxis on the z-axis 

presents a flat region where the target semiaxis is 

matched. Since the integration of the equation of motion 

is stopped as soon as the required orbital energy is 

reached, this region is large but extremely “bumpy”. In 

fact, there are hundreds of local minima and maxima of 

the constraint surface in the feasibility area, due to the 

discrete nature of variable step size integration process. 

This results in different instants of integration stopping, 

sometimes within and sometimes out of the allowed 

tolerance on semiaxis. 
 

 
 

 
 

 

 

 

 

Such a model leads to a disconnected feasible 

region. For different initial guess or varying the 

algorithm parameters WORHP gets stuck in different 

local minima as shown in Figure 2 where are visualized 

the contour lines of the semimajor axis function and the 

corresponding disconnected feasible area. 

The set of feasible solutions is therefore 
disconnected, so that each time the optimization is 

started with different settings, the final solution can end 

up being anywhere in the feasibility region without a 

guarantee on reaching the best feasible point (as it 

happen in Figure 2 where the optimal solution returned 

by WORHP is represented by the red cross in the 

feasible space). 

While the presented model is good for global 

stochastic optimization approach, since the feasible area 

is wider, the model has to be redefined for local gradient 

based algorithms. It can be corrected by simply 

Figure 1 Final orbit’s semiaxis constraint surface 

as a function of initial pitch-over angle and payload 

mass for Ariane 5 ECA to GTO. The plot is obtained 

by freezing all other optimization variables. 
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avoiding the stopping of the integration at the target 

orbital energy, imposing that the propellant of the upper 

stage is always fully depleted. It implies a reduction of 

the feasible region dimensions, so inefficient for global 

strategies but allows obtaining a smooth model with no 

local optima (Figure 3). Hence, WORHP is capable of 

pushing the solution as further right as possible, so that 

the achieved optimum (i.e. red cross) corresponds to the 

highest payload solution in the feasible set. 
 

 
 

 

 

 
 

 

 

To recover the wider feasible region found with the 

stopping criteria and maintain the regularity of the 

problem an additional optimization variable can be 

added to the problem. The additional variable models 

the remaining propellant in the last stage on reaching 

the target orbit, allowing variable time of flight. 

Naturally the optimum still relies in the solution with no 

fuel left over but the feasible search space has been 

enlarged to the original one (Figure 4). The figure refers 
to a coarser grid over the search space since a complete 

optimization must be performed at each grid node 

though it gives anyway a taste of the behaviour. 

 

 
 

 

 

 

 

 

 
Figure 4 set of feasible solutions obtained varying 

initial pitch-over and payload and leaving optimizable 

the final time of flight. 

 

Optimization problem formulation enhancements 
The distinction between equality an inequality 

constraints has been another major issue registered in 

the original trajectory model designed for the PSO 

algorithm where all constraints are treated as inequality 

constraints allowing given tolerances on the final orbital 

parameters. This constraints relaxation is necessary in 

case of a global optimization approach, too coarse to 

allow the precise matching of equality constraints. 

However, WORHP is capable of handling both equality 

Figure 2 Top: contour plot of the final semiaxis 

constraint surface. Bottom: set of feasible solutions 

obtained varying initial pitch-over and payload. The 

red solution at x=y=0.5 is the first guess, the red 

solution in the feasibility region is the solution 

obtained by WORHP, clearly a local optimum. 

Figure 3 Top: 3D plot of the semiaxis constraint 

surface for Ariane 5’s flight to GTO after the 

removal of the integration stopping condition. 

Bottom: set of feasible points, first guess at x=y=0.5 

and globally optimal solution returned by WORHP. 
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and inequality constraints, and the choice among the 

two types does influence the behaviour of the 

optimization algorithm. Treating a equality constraints 

as inequality enlarge the corridor of the acceptable 

solutions adding to the tolerance set by the user the 

tolerance employed by the algorithm for feasibility 

determination. 

In particular, inequality (gi, i=1,..,3) and equality (hi, 

i=1,..,3) constraints on the final target orbit are defined 
as follow 
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Where x is the vector of the optimization variables, 

atarget, etarget, itarget are the target orbit semiaxis, 
eccentricity and inclination, atol, etol, itol are the tolerance 

allowed by the user and anorm, enorm, inorm are the scaling 

factors and the constraints bounds are defined as 

3,...,1;0)(;0)( ==≤ iallforxhxg
ii

. 

On top of these definitions, WORHP further defines 

a tolerance on the constraints values, corresponding to 
the parameter TolFeas. In order to ensure a fair 

comparison between the inequality and equality 

constraints models, the following relation must 

therefore hold 

;;;
TolFeas

i
i

TolFeas

e
e
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a
a tol

norm

tol

norm
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norm ===  

so that when WORHP considers acceptable the 

constraints violation on a given parameter in the 

equality case, the error is lower or equal to the allowed 

tolerance. 

 

The last aspect that has been investigated is the 

definition of the number and bounds of the control 

parameters listed in Table 1 and Table 3 to avoid 

redundant optimization variables and increase the 
optimization efficiency. In general, the following fact 

applies: 

• If the search space is constrained too much 

(small number of control variables with narrow 

bounds) than the achieved optimal solutions 

may be largely underestimating the payload 

mass.  

• If the search space is enlarged too much (large 

number of control variables with wider 

bounds) than the computational times may 

become excessive and the search space may 
become extremely multi-modal, reducing the 

robustness of the local search. 

In order to find a balanced compromise of these two 

approaches, an analysis on the effect of the number and 

bounds of the control variables on the optimization 

process has been carried out. Particular attention has 

been paid in this case to the performance and robustness 

allowed by the different search space dimensions. 

 

Numerical results of the applicative test cases 

presented in  V are presented in the next section as a 
proof of the topics stated above. 

 

VII. NUMERICAL RESULTS 

Using the actual launcher design parameters, 

trajectories for Ariane 5 and VEGA have been 

optimized with both the global PSO, performing 5 runs 

of 500 iterations and 250 particles for stochastic effects, 

and the local WORHP with the model and problem 

formulation enhancements discussed in the previous 

section. The first guess: is provided both from standard 

guidance laws and from fast global optimization runs 
with the PSO algorithm (for example 10 particles and 

10 iterations).  

The results in Table 5, refers to the best available 

solutions, in terms of payload mass starting from the 

actual configuration of Ariane and VEGA and from the 

design given by the multidisciplinary analysis, taking as 

reference value of payload mass for Ariane 5, 10050 

Kg, and for VEGA 1500 Kg. 

 

 PSO 

best  

PSO 

stdev 

WORHP 

Ariane 5 actual  10891 1.0% 10944 

Ariane 5 MDA 12482 0.1% 12693 

VEGA actual 1714 0.5% 1715 

VEGA MDA 1408 0.1% 1403 

Table 5 Trajectory optimization results for Ariane 5 

ECA and VEGA test cases, payload mass values in kg, 

obtained with PSO and WORHP for launcher 

parameters frozen to the actual design values and 

computed by the analysis. 

 
The optimization performed with the two 

optimization strategies leads to consistent results. 

Moreover note that the stochastic effects do not lead to 

excessive standard deviations in the payload 

performance among the different PSO runs. Although 

this is obtained in a large number of model evaluations 

reflected in long computational times corresponding to 

about 4 and 4.5 hours for Ariane and VEGA on a single 

2.10 GHz processor. An OpenMP parallelization of the 

stochastic code can halved the computational time using 

standard dual core pc. The stochastic approach is still 
not comparable, in terms of computational efficiency, to 

the performance of the local algorithm that is able to 
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perform a complete optimization process in the order of 

5 to 20 minutes. 

The trajectory models tend to slightly overestimate 

the payload mass, specifically by 8.9% for Ariane and 

14% for VEGA for fixed design input variables while in 

case the design is given by the MDA a bigger 

overestimation of 26% for Ariane and on the contrary a 

small underestimation of 6% for VEGA. The optimistic 

evaluation of the payload mass can be addressed to the 
neglecting of steering losses throughout the ascent 

phase and the assumption of constant specific impulse. 

Introduction of a steering ∆V in the propellant budget as 

well as of an empirical evaluation of the effect of throat 

erosion, particularly relevant in case of SP motors, may 

therefore allow improving the payload assessment 

accuracy. The over/underestimation in the MDA case is 

consistent with the inaccuracy in the model, as 

discussed in 6. 

 

Equality vs Inequality constraints definition 
The use of equality or inequality constraints for local 

optimization strategies to verify which of the two 

definitions gives the best compromise of performance, 

efficiency and robustness of the optimization process, 

for the Ariane 5 ECA and VEGA (both actual design 

and MDA) cases have been analyzed. The smallest 

possible number of control parameters has been used to 

reduce the influence of this aspect (see next paragraph). 

All pitch-over and upper stage’s bilinear tangent law 

parameters have therefore been frozen to reasonable 

values, and it has been allowed to the optimizer to vary 
only the pitch and yaw values during the lower stages 

flight. 

For all the analyzed cases, 4 runs have been 

executed: three starting from initial guess given by a 

fast run of PSO (10 particles and 10 iterations) and one 

from standard guidance law. In terms of computational 

efficiency the results are comparable. Rather interesting 

are the results on the performance of the algorithm and 

robustness of the model. In Table 6 the results related to 

the maximum value of payload mass taken from the 

different run of the local algorithm are listed comparing 

the case of inequality and equality constraints definition 
for both actual and MDA design. 

 

 Payload mass [kg] 

 Eq  Ineq 

Ariane 5 actual 10810 10823 

Ariane 5 MDA 12663 12693 

VEGA actual 1506 1521 

VEGA MDA 1394 1403 

Table 6 Study on equality vs inequality constraints: 

Performance, for the optimization process on different 

test cases. 
 

Inequality constraints definition allows obtaining 

higher payload masses, typically in the 1-3 % range. 

This is justified by the more precise matching of the 

final orbital parameters in case of inequality constraints 

(Figure 5), which results in a small penalty in the 

objective and an increase in the algorithm performance. 
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Figure 5 Inequality vs. equality constraints matching 

example: final semiaxis values for a trajectory of VEGA 

towards a circular polar 700 km LEO with 

circularization burn. 

 

The study on the robustness of the algorithm subject 
to change in the constraints definition is performed in 

two different ways: first considering the standard 

deviation σ on the payload mass values, second 

evaluating the sensitivity of the payload mass to the 

upper stage’s dry mass (Table 7). 

 

 Payload mass σ [%] ∂MPL/∂MUS [%] 

 Eq  Ineq Eq Ineq 

Ariane 

5 actual 

0.07 0.19 -0.978 -0.989 

Ariane 

5 MDA 

0.04 1.31 -0.982 -1.151 

VEGA 

actual 

1.39 1.54 +1.032 -0.964 

VEGA 
MDA 

2.94 4.16 +1.018 -0.780 

Table 7 Study on equality vs inequality constraints: 

robustness, for the optimization process on different test 
cases. 

 

The values refer on the results obtained in the four 

different runs. Equality constraints definition allows 

much more robust optimization process, both in terms 

of standard deviation of the estimated payload mass and 

sensitivity to the variation of the launcher’s design 

(upper stage’s mass).  

It is therefore suggested to start optimizations from 

the equality constraints definition, and try the inequality 
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definition case afterwards, only if stretching the 

performance by a few percent is required. 

 

Problem dimension study 
The analysis on the effect of the number and bounds 

of the control parameters has been performed for Ariane 

5 and VEGA only for the actual design case. The 

procedure is to start the local optimization search with 

the smallest search space (most of the control variables 
frozen) and gradually enlarge it to include more control 

variables and/or wider bounds, continuing to monitor 

the behaviour of the optimization and assess the 

optimization’s performance and robustness properties.  

Only the most relevant of the attempted 

configurations in terms of achieved results (i.e. 

performance, robustness and efficiency) are detailed 

here. Each configuration constitutes a different local 

optimization problem, solved with WORHP with the 

equality constraints definition (which allows for better 

robustness as described in the previous paragraph). 
Optimization runs with inequality constraints were also 

attempted, with the purpose of verifying the increase in 

payload performance related to the relaxation of the 

constraints and labelled with Configuration x_IN. 

Configuration 0 refers to the complete one. 

 In Table 8 and Table 9 are listed the analyzed 

configurations for the two test cases and in Table 10 and 

Table 11 the best optimal solutions returned by 

WORHP for the corresponding configurations. Four 

runs have been executed, three runs starting from the 

fist guess given by PSO and one with standard guidance 
laws. The not optimized variables are constrained to 

value 0 apart from ∆θPO=2, tPO=6 and tPO,decay=2 for the 

Ariane case and ∆θPO=4, tPO=6, tPO,decay=2 and tcoast=65 

(angles are in degrees and time in seconds) for VEGA. 

 

Conf Description 

A All optimization variables frozen, except 
XPL, ∆ΨEPC, ∆θEPC 

B Same as A, adding ∆θPO 

C Same as B, adding ∆θBTL,f 

D Same as C, adding ∆θBTL,i 

E Same as D, adding ζBTL 

Table 8 Analyzed configurations description for the 

Ariane 5 to GTO case. 

 

Conf Description 

A All optimization variables frozen, except 

PLSF, ∆ΨEPC, ∆θEPC 

B Same as A, adding ∆θPO for better 

balance of drag and gravity losses 

C Same as B, adding ∆ΨZ23 for better 
inclination matching 

D Same as C, adding the coast time 

between Zefiro-23 and Zefiro-9 stages 

E Same as D, adding pitch during Zefiro-

23’s flight 

F Same as E, adding the linear pitch-over 

time 

Table 9 Analyzed configurations description for the 

VEGA to LEO case. 
 

Conf nVars Payload Robustness Efficiency 

A 3 8919 0 <0.5 min 

B 4 9936 0 <0.5 min 

C 5 10568 1.10% <1 min 

D 6 10852 0 <1 min 

E 7 10878 0 <2 min 

E_IN 7 10917 4.25% <2 min 

0 11 10889 0.96% <10 min 

0_IN 11 10944 0.62% <10min 

Table 10 Summary of optimization results for the 

different configurations of Table 8. Results are reported 

in terms of performance (payload mass [kg]), robustness 

(σ from the different initial guesses) and efficiency 
(CPU times). 

 

Conf nVars Payload Robustness Efficiency 

A 3 1372 0 <1 min 

B 4 1642 0 <1 min 

B_IN 4 1659 0 <1 min 

C 5 1657 0 <1 min 

D 6 1675 0 <1 min 

E 7 1682 0.52% <2 min 

F 8 1699 0.21% <3 min 

0 15 1706 0.17% <12 min 

0_IN 15 1715 0.51% <25 min 

Table 11 Summary of optimization results for the 

different configurations of Table 9. Results are reported 

in terms of performance (payload mass [kg]), robustness 

(σ from the different initial guesses) and efficiency 

(CPU times).  

 

Several important general conclusions are drawn 

from the analysis of the optimization results. 

Standard guidance laws with default parameters (i.e. 
in the middle of the optimization bounds) often result in 

failure of the local optimization process or extremely 

long computational times. In some cases, the standard 

laws provide a reasonable enough first guess to allow 

for successful optimization, and it is also possible to 

manually tune the optimization bounds to achieve such 

a solution. However, this approach is not suggested: the 

execution of a fast global optimization run only takes a 

few seconds and allows to obtain a good initial 

trajectory (i.e. close to feasibility), from which WORHP 
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is in most cases capable of reaching the optimal 

solution. 

For each configuration, several runs with smaller 

bounds for the different optimization variables were 

attempted. This however never resulted in significant 

advantages in terms of robustness or efficiency of the 

optimization and  suggests that the better approach is to 

keep the bounds of the optimization variables rather 

large (within reason, such as those reported in Table 1 
and Table 3), in order to avoid losing potentially 

interesting regions of the search space. 

The initial pitch-over phase is particularly critical, 

due to the high sensitivity of the final state to the pitch 

profile at the beginning of the flight. The introduction in 

the optimization problem of at least one of the pitch-

over parameters allows to greatly increasing the payload 

performance as well as the maintenance of a very good 

robustness. However, the further addition of tPO and 

tPO,decay  for the Ariane case results in a negligible 

improvement of the performance (<0.05%). On the 
contrary, the enlargement of the search space causes 

difficulties in the local search, sensibly reducing the 

robustness of the process probably due to the generation 

of local optima. This behaviour is justified by the fact 

that the three parameters are strictly related, and a 

modification in one variable can be partially or totally 

compensated with an opposite modification of another. 

The launch vehicle’s pitch-over rate (or tPO) and time to 

gravity turn (or tPO,decay) are typically used as 

independent variables in ascent trajectory optimization. 

Nevertheless, the results obtained with WORHP for 
Ariane suggest that tPO and tPO,decay can safely be fixed to 

reasonable values, leaving only ∆θPO as degree of 

freedom to tune the trajectory’s pitch-over, with no 

relevant penalty in payload and a significant advantage 

in robustness and computational times. On the contrary 

for the VEGA test case, the introduction of the pitch-

over time tPO causes a non negligible improvement. In 

fact, for VEGA’s flight to circular LEO, a strong pitch-

over enhances the performance. Since a 5 deg upper 

bound for the AoA is imposed, reaching this value with 

a faster rotation allows to gain further payload mass. 

Hence, for all those cases when the upper (or lower) 
bound of the pitch-over angle is reached, it is suggested 

to also optimize the rotation’s duration, whereas the 

pitch-over decay time can still be frozen. 

The second largest improvement in performance for 

the trajectory of the Ariane was achieved when 

introducing in the optimization problem the bilinear 

tangent law parameters for the upper stage’s flight. In 

particular, the addition of the pitch value at orbital 

insertion (θBTL,f, Conf. C) determined payload values 

with the equality and inequality constraints definition 

respectively 3% and 1% lower than the reference 
performance from PSO runs. This was achieved with 

higher standard deviations and computational times, 

which are nevertheless justified by the relevant 

performance gain. Also the introduction of the pitch 

discontinuity at upper stage’s ignition (∆θBTL,i, Conf. D) 

and of the bilinear tangent law’s shape parameter (ζBTL, 

Conf. E) caused performance improvements, though of 

smaller entity. On the contrary for VEGA the 

introduction of optimized pitch profile during the upper 

stage’s burn does not largely affect the optimization 

process. In fact, the bilinear tangent law profile is only 
active for the first part of the upper stage’s flight, before 

the engine’s cut-off at the achievement of the required 

orbital apocentre. During the remaining part of the 

upper stage’s flight, the longitudinal axis is maintained 

tangential to the velocity, both during the coast phase 

(not relevant) and the circularization burn phase. The 

attempts to introduce one or more of the bilinear tangent 

law’s parameters resulted in no relevant improvement in 

performance 

For the VEGA test case the following remarks state: 

the coast phase duration introduces one more degree of 
freedom into the problem, and therefore allows 

improving the performance by about 1% while 

circularization burn ignition time has a very small 

sensitivity on the overall performance and robustness of 

the problem. 

In both cases the complete configurations lead to the 

best performance at the price of loosing computational 

efficiency and lack in robustness. The full search space 

exploitation is not recommended at least for the first 

attempt. It is instead in general suggested to freeze the 

variables that results in minor performance 
enhancement. Summarizing: 

• For Ariane 5: freeze two of the pitch-over 

parameters, the pitch-over direction, and the 

yaw deviations for stages except for the first 

exo-atmospheric component, as in 

Configuration E 

• For VEGA: freeze one of the pitch-over 

parameters, two of the yaw deviations, all 

bilinear tangent law parameters and the 

circularization burn ignition time as in 

Configuration F 

 
VIII. CONCLUSIONS 

The paper focuses on a critical analysis of the ascent 

trajectory model, optimization problem formulation and 

optimization strategies. The goal is to achieve a fast, 

consistent and robust performance estimation to be 

inserted as nested optimization loop within the 

multidisciplinary analysis for a MDO process. 

Among the single objective optimization strategies, 

the deterministic gradient based optimization algorithm 

implemented in WORHP overtakes the stochastic 

approach of the PSO algorithm in terms of 
computational efficiency. Whereas the evolutionary 

algorithm does not need particular assumptions on the 
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model smoothness and on the given first guess, 

WORHP is strict related to the regularity of the model 

and to the initial guess. To improve the behaviour of 

WORHP, two key points were developed: 1) regularity 

issues in the model that were leading to disconnected 

optimal fronts were solved, and 2) very fast initial PSO 

runs were introduced to provide initial guesses close to 

feasibility. These enhancements allowed WORHP to 

overtake the PSO algorithm also in terms of 
performance. The robustness of the local approach was 

reached with a reformulation of the problem constraints 

as equality constraints. The robustness of the stochastic 

algorithm was instead proven by running different 

trajectory optimizations with different seeds for 

populating the initial set of particles. 

Finally, a sensitivity analysis over the set of 

optimization variables and their bounds, supported by 

the conclusions above, enabled to reduce the number of 

relevant optimization variables, reaching an acceptable 

balance between performances and robustness. 
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