
Zentrum für Technomathematik
Fachbereich 3 – Mathematik und Informatik

Sparsity regularization of the diffusion
coefficient problem: well-posedness and

convergence rates

Peter Maass Pham Q. Muoi

Report 11–04

Berichte aus der Technomathematik

Report 11–04 September 2011





Sparsity regularization of the diffusion coefficient problem:

well-posedness and convergence rates

Peter Maass† and Pham. Q. Muoi†

September, 2011

† Center for Industrial Mathematics, University of Bremen,
Bibliothekstr. 1, D-28334 Bremen, Germany
Email: pmaass@math.uni-bremen.de, pham@math.uni-bremen.de

Abstract

In this paper, we investigate sparsity regularization for the diffusion coefficient identification problem.
Here, the regularization method is incorporated with the energy functional approach. The advantages
of our approach are to deal with convex minimization problems. Therefore, the well-posedness of the
problem is obtained without requiring regularity property of the parameter. The convexity of regularized
problems also allows to use the fast algorithms developed recently. Furthermore, the convergence rates
of the method are obtained under a simple source condition.

The main results of the paper are the well-posedness and convergence rates of sparsity regularization.
We also obtain some new results of the continuity and the differentiability of related operators.
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1 Introduction

The diffusion coefficient identification problem is to identify the coefficient σ in the equation

−div (σ∇φ) = y in Ω, φ = 0 on ∂Ω (1)

from noisy data φδ ∈ H1
0 (Ω) of φ such that∥∥φ∗ − φδ∥∥

H1(Ω)
≤ δ. (δ > 0)

This problem has attracted great attention of many researchers. For surveys on this problem, we refer to
[14, 34, 10, 22, 28, 23, 7, 32, 1, 6] and the references therein. It is well-known that the problem is ill-posed
and thus need to be regularized. There have been several regularization methods proposed. Among of them,
Tikhonov regularization [14, 9] and the total variational regularization [34, 5] are most popular.

In some applications, the coefficient σ∗, which needs to be recovered, has a sparse presentation, i.e. the
number of nonzero components of σ∗ − σ0 are finite in an orthonormal basis (or frame) of L2 (Ω) . The
sparsity of σ∗ − σ0 promotes to use sparsity regularization.

Sparsity regularization has been of interest by many researchers for the last years. The well-posedness
and some convergence rates of the method have been analyzed for linear inverse problems [8] as well as for
nonlinear inverse problems [13]. Some numerical algorithms have also been proposed [24, 8, 4, 3, 27, 2]. It
is shown that sparsity regularization is simple for use and very efficient for inverse problems with sparse
solutions. This method has been investigated and applied very successfully to some fields such as for
compressive imaging [11, 30, 31, 33]and electrical impedance tomography [20, 12, 19].

Note that it is possible to apply the least squares approach in [13] for our problem. However, it is not
clear that the operator FD (·) y, the solution operator of (1), is weakly sequentially closed in L2 (Ω) without
additional conditions. Therefore, if the least squares approach in [13] is applied, it needs further conditions.
Moreover, this approach leads to a non-convex minimization problem and the source conditions are difficult
to be checked for the problem, see e.g. [14].
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To overcome this shortcoming, we use the energy functional approach incorporating with sparsity regu-
larization, i.e. considering the minimization problem

min
σ∈A

Fφδ (σ) + αΦ
(
σ − σ0

)
, (2)

where A is an admissible set defined by

A =
{
σ ∈ L∞ (Ω) : λ ≤ σ ≤ λ−1 a.e. on Ω, supp

(
σ − σ0

)
⊂ Ω′ ⊂⊂ Ω

}
, (3)

with a given constant λ ∈ (0, 1) and Ω′ being an open set with the smooth boundary that contained compactly
in Ω, α > 0 is a regularization parameter, σ0 is the background value of σ, and

Fφδ (σ) :=
∫

Ω

σ
∣∣∇ (FD (σ) y − φδ

)∣∣2 dx, (4)

Φ (ϑ) :=
∑

ωk |〈ϑ, ϕk〉|p , (1 ≤ p ≤ 2) (5)

where {ϕk} is an orthonormal basis (or frame) of L2 (Ω) and ωk ≥ ωmin > 0 for all k.
We will prove that problem (2) is convex and well-posed, and under the condition that there exists w∗

such that ξ = (F ′D (σ+) y)∗ w∗ ∈ ∂Φ
(
σ+ − σ0

)
, the convergence rates

Dξ

(
σpα,δ, σ

+
)

= O (δ) and
∥∥∥σpα,δ − σ+

∥∥∥
L2(Ω)

= O
(√

δ
)

(1 < p ≤ 2) ,

are obtained as δ → 0 and α ∼ δ. Here, σpα,δ is a minimizer of (2) and σ+ is a Φ-minimizing solution of the
diffusion coefficient identification problem.

Comparing the standard conditions in [13] and the references therein, our source condition is very simple
and does not require the smallness. Furthermore, the objective functional in (2) is now convex and thus its
global minimizers are easy to find and some efficient algorithms for convex functionals can be applied, see
e.g. [24].

Note that the energy functional approach was first introduced by Zou [34] and then was used by Knowles
in [21]. However, the authors in those papers did not consider the well-posedness and convergence rates
of regularization methods. Recently, Hao and Quyen have used this approach incorporating with either
Tikhonov regularization or the total variation regularization for some problems [14, 16, 15, 17]. In the
following, we follows the outline of [14] and use the techniques in [14, 16] for obtaining the convergence rates
of the method.

2 Auxiliary Results

We recall that a function φ in H1
0 (Ω) is a weak solution of (1) if the identity∫

Ω

σ∇φ · ∇vdx =
∫

Ω

yvdx (6)

holds for all v ∈ H1
0 (Ω) .

If σ ∈ A and y ∈ L2 (Ω) , then there is a unique weak solution φ ∈ H1
0 (Ω) of (1) [14], which satisfies the

inequality

‖φ‖H1(Ω) ≤
1
C
‖y‖L2(Ω) , (7)

where C > 0 is a constant depending only on Ω and λ.
In the next sections, two following inequalities are used:

• For any η ∈ H1
0 (Ω) and σ ∈ A, in virtue of the Poincaré-Friedrichs inequality we have∫

Ω

σ |∇η|2 dx ≥ C ‖η‖2H1(Ω) (8)

with C > 0 defined by (7).
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• For any y ∈ Lr (Ω) , r ≥ 2 with a bounded set Ω ⊂ Rd, we have

‖y‖L2(Ω) ≤ |Ω|
1
2−

1
r ‖y‖Lr(Ω) . (9)

We shall endow the set A with the Lq (Ω)−norm, q ∈ [1,∞) and define the nonlinear coefficient-to-
solution mapping FD (·) y : A ⊂ Lq (Ω) → H1

0 (Ω) which maps the coefficient σ ∈ A to the solution
u = FD (σ) y of problem (1).

Before considering sparsity regularization for the problem, we analyze some properties of FD (·) y and
Fφδ (·) with respect to the Lq−norm. These properties are needed for investigating the well-posedness and
convergence rates of the method as well as numerical algorithms. They are derived by exploiting Meyers’
gradient estimate [25], which has recently been employed by [29, 19].

Theorem 1 (Meyers’ theorem) Let Ω be a bounded Lipschitz domain in Rd (d ≥ 2) . Assume that σ ∈
L∞ (Ω) satisfies λ < σ < λ−1 for some fixed λ ∈ (0, 1) . For z ∈ (Lr (Ω))d and y ∈ Lr (Ω) , let φ ∈ H1 (Ω) be
a weak solution of the equation

−div (σ∇φ) = −div (z) + y in Ω.

Then, there exists a constant Q ∈ (2,+∞) depending on λ and d only, Q → 2 as λ → 0 and Q → ∞ as
λ→ 1, such that for any 2 < r < Q, φ ∈W 1,r

loc (Ω) and for any Ω′ ⊂⊂ Ω

‖∇φ‖Lr(Ω′) ≤ C
′
(
‖φ‖H1(Ω) + ‖z‖Lr(Ω) + ‖y‖Lr(Ω)

)
,

where the constant C ′ depends on λ, d, r,Ω′ and Ω.

Using this result, we can show that the mappings FD (·) y and Fφδ (·) are continuous and continuous
Fréchet differentiable on the set A with respect to the Lq-norm. These results are shown in the following
lemmas.

Lemma 2 Let q ∈
(

2Q
Q−2 ,∞

]
, 1
q + 1

r = 1
2 and y ∈ Lr (Ω) . For σ, σ + ϑ ∈ A, we have

‖∇FD (σ + ϑ) y −∇FD (σ) y‖L2(Ω) ≤ C ‖ϑ‖Lq(Ω′) ‖y‖Lr(Ω) ,

where C is a positive constant.

Proof. The weak solution formulas of FD (σ) y and FD (σ + ϑ) y give∫
Ω

σ∇FD (σ) y · ∇vdx =
∫

Ω

(σ + ϑ)∇FD (σ + ϑ) y · ∇vdx, ∀v ∈ H1
0 (Ω) ,

i.e. ∫
Ω

σ∇ (FD (σ + ϑ) y − FD (σ) y) · ∇vdx = −
∫

Ω

ϑ∇FD (σ + ϑ) y · ∇vdx, ∀v ∈ H1
0 (Ω) .

Taking v = FD (σ + ϑ) y − FD (σ) y ∈ H1
0 (Ω) in the last equation, we obtain∫

Ω

σ |∇ (FD (σ + ϑ) y − FD (σ) y)|2 dx = −
∫

Ω

ϑ∇FD (σ + ϑ) y · ∇ (FD (σ + ϑ) y − FD (σ) y) dx

= −
∫

Ω′
ϑ∇FD (σ + ϑ) y · ∇ (FD (σ + ϑ) y − FD (σ) y) dx

≤ ‖ϑ‖Lq(Ω′) ‖∇FD (σ + ϑ) y‖Lr(Ω′) ‖∇ (FD (σ + ϑ) y − FD (σ) y)‖L2(Ω) ,

where 1
q + 1

r = 1
2 . The assumption q ∈

(
2Q
Q−2 ,∞

]
implies that r ∈ (2, Q). By Theorem 1, there exist constants

C and C ′ such that

‖∇FD (σ + ϑ) y‖Lr(Ω′) ≤ C
′
(
‖FD (σ + ϑ) y‖H1(Ω) + ‖y‖Lr(Ω)

) (7),(9)

≤ C ‖y‖Lr(Ω) .

It follows that there exists a constant C such that

‖∇FD (σ + ϑ) y −∇FD (σ) y‖L2(Ω) ≤ C ‖ϑ‖Lq(Ω′) ‖y‖Lr(Ω) .
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Remark 3 1) Note that for σ, σ + ϑ ∈ A and 1 ≤ q1 ≤ q2, we have

|Ω|−1/q1 ‖ϑ‖Lq1 (Ω) ≤ |Ω|
−1/q2 ‖ϑ‖Lq2 (Ω) ,

and
‖ϑ‖q2Lq2 (Ω) ≤

(
2λ−1

)q2−q1 ‖ϑ‖q1Lq1 (Ω) .

This means that the convergence of ϑ to zero with respect to the Lq1 (Ω)−norm and the Lq2 (Ω)−norm are
equivalent.

2) By the above lemma, FD (·) y is Lipschitz continuous on A with respect to the Lq (Ω)−norm for
q ∈

(
2Q
Q−2 ,∞

]
. Furthermore, by the above remark, it implies that FD (·) y is continuous on A with respect

to the Lq (Ω)-norm for any q ≥ 1.

Lemma 4 Let q ∈
(

2Q
Q−2 ,∞

]
, 1
q + 1

r = 1
2 and y ∈ Lr+ε (Ω) with some ε > 0. Then, the mapping FD (·) y :

A ⊂ Lq (Ω)→ H1
0 (Ω) is continuously Fréchet differentiable on A and for each σ ∈ A, the Fréchet derivative

F ′D (σ) y of FD (·) y has the property that the differential η := F ′D (σ) y (ϑ) , with any ϑ ∈ L∞ (Ω′) extended
by zero outside Ω′, is the (unique) weak solution of the Dirichlet problem

−div (σ∇η) = div (ϑ∇FD (σ) y) in Ω, η = 0 on ∂Ω

in the sense that it satisfies the equation∫
Ω

σ∇F ′D (σ) y (ϑ) · ∇vdx = −
∫

Ω

ϑ∇FD (σ) y · ∇vdx (10)

for all v ∈ H1
0 (Ω) . Moreover,

‖F ′D (σ) y (ϑ)‖H1(Ω) ≤ C1 ‖y‖Lr(Ω) ‖ϑ‖Lq(Ω′) ,∀ϑ ∈ L
∞ (Ω′) , (11)

where C1 is a positive constant.

Proof. Note that variational equation (10) has the unique solution η := η (ϑ) = F ′D (σ) y (ϑ) ∈ H1
0 (Ω)

with σ ∈ A. We first show that for a fixed σ in A, η = η (ϑ) defines a bounded linear operator from Lq (Ω′)
to H1

0 (Ω) for any q ∈
(

2Q
Q−2 ,∞

]
. From (10), η is a linear operator of ϑ. By the weak solution formula of η

and the generalized Hölder inequality, we have∫
Ω

σ∇η · ∇ηdx = −
∫

Ω

ϑ∇FD (σ) y · ∇ηdx

= −
∫

Ω′
ϑ∇FD (σ) y · ∇ηdx

≤ ‖ϑ‖Lq(Ω′) ‖∇FD (σ) y‖Lr(Ω′) ‖∇η‖L2(Ω) .

From the last inequality and (8), there exists a constant C such that

‖η‖H1(Ω) ≤ C ‖ϑ‖Lq(Ω′) ‖∇FD (σ) y‖Lr(Ω′) . (12)

Besides, the assumption q ∈
(

2Q
Q−2 ,∞

]
implies r ∈ (2, Q) . By Theorem 1, (7) and (9), there exist positive

constants C,C ′, C ′′ such that

‖∇FD (σ) y‖Lr(Ω′) ≤ C
′
(
‖FD (σ) y‖H1(Ω) + ‖y‖Lr(Ω)

)
≤ C ′

(
1
C
‖y‖L2(Ω) + ‖y‖Lr(Ω)

)
≤ C ′′ ‖y‖Lr(Ω) . (13)

Thus, due to two last inequalities, η is a bounded linear operator from Lq (Ω′)→ H1
0 (Ω) and there exists

a positive constant C1 such that

‖F ′D (σ) y (ϑ)‖H1(Ω) ≤ C1 ‖y‖Lr(Ω) ‖ϑ‖Lq(Ω′) ,∀ϑ ∈ L
∞ (Ω′) .
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We now show that FD (·) y is Fréchet differentiable. Note that the function R := FD (σ + ϑ) y−FD (σ) y−
η ∈ H1

0 (Ω) is the weak solution of the equation

−div ((σ + ϑ)∇R) = div (ϑ∇η) in Ω.

Taking R as the test function in the weak solution formula of R gives∫
Ω

(σ + ϑ) |∇R|2 dx = −
∫

Ω

ϑ∇η · ∇Rdx = −
∫

Ω′
ϑ∇η · ∇Rdx

≤ ‖ϑ‖Lq(Ω′) ‖∇η‖Lr(Ω′) ‖∇R‖L2(Ω) .

This implies that

‖R‖H1(Ω)

‖ϑ‖Lq(Ω′)
≤ C ‖∇η‖Lr(Ω′) . (14)

To show that FD (·) y : A ⊂ Lq (Ω) → H1
0 (Ω) is continuously Fréchet differentiable and its differential

F ′D (σ) y (ϑ) is η, we need to prove that ‖∇η‖Lr(Ω′) converges to zero as ‖ϑ‖Lq(Ω′) converges to zero.
By Theorem 1, there exists a positive constant C such that

‖∇η‖Lr(Ω′) ≤ C
(
‖η‖H1(Ω) + ‖ϑ∇FD (σ) y‖Lr(Ω′)

)
.

Since ‖η‖H1(Ω) converges to zero as ‖ϑ‖Lq(Ω′) converges to zero by (12), we need to prove that

‖ϑ∇FD (σ) y‖Lr(Ω′) → 0.

Take any small ε1 ∈ (0, ε) such that r′ = r + ε1 ∈ (r,Q) . Using Hölder’s inequality, we deduce∫
Ω′
|ϑ∇FD (σ) y|r dx =

∫
Ω′
|ϑ|r |∇FD (σ) y|r dx

≤
(∫

Ω′
|ϑ|

rr′
r′−r dx

)1− r
r′
(∫

Ω′
|∇FD (σ) y|r

′
dx

) r
r′

. (15)

≤ C2 ‖y‖rLr′ (Ω)

(∫
Ω′
|ϑ|

rr′
r′−r dx

)1− r
r′

,

where we have applied Theorem 1 to the term ‖∇FD (σ) y‖Lr′ (Ω′) , see (13). By Remark 3, the convergence
of ϑ to zero with respect to the Lq1 (Ω)−norm and the Lq2 (Ω)−norm (q1, q2 ∈ [1,∞)) are equivalent.
Therefore, ‖ϑ∇FD (σ) y‖Lr(Ω′) converges to zero as ‖ϑ‖Lq(Ω′) converges to zero.

Remark 5 1) If y ∈ Lr (Ω) , then from the proof above we conclude that FD (·) y : A ⊂ Lq (Ω)→ H1
0 (Ω) is

Gâuteaux differentiable.
2) This lemma improves the known results on the differentiability of FD (·) y with respect to the L∞−norm

in [21, 14]. There, the authors have shown that FD (·) y : A ⊂ L∞ (Ω)→ H1
0 (Ω) is the Fréchet differentiable

under the condition y ∈ L∞ (Ω) [21] or y ∈ L2 (Ω) [14].

Lemma 6 For φ ∈ H1
0 (Ω) , the functional Fφ (·) : A ⊂ Lq (Ω)→ R defined by

Fφ (σ) =
∫

Ω

σ |∇ (FD (σ) y − φ)|2 dx

has the following properties
1) For q ≥ 1 and y ∈ Lr (Ω) , Fφ (·) is continuous with respect to the Lq−norm.

2) For q ∈
(

2Q
Q−2 ,∞

]
, 1
q + 1

r = 1
2 and y ∈ Lr+ε (Ω) with ε > 0, Fφ (·) is Fréchet differentiable with respect

to the Lq-norm and
F ′φ (σ)ϑ = −

∫
Ω

ϑ
(
|∇FD (σ) y|2 − |∇φ|2

)
dx.

Furthermore, Fφ (·) is convex on the convex set A and F ′′φ (·) is uniformly bounded.
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Proof. 1) We first prove for q ∈
(

2Q
Q−2 ,∞

]
. For σ, σ + ϑ ∈ A, we have

Fφ (σ + ϑ)− Fφ (σ)

=
∫

Ω

(σ + ϑ) |∇ (FD (σ + ϑ) y − φ)|2 − σ |∇ (FD (σ) y − φ)|2 dx

=
∫

Ω

σ
(
|∇ (FD (σ + ϑ) y − φ)|2 − |∇ (FD (σ) y − φ)|2

)
dx+

∫
Ω

ϑ |∇ (FD (σ + ϑ) y − φ)|2 dx.

Using the triangle inequality, generalized Hölder inequality and Theorem 1, the second term is estimated
by ∫

Ω

ϑ |∇ (FD (σ + ϑ) y − φ)|2 dx =
∫

Ω′
ϑ |∇ (FD (σ + ϑ) y − φ)|2 dx

≤ ‖ϑ‖Lq(Ω′) ‖∇ (FD (σ + ϑ) y − φ)‖L2(Ω)

(
‖∇FD (σ + ϑ) y‖Lr(Ω′) + ‖∇φ‖Lr(Ω′)

)
≤ C ‖ϑ‖Lq(Ω′) .

On the other hand, by Lemma 2 the first term is estimated by∫
Ω

σ
(
|∇ (FD (σ + ϑ) y − φ)|2 − |∇ (FD (σ) y − φ)|2

)
dx

≤ λ−1

∫
Ω

∇ (FD (σ + ϑ) y − FD (σ) y) · ∇ (FD (σ + ϑ) y + FD (σ) y − 2φ) dx

≤ C ‖∇ (FD (σ + ϑ) y − FD (σ) y)‖L2(Ω) ≤ C
′ ‖ϑ‖Lq(Ω′) .

Therefore, Fφ (·) is Lipschitz continuous on A with respect to the Lq (Ω′)-norm for q ∈
(

2Q
Q−2 ,∞

]
.

Finally, by Remark 3 Fφ is continuous on A with respect to the Lq (Ω′)−norm for q ≥ 1.
2) From Lemma 4, it implies that Fφ (·) is Fréchet differentiable and

F ′φ (σ)ϑ =
∫

Ω

ϑ |∇ (FD (σ) y − φ)|2 dx+ 2
∫

Ω

σ∇ (FD (σ) y − φ) · ∇F ′D (σ)ϑdx.

Since FD (σ) y − φ ∈ H1
0 (Ω) and (10), the last equation yields

F ′φ (σ)ϑ =
∫

Ω

ϑ |∇ (FD (σ) y − φ)|2 dx− 2
∫

Ω

ϑ∇FD (σ) y · ∇ (FD (σ) y − φ) dx

= −
∫

Ω

ϑ
(
|∇FD (σ) y|2 − |∇φ|2

)
dx.

For ϑ ∈ L∞ (Ω′) and extended by zero outside Ω′, the second derivative of Fφ (·) is given by

F ′′φ (σ) (ϑ, ϑ) = −2
∫

Ω

ϑ∇FD (σ) y · ∇F ′D (σ) y (ϑ) dx = 2
∫

Ω

σ |∇F ′D (σ) y (ϑ)|2 dx ≥ 0.

Therefore, Fφ (·) is convex. Furthermore, by Lemma 4, it implies that F ′′φ (·) is uniformly bounded on A.
Remark 7 The uniform boundedness of F ′′φ (·) implies that F ′φ (·) is Lipschitz continuous with respect to the

Lq−norms with q ∈
(

2Q
Q−2 ,∞

]
.

3 The Well-posedness

We now assume that there exists some σ∗ ∈ A such that φ∗ = FD (σ∗) y and only noisy data φδ ∈ H1
0 (Ω) of

φ∗ such that ∥∥φ∗ − φδ∥∥
H1(Ω)

≤ δ

with δ > 0 are given. Our problem is to reconstruct σ∗ from φδ. Because of the ill-posedness of the
problem and the assumption of sparsity of σ∗ − σ0, using sparsity regularization incorporated with the
energy functional approach leads to considering the minimization problem (2).

We now analyze the well-posedness of problem (2), which consists of the existence, stability and conver-
gence. Before proving the main results, we introduce some properties of the functional (5) and the notion
of Φ-minimizing solution.
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Lemma 8 The functional Φ defined by (5) has the following properties

1) Φ is non-negative, convex and weakly lower semi-continuous.

2) There exists a positive constant C such that for any u ∈ H,

Φ (u) ≥ ωminCp/2 ‖u‖p .

This implies that Φ is weakly coercive, i.e. Φ (u)→∞ as ‖u‖ → ∞.

3) If {un}n∈N ⊂ H weakly converges to u ∈ H and Φ (un) converges to Φ (u) , then Φ (un − u) converges
to zero.

Proof. Φ is non-negative, convex and weakly lower semi-continuous because it is the sum of non-negative,
convex and weakly continuous functionals. The proofs of 2) and 3) can be found in [13, Remark 3.] and [13,
Lemma 2.], respectively.

Lemma 9 The set
Π (φ∗) := {σ ∈ A : FD (σ) y = φ∗}

is nonempty, convex, bounded and closed with respect to the L2 (Ω)-norm. Thus, there exists a solution σ+

of the problem
min

σ∈Π(φ∗)
Φ
(
σ − σ0

)
which is called a Φ-minimizing solution of the diffusion coefficient problem. The Φ-minimizing solution is
unique if p > 1.

Proof. It is trivial that the set Π (φ∗) is nonempty, convex and bounded. The closeness of Π (φ∗) in the
L2 (Ω)−norm is proven similarly as that of [14, Lemma 2.1].

We now prove that there exists at least a Φ-minimizing solution. Suppose that there does not exist a
Φ-minimizing solution in Π (φ∗) . There exists a sequence {σk} ⊂ Π (φ∗) such that Φ

(
σk − σ0

)
→ c and

c < Φ
(
σ − σ0

)
for all σ ∈ Π (φ∗) . (16)

Since Π (φ∗) is weakly compact, there exists a subsequence of {σk}, denoted by {σk} again, which weakly
converges to σ̃ ∈ Π (φ∗) . From the weakly lower semi-continuity of Φ, it follows that

Φ
(
σ̃ − σ0

)
≤ lim
k→∞

inf Φ
(
σk − σ0

)
= c.

This gives a contradiction to (16).
For p > 1, Φ (·) is strictly convex and thus the Φ-minimizing solution is unique.

Theorem 10 (Existence) Problem (2) has at least one solution.

Proof. Since the functional Fφδ (·) is convex and continuous with respect to the L2 (Ω)-norm, it is weakly
lower semi-continuous. Besides, Φ (·) is also convex and weakly lower semi-continuous with respect to the
L2 (Ω)-norm (see Lemma 8). Therefore, the objective functional of problem (2) is convex and weakly lower
semi-continuous on A. On the other hand, since A is nonempty, convex, bounded and closed with respect to
the L2 (Ω)-norm, it is weakly compact. Therefore, there exists at least one solution of (2).

Theorem 11 (Stability) For a fixed regularization α > 0, let the sequence {φn} converge to φδ in H1
0 (Ω)

and
σn ∈ argmin

σ∈A
Fφn (σ) + αΦ

(
σ − σ0

)
.

Then, there exist a subsequence {σnk} of {σn} and a minimizer σpα,δ of (2) such that∥∥∥σnk − σpα,δ∥∥∥
L2(Ω)

→ 0.

In addition, if the minimizer σpα,δ is unique, then the sequence {σn} converges to σpα,δ with respect to the
L2 (Ω)-norm.
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Proof. By the definition of σn, we have

Fφn (σn) + αΦ
(
σn − σ0

)
≤ Fφn (σ) + αΦ

(
σ − σ0

)
≤ λ−1

(
‖FD (σ) y‖2H1(Ω) + C

)
+ αΦ

(
σ − σ0

)
(17)

for any σ ∈ A, where the constant C is independent of n such that ‖φn‖2H1(Ω) ≤ C for all n. This follows
that {Φ

(
σn − σ0

)
} is bounded. Since Φ is weakly coercive in L2 (Ω) (see Lemma 8), the sequence {σn}

is also bounded in L2 (Ω). Therefore, there exist a subsequence of {σn} denoted by {σnk} and an element
σpα,δ ∈ L2 (Ω) such that {σnk} weakly converges to σpα,δ in L2 (Ω) . Since A is a convex closed set in L2 (Ω) ,
σpα,δ ∈ A. On the other hand, since Fφδ (·) and Φ (·) are weakly lower semi-continuous, we have

Fφδ
(
σpα,δ

)
≤ lim

k
inf Fφδ (σnk) (18)

and
Φ
(
σpα,δ − σ

0
)
≤ lim

k
inf Φ

(
σnk − σ0

)
. (19)

Furthermore, we have

Fφδ (σnk) = Fφnk (σnk) +
(

2
∫

Ω

σnk∇FD (σnk) y · ∇
(
φnk − φδ

)
dx

−
∫

Ω

σnk
∣∣∇ (φnk − φδ)∣∣2 dx) . (20)

Since φnk → φδ in H1 (Ω) , the term in brackets on the right-hand side of (20) converges to zero as k →∞.
Therefore,

lim
k

inf Fφδ (σnk) = lim
k

inf Fφnk (σnk) , lim
k

supFφδ (σnk) = lim
k

supFφnk (σnk) . (21)

From (21), (17), (18) and (19), we obtain

Fφδ
(
σpα,δ

)
+ αΦ

(
σpα,δ − σ

0
) (18),(19)

≤ lim
k

inf Fφδ (σnk) + α lim
k

inf Φ
(
σnk − σ0

)
(21)

≤ lim
k

inf
(
Fφnk (σnk) + αΦ

(
σnk − σ0

))
≤ lim

k
sup

(
Fφnk (σnk) + αΦ

(
σnk − σ0

))
(17)

≤ lim
k

sup
(
Fφnk (σ) + αΦ

(
σ − σ0

))
= Fφδ (σ) + αΦ

(
σ − σ0

)
(22)

for all σ ∈ A. It means that σpα,δ is a minimizer of (2).
From (22), setting σ = σpα,δ, we get

lim
k

(
Fφδ (σnk) + αΦ

(
σnk − σ0

))
= Fφδ

(
σpα,δ

)
+ αΦ

(
σpα,δ − σ

0
)
.

Together with (18) and (19), we deduce that Φ
(
σnk − σ0

)
→ Φ

(
σpα,δ − σ0

)
. Finally, since {σnk} weakly

converges to σpα,δ and Φ
(
σnk − σ0

)
→ Φ

(
σpα,δ − σ0

)
as k → ∞, we conclude that Φ

(
σnk − σpα,δ

)
→ 0 as

k → 0, and thus
∥∥∥σnk − σpα,δ∥∥∥

L2(Ω)
→ 0 as k →∞ by Lemma 8.

In the case the minimizer σpα,δ is unique, the convergence of the original sequence {σn} to σpα,δ follows
by a subsequence argument.

Theorem 12 (Convergence) Assume that the operator equation FD (σ) y = φ∗ attains a solution in A
and that α : R>0 → R>0 satisfies

α (δ)→ 0 and
δ2

α (δ)
→ 0 as δ → 0.
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Let δn → 0 and ‖φn − φ∗‖H1(Ω) ≤ δn. Moreover, let αn = α (δn) and

σn ∈ argmin
σ∈A

Fφn (σ) + αnΦ
(
σ − σ0

)
.

Then, there exist a Φ-minimizing solution σ+ of FD (σ) y = φ∗ and a subsequence of {σn} converging to σ+

on A with respect to the L2 (Ω)−norm.

Proof. Let σ̃ ∈ A be a solution of FD (σ) y = φ∗. The definition of σn implies that

Fφn (σn) + αnΦ
(
σn − σ0

)
≤ Fφn (σ̃) + αnΦ

(
σ̃ − σ0

)
≤ 1
λ

∫
Ω

|∇ (FD (σ̃) y − φn)|2 + αnΦ
(
σ̃ − σ0

)
≤ 1
λ
‖φ∗ − φn‖2H1(Ω) + αnΦ

(
σ̃ − σ0

)
≤ 1
λ
δ2
n + αnΦ

(
σ̃ − σ0

)
. (23)

In particular, when δ → 0 and α ∼ δ2, it follows that

Fφn (σn)→ 0 and lim
n

sup Φ
(
σn − σ0

)
≤ Φ

(
σ̃ − σ0

)
. (24)

This implies that {Φ
(
σn − σ0

)
} is bounded. Since Φ (·) is weakly coercive, {σn} is bounded, too.

Therefore, there exist a subsequence {σnk} of {σn} and σ+ ∈ A such that σnk weakly converges to σ+. From
(24), we deduce

Fφ∗ (σnk) =
∫

Ω

σnk |∇ (FD (σnk) y − φ∗)|2

≤
∫

Ω

σnk |∇ (FD (σnk) y − φnk)|2 +
∫

Ω

σnk |∇ (φnk − φ∗)|2

≤ Fφnk (σnk) + λ−1 ‖φnk − φ∗‖2H1(Ω) → 0 (k →∞) .

Since Fφ∗ (·) is weakly lower semi-continuous,

0 ≤ Fφ∗
(
σ+
)
≤ lim

k
inf Fφ∗ (σnk) = 0.

Thus, Fφ∗ (σ+) = 0. It implies that ‖FD (σ+) y − φ∗‖H1(Ω) = 0. Hence σ+ is a solution of the equation
FD (σ) y = φ∗.

Moreover, since Φ (·) is weakly lower semi-continuous in L2 (Ω) , by using (24) we get

Φ
(
σ+ − σ0

)
≤ lim

k
inf Φ

(
σnk − σ0

)
≤ lim

k
sup Φ

(
σnk − σ0

)
≤ Φ

(
σ̃ − σ0

)
. (25)

It implies that σ+ is a Φ-minimizing solution. Finally, choosing σ̃ = σ+ in (25), we have Φ
(
σnk − σ0

)
→

Φ
(
σ+ − σ0

)
as k → ∞. Since {σnk − σ0} weakly converges to σ+ − σ0 in L2 (Ω) and Φ

(
σnk − σ0

)
→

Φ
(
σ+ − σ0

)
as k →∞, Φ (σnk − σ+)→ 0 as k → 0 and thus ‖σnk − σ+‖L2(Ω) → 0.

In the case the minimizer σ+ is unique, the convergence of the original sequence {σn − σ0} to σ+ − σ0

follows by a subsequence argument.

4 Convergence Rates

As shown before, for σ ∈ A, the operator

F ′D (σ) y (·) : Lq (Ω′)→ H1
0 (Ω) with q ∈

(
2Q
Q− 2

,∞
]

is continuous and linear. Denote by

(F ′D (σ) y)∗ (·) : H−1 (Ω) =
(
H1

0 (Ω)
)∗ → Lq1 (Ω′) with

1
q

+
1
q1

= 1,
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the dual operator of F ′D (σ) y. Then,〈
(F ′D (σ) y)∗ (w∗) , ϑ

〉
(Lq1 (Ω′),Lq(Ω′))

= 〈w∗, F ′D (σ) y (ϑ)〉(H−1(Ω),H1
0 (Ω)) . (26)

Convergence rates of sparsity regularization are given in the following theorem.

Theorem 13 For q ∈
(

2Q
Q−2 ,∞

]
, 1
q + 1

r = 1
2 and y ∈ Lr (Ω) . Assume that

∥∥φδ − φ∗∥∥
H1(Ω)

≤ δ and σpα,δ is

a solution of (2). Moreover, assume that there exists a function w∗ ∈ H−1 (Ω) such that

ξ :=
(
F ′D
(
σ+
)
y
)∗ (w∗) ∈ ∂Φ

(
σ+ − σ0

)
. (27)

Then,
Dξ

(
σpα,δ, σ

+
)

= O (δ) and
∥∥∥FD (σpα,δ) y − φδ∥∥∥

H1(Ω)
= O (δ)

as δ → 0 and α ∼ δ. In particular, for p ∈ (1, 2] , we have∥∥∥σpα,δ − σ+
∥∥∥
L2(Ω)

= O
(√

δ
)
.

Proof. The proof follows the ideas of Hao and Quyen in [14, 16]. By the definition of σpα,δ, we get

Fφδ
(
σpα,δ

)
+ αΦ

(
σpα,δ − σ

0
)
≤ Fφδ

(
σ+
)

+ αΦ
(
σ+ − σ0

)
. (28)

Then, we have

Fφδ
(
σpα,δ

)
+ αDξ

(
σpα,δ, σ

+
)

= Fφδ
(
σpα,δ

)
+ α

(
Φ
(
σpα,δ − σ

0
)
− Φ

(
σ+ − σ0

)
−
〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))

)
≤ Fφδ

(
σ+
)
− α

〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))

≤ 1
λ
δ2 − α

〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))
. (29)

From (26) and (27), we get〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))
=
〈
w∗, F ′D

(
σ+
)
y
(
σpα,δ − σ

+
)〉

(H−1(Ω),H1
0 (Ω))

. (30)

By Riesz’s representation theorem, there exists an element w ∈ H1
0 (Ω) such that〈

w∗, F ′D
(
σ+
)
y
(
σpα,δ − σ

+
)〉

(H−1(Ω),H1
0 (Ω))

=
〈
w,F ′D

(
σ+
)
y
(
σpα,δ − σ

+
)〉

H1
0 (Ω)

. (31)

Since σ+ ≥ λ > 0, the scalar product

[φ, v]H1
0 (Ω) :=

∫
Ω

σ+∇φ · ∇vdx, for all φ, v ∈ H1
0 (Ω)

is equivalent to 〈φ, v〉H1
0 (Ω) on H1

0 (Ω) . Therefore, there exists an element ŵ ∈ H1
0 (Ω) independent of σpα,δ

such that 〈
w,F ′D

(
σ+
)
y
(
σpα,δ − σ

+
)〉

H1
0 (Ω)

=
∫

Ω

σ+∇ŵ · ∇F ′D
(
σ+
)
y
(
σpα,δ − σ

+
)
dx. (32)

From (30), (31) and (32), we have〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))
=
∫

Ω

σ+∇ŵ · ∇F ′D
(
σ+
)
y
(
σpα,δ − σ

+
)
dx =: Λ.
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From the weak solution formulas of FD (σ+) y and F ′D (σ+) y
(
σpα,δ − σ+

)
(see (6) and (10)), we deduce

αΛ = α

∫
Ω

σ+∇ŵ · ∇F ′D
(
σ+
)
y
(
σpα,δ − σ

+
)
dx

= −α
∫

Ω

(
σpα,δ − σ

+
)
∇ŵ · ∇FD

(
σ+
)
ydx

= α

∫
Ω

σ+∇ŵ · ∇FD
(
σ+
)
ydx− α

∫
Ω

σpα,δ∇ŵ · ∇FD
(
σ+
)
ydx

= α

∫
Ω

σpα,δ∇ŵ · ∇FD
(
σpα,δ

)
ydx− α

∫
Ω

σpα,δ∇ŵ · ∇FD
(
σ+
)
ydx

= α

∫
Ω

σpα,δ∇ŵ · ∇
(
FD

(
σpα,δ

)
y − FD

(
σ+
)
y
)
dx

= α

∫
Ω

σpα,δ∇ŵ · ∇
(
FD

(
σpα,δ

)
y − φδ

)
dx+ α

∫
Ω

σpα,δ∇ŵ · ∇
(
φδ − φ∗

)
dx.

Using the Cauchy-Schwartz inequality, we obtain

α |Λ| ≤ α
(∫

Ω

σpα,δ |∇ŵ|
2
dx

)1/2(∫
Ω

σpα,δ

∣∣∣∇(FD (σpα,δ) y − φδ)∣∣∣2 dx)1/2

+ α

(∫
Ω

(
σpα,δ

)2

|∇ŵ|2 dx
)1/2(∫

Ω

∣∣∇ (φδ − φ∗)∣∣2 dx)1/2

≤ α
(

1
λ

∫
Ω

|∇ŵ|2 dx
)1/2 (

Jφδ
(
σpα,δ

))1/2

+
α

λ

(∫
Ω

|∇ŵ|2 dx
)1/2 ∥∥φδ − φ∗∥∥

H1(Ω)

≤ α2

2λ

∫
Ω

|∇ŵ|2 dx+
1
2
Fφδ

(
σpα,δ

)
+
αδ

λ

(∫
Ω

|∇ŵ|2 dx
)1/2

. (33)

Here, we used the inequality ab ≤ αa2

2 + b2

2α for the first term. Together with (29), we deduce

1
2
Fφδ

(
σpα,δ

)
+ αDξ

(
σpα,δ, σ

+
)
≤ 1
λ
δ2 +

α2

2λ
C2

1 +
αδ

λ
C1, (34)

with C1 =
(∫

Ω
|∇ŵ|2 dx

)1/2

. This inequality implies that

Dξ

(
σpα,δ, σ

+
)

= O (δ) as α→ 0 and α ∼ δ.

By (8) and (34), we have∥∥∥FD (σpα,δ) y − φδ∥∥∥2

H1(Ω)
≤ 1
C
Fφδ

(
σpα,δ

)
= O

(
δ2
)

as δ → 0 and α ∼ δ.

In particular, for p ∈ (1, 2] there exists a constant Cp > 0 such that Dξ

(
σpα,δ, σ

+
)
≥ Cp

∥∥∥σpα,δ − σ+
∥∥∥2

L2(Ω)
,

see [13, Lemma 10.]. Therefore, we have∥∥∥σpα,δ − σ+
∥∥∥
L2(Ω)

= O
(√

δ
)
.

Remark 14 Our source condition is very simple and is the simplest among the source conditions in [18,
13, 9, 26]. Especially, we do not need the smallness requirement in the source condition.

5 Conclusion

In this paper, sparsity regularization incorporated with the energy functional approach was analyzed for
the diffusion coefficient identification problem. The regularized problem was proven to be well-posed and
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convergence rates of the method was obtained under a simple source condition. An advantage of the new
approach is to work with a convex energy functional. Another advantage is that the source condition of
obtaining convergence rates are very simple. We want to emphasize that our source condition is the simplest
when it is compared with that in the least squares approach. We did not need the requirement of smallness
(or its generalizations) in the source condition.

References

[1] R. Acar and C. R. Vogel. Analysis of bounded variation penalty methods for ill-posed problems. Inverse
Problems, 10:1217–1229, 1996.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci., 2(1):183–202, 2009.

[3] T. Bonesky, K. Bredies, D. A. Lorenz, and P. Maass. A generalized conditional gradient method for
nonlinear operator equations with sparsity constraints. Inverse Problems, 33:2041–2058, 2007.

[4] K. Bredies, D. A. Lorenz, and P. Maass. A generalized conditional gradient method and its connection
to an iterative shrinkage method. Computational Optimization and Application, 42(2):173–193, 2009.

[5] T. F. Chan and X. Tai. Identification of discontinuous coefficients in ellptic problems using total
variation regularization. SIAM J. Sci. Comput., 25(3):881–904, 2003.

[6] T. F. Chan and X. Tai. Level set and total variation regularization for elliptic inverse problems with
discontinuous coefficients. Journal of Computational Physics, 193:40–66, 2003.

[7] Z. Chen and J. Zou. An augmented Lagrangian method for identifying discontinuous parameters in
elliptic systems. SIAM Journal of Control and Optimization, 37:892–910, 1999.

[8] I. Daubechies, M. Defrise, and C. Demol. An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Comm. Pure Appl. Math, 57:1413–1541, 2004.

[9] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer, Dordrecht, 1996.

[10] R. Falk. Error estimates for the numerical identification of a variable coefficient. Mathematics of
Computation, 40(3):537–546, July 1983.

[11] L. Gan. Block compressed sensing of natural images. In Digital Signal Processing, 2007 15th Interna-
tional Conference on, pages 403–406, July 2007.

[12] M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. Kaipio, and P. Maass. Sparsity reconstruction
in electrical impedance tomography: an experimental evaluation. in press, 2011.

[13] M. Grasmair, M. Haltmeier, and O. Scherer. Sparsity regularization with lq penalty term. Inverse
Problems, 24:055020, 2008.
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