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Abstract

A mechanic-stochastic model for the mechanics of polycrystal material based
on the single crystal orientations is presented. With this method, the distri-
butions of strain and stress tensor components can be obtained in practice.
Specific examples of computed distributions are shown, together with the
distributions of the FEM-calulated mechanical responses of a polycrystal.

1. Introduction

During the production of metallic microcomponents, the local anisotropies
of the materials become large enough to cause a strong influence in the re-
sulting mechanical responses. For this reason, a model for the mechanical
simulation of such pieces has to drop all isotropic assumptions and include
the stochastic distribution of the microstructure.

In this work, we present a stochastic model of the microstructure in a
polycristal (Section 2), together with some simulated distributions of the
elastic tensor components and the corresponding elastic responses calculated
using a Finite Element Method in a three-dimensional material piece (Section
3).
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Figure 1: Histogram for the distribution of the projected nutation angle.

2. Stochastic model

The stochastic model bases on the orientations of a crystalite in the RTN
system. The orientation of a crystalite in a polycrystal is described by a
rotation g, which maps the RTN system on the crystal physical system.
These rotations constitute the rotation group SO(3). All distributions on
this group are described by the formula dµ = f(g)dg, g ∈SO(3), with the
invariant measure dg = sin θdθ
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The way to derive the canonical normal distributions (CND) [1] lies in
the application of Parthasarathy’s [2] central limit theorem (CLT) for the
rotation group. The concept of small rotations [3] is used for this purpose.
The set of small rotations corresponds to a certain set of Euler angles:















1 − (e′z, ez) = 1 − cos θ ≤ a
1 − (e′x, ex) = 1 − cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2 cos θ ≤ b
1 − (e′y, ey) = 1 + sin ϕ1 sin ϕ2 − cos ϕ1 cos ϕ2 cos θ ≤ b
0 ≤ a, b ≪ 1

(1)

Here, (ex, ey, ez) form a basis before a small rotation is applied and
(e′x, e

′

y, e
′

z) thereafter. The set of small rotations is now represented by the
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Figure 2: < 100 > pole figure given a RTN texture.

region Π(a, b) =
{

(ϕ1, θ, ϕ2) : θ ≤
√

2a = ā , |ϕ1 + ϕ2| ≤
√

2b = b̄
}

.

The sequence of measures dµn = fn(g)dg, with fn denoting the rectan-
gular distribution in Π(an, bn), an = ā/

√
n, bn = b̄/

√
n corresponds to the

sequence of convolutions dµ∗n
n , which converges for n → ∞ to the canonical

normal distribution on SO(3) with parameters ā2/8 and b̄2/6 [3].
The realisation of the random variable g ∈SO(3) with distribution dµ∗n

n

is now the product of the small random rotations g = g1g2...gn, where gi =
g(ϕi

1, θ
i, ϕi

2) ∈SO(3) with rectangular distribution in Π(an, bn).
The distribution of crystalite orientations may be modelled by Monte

Carlo simulation and the material parameters of interest can be derived from
them. Figure 1 shows the distribution of the projection of the nutation angle
θ on the sphere for selected values of ā = 0.25, b̄ = 0.65 and n = 50 for
the texture (1,1,2)[1̄,1̄,1]. This distribution results from 10000 realizations.
Figure 2 shows the pole figure for the same texture.

The tensor representation of the rotation group Cijkl = gipgjqgkmglncpqmn

leads now to the equations Cij = cij +µcΛij(ϕ1, θ, ϕ2), where µc = c11− c12−
2c44 is the measure of anisotrophy. The resulting distributions of the stiffness
matrix components under ā = 0.2, b̄ = 0.4 are shown in the Figures 3.
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Figure 3: Aluminium; c11 = 108.2, c44 = 28.5 and c12 = 61, 3 GPa.
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3. Finite Element Simulations

In order to show the effects of the texture-imposed material properties,
thousand pieces of size 0.45 × 0.45 × 0.45 were simulated usnig a domain
decomposition in 20 grains and applying an artificial strain in x-direction
of 1%. For each grain, the location of the center was selected randomly
and the components of the elastic moduli were taken from the stochastically
calculated tensors (cf. Section 2).

Figure 4: One of the simulated cells.

Figure 4 shows an example of the domain decomposition for one of the
thousand simulated pieces. The different colors correspond to different grains.
The simulations are performed using the Aluminium distributions shown in
Figure 3.

Figure 5 shows the obtained distributions for the different components
the volume averaged stress tensor1. The values of this stresses were obtained
after a FEM simulation for an applied srain in x-direction of 1%.

1The volume averaged components of the stress tensor are σ̄ij = 1

V

∫

Ω
σij , with V the

volume and Ω the domain of the piece.
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Figure 5: Distributions of obtained stresses under an applied strain of εxx = 0.01.
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