
Zentrum für Technomathematik
Fachbereich 3 – Mathematik und Informatik

On the statistical distribution of elastic
moduli polycrystals

Pavel Bobrov
Werner Wosniok

Report 10–02

Berichte aus der Technomathematik

Report 10–02 April 2010





On the statistical distribution of elastic moduli
in polycrystals∗

Pavel Bobrov
Institute of Statistics
University of Bremen

Bremen
Germany

file: DistElMod V6.tex 14.01.2010

May 11, 2010

Abstract
A method for calculating the distributions of the components of stiff-
ness and compliance tensors of cubic polycrystalite material from pa-
rameters of single crystals is developed. Their mathematical form is
derived under the assumption of normal distributions for the mem-
bers of the rotation group SO(3). Finally the impact of texture on the
distributions of Young’s modulus E, shear modulus G and Poisson’s
ratio ν analyzed.

1. The problem The elastic properties of polycrystalite material are de-
scribed by the compliance tensor Sijkl or the stiffness tensor Cijkl (i, j, k, l =
1, 2, 3) [1, 2, 3]. Because of the symmetry of strain and stress tensor, and
for energetical considerations both tensors can be expressed by symmetric
matrices Sij and Cij (i, j = 1, 2, ..., 6), respectively, each containing 21 inde-
pendent components [1]. In the sequel we focus on the compliance tensor,
the components of which are termed elastic moduli.

For anisotropic crystals the symmetry properties of the various crystal
systems reduce the number of independent matrix elements. As an example,
there are only three independent elements for a cubic crystal system [2, 3].

∗Paper prepared in the framework of the Sonderforschungsbereich 747 “Mikrokaltum-
formen - Prozesse, Charakterisierung, Optimierung”, project B2 “Verteilungsbasierte Sim-
ulation”, University of Bremen, supported by Deutsche Forschungsgemeinschaft
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To describe a single crystal, an orthogonal coordinate system tightly con-
nected to the crystal axes may be chosen. Such a system is called a crystal
physical coordinate system. We choose the directions of the cube edges as
axes for a cubic crystal system [3]. In this coordinate system the compliance
tensor sijkl may be represented in matrix form as




s11 s12 s12 0 0 0
s11 s12 0 0 0

s11 0 0 0
s44 0 0

s44 0
s44




(1)

where s11 = s1111, s12 = s1122 and s44 = s1212.
Now we define an orthogonal coordinate system in the specimen. This

coordinate system may be chosen arbitrarily. We use the RTN system [3],
which is commonly used for sheets and foils.

We describe the orientation of a crystalite in a polycrystal by a rotation
g, which maps the probenfest system on the crystal physical system. These
rotations constitute the rotation group SO(3). For the tensor Sijkl in the
RTN system we have the tensor representation of the rotation group1:

Sijkl = gipgjqgkmglnspqmn (2)

where gij denotes the components of the rotation matrix.
As crystalites in the polycrystal are randomly orientated, also the com-

ponents gij show a random variation, which induces random variation in the
values of the elastic moduli. If the orientations of the crystalite are uniformly
distributed, the corresponding polycrystal is quasi isotropic. If a principal
orientation exists, we have a texture.

This contribution considers the distributions of the matrix elements of
the compliance tensor for a polycrystal that are induced by normal measures
on SO(3).

2. Distributions on SO(3) The general theory for distributions on lo-
cally compact groups is dealt with in [6, 7]. We consider distributions
dµ = f(g)dg, g ∈SO(3), where dg is an invariant measure on SO(3). If
Rotation g is parametrized by Euler angles g = g(ϕ1, θ, ϕ2), θ ∈ [0, π] and
ϕ1, ϕ2 ∈ [−π, π) we have [4, 8]

dg =
sin θdθ

2

dϕ1

2π

dϕ2

2π
1We sum over repeatedly occurring indices.
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The texture function f(g) [5], which depends on the orientation, may be
expanded as a series of generalized spheric functions

f(g) =
∞∑

l=0

l∑

m,n=−l

C l
mnT

l
mn(g)

If f(g) = 1, the polycrystal is quasi isotropic. For this case, the distribu-
tion of the elastic moduli of hexagonal polycrystals has been approximated
by quadratic polynomials in [9].

An important distribution class on SO(3) is the class of normal distribu-
tions. We define these according to [10, 12] in the following way: a measure µ
on SO(3) has a normal distribution, if µ is infinitely divisible and not idem-
potent, and if we have for each irreducible representation Tg of the group
that ∫

G

Tgdµ(g) = exp

[∑
i,j

αijAiAj +
∑

i

αiAi

]

holds, where Ai are infinitesimal operators of this representation, (αij) is a
positive definite symmetric matrix, and αi are real numbers. If αij = 0 for
i 6= j, we have a canonical normal distribution [11] with analytical probability
distribution

f(g) =
∞∑
l=0

(2l + 1) exp[−l(l + 1)p2]×

×
l∑

m=−l

exp[m2(q2 − r2)] exp[−im(ϕ1 + ϕ2)]P
l
mm(cos θ)

(3)

Here, P l
mm(x) are Jacobian polynomials with parameters q, r, p. However,

though we consider orientation distributions belonging to the family of canon-
ical distributions, eq. (3) is not useful for our purpose.

Another way to derive the desired distributions lies in the application of
Parthasarathy’s [12] central limit theorem for the rotation group. We need
some additional notation for this theorem. Let gn =

∫
SO(3)

gdµn(g) be the

mean of the measure µn(g), n = 1, 2, 3, ..., µ∗nn (dµ∗22 (g) =
∫
SO(3)

µ2(gg−1
1 )dµ2(g1))

n-fold convolution µn and µn(SO(3)\Ue) the value of the measure µn(g) out-
side the neighbourhood Ue of the null element e of the group.

A Central Limit Theorem for SO(3) (Parthasarathy). Let {µn} (n=1,2,3,...)
be a sequence of distributions on SO(3), which converges to a degenerate dis-
tribution in e as n → ∞. The sequence µ∗nn of convolutions converges to a
normal distribution if and only if for n →∞ holds

1. n(1− |gn|) < ∞
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2. nµn(SO(3)\Ue) → 0

With the additional condition lim
n→∞

n(e− gn) = A the parameters αij and αi

of the distribution µ∗nn are given by

−A =
3∑

i=1

3∑
j=1

αijaiaj +
3∑

i=1

αiai

with ai = lim
t→0

gi(t)−e
t

, where gi(t) are the one-parametric subgroups of SO(3).

3. Simulation of orientation distributions Due to the CLT we may
specify an order µn(g). We use the concept of small rotations [13] for this
purpose. The set of small rotations corresponds to a certain set of Euler
angles:





1− (e′z, ez) = 1− cos θ ≤ a
1− (e′x, ex) = 1− cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2 cos θ ≤ b
1− (e′y, ey) = 1 + sin ϕ1 sin ϕ2 − cos ϕ1 cos ϕ2 cos θ ≤ b
0 ≤ a, b ¿ 1

(4)

Here, (ex, ey, ez) form a basis before a small rotation and (e′x, e
′
y, e

′
z) there-

after. Given that a, b ¿ 1, (4) simplifies to

θ2

2
≤ a ,

(ϕ1 + ϕ2)
2

2
≤ b

The set of small rotations now is represented by the region

Π(a, b) =
{

(ϕ1, θ, ϕ2) : θ ≤
√

2a = ā , |ϕ1 + ϕ2| ≤
√

2b = b̄
}

The sequence of measures dµn = fn(g)dg, with dg denoting the invariant
measure, fn the rectangular distribution in Π(an, bn), an = ā/

√
n, bn = b̄/

√
n

and

fn(ϕ1, θ, ϕ2) =

{
2

1−cos an
· 4π2

bn(4π−bn)
(ϕ1, θ, ϕ2) ∈ Π(an, bn)

0 (ϕ1, θ, ϕ2) 6∈ Π(an, bn)
(5)

corresponds to the sequence of convolutions

dµ∗nn =




∫

SO(3)

dgn−1fn(gg−1
n−1)...

∫

SO(3)

dg1fn(g2g
−1
1 )fn(g1)


 dg , (6)
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which converges for t → ∞ to the canonical normal distribution on SO(3)
with parameters q2 = ā2/8 and r2 = b̄2/6 [13].

The realisation of the random variable g ∈SO(3) with distribution 6)
is the product of the small random rotations g = g1g2...gn, where gi =
g(ϕi

1, θ
i, ϕi

2) ∈SO(3) with density (5). The Euler angles (ϕi
1, θ

i, ϕi
2) are given

by [13]:

ϕi
1 =





−(π + bn) +
√

b2
n + 2bn(4π − bn)ξi

1 ; ξi
1 < 3bn

2(4π−bn)

(
bn

4
− π

)
+ 4π−bn

2
ξi
1 ; 3bn

2(4π−bn)
≤ ξi

1 < 1− 3bn

2(4π−bn)

(π + bn)−
√

b2
n + 2bn(4π − bn)(1− ξi

1) ; 1− 3bn

2(4π−bn)
≤ ξi

1

θi = arccos (1− ξi
2(1− cos an))

ϕi
2 =





π − ξi
3(bn + π + ϕi

1) ; −π ≤ ϕi
1 < bn − π

−ϕi
1 + 2bn

(
ξi
3 − 1

2

)
; |ϕi

1| ≤ π − bn

−π + ξi
3(bn + π − ϕi

1) ; π − bn < ϕi
1 ≤ π

(7)

where ξi
1, ξi

2, ξi
3 are independent and uniformly distributed in [0,1].

In [13] it was shown that convolution parameters n ≥ 20 generate a good
agreement of µ∗nn with a normal distribution with density given in (3).

The distribution of crystalite orientations may be modelled by Monte
Carlo simulation and the material parameters of interest are subsequently
derived from these. Figure 1 shows the distribution of the projection of
the nutation angle θ on the sphere for selected values of ā = 0.2, b̄ = 0.5
and n. This distribution results from 10000 realizations. If the polycrystal
material has a certain texture g0 with main orientation different from the
cube coordinate edges, the resulting normal distribution (in the sense of
SO(3)) of the nutation angle is shifted towards this actual orientation.
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4. Results. Equation (2) leads to the tensor (1)

S11 = s11 − 2µs (g2
11g

2
21 + g2

11g
2
31 + g2

21g
2
31)

S12 = s12 + µs (g2
11g

2
12 + g2

21g
2
22 + g2

31g
2
32)

S44 = s44 + 4µs (g2
12g

2
13 + g2

22g
2
23 + g2

32g
2
33)

S14 = 2µs(g2
11g12g13 + g2

21g22g23 + g2
31g32g33)

S16 = 2µs(g3
11g12 + g3

21g22 + g3
31g32)

(8)

where µs = s11 − s12 − s44/2 is the measure of anisotrophy2. [14]. If the
elements of the rotation matrix gij is parametrized by Euler angles, the equa-
tions (8) may be given as

Sij = sij + µsCijΛij(ϕ1, θ, ϕ2)

Here, we have a normal distribution of g = g(ϕ1, θ, ϕ2) on SO(3) around a
preferred orientation g0 = g(ϕ0

1, θ
0, ϕ0

2).
We consider aluminium as example of a polycrystal material with s11 =

1.57, s12 = −0.57 and s44 = 3.51 (all units: 10−11 GPa−1) [15] and a rolling
texture (1,1,2)[1̄,1̄,1] [14, 16]. The principal representation matrix for this
orientation is 



− 1√
3

1√
2

1√
6

− 1√
3
− 1√

2
1√
6

1√
3

0
√

2√
3




(9)

The parameters ā and b̄ define the strength of the texture: smaller pa-
rameters indicate crystallites lying closer to the main orientation. Figures 2
and 3 allow comparing the dispersion of the nutation angle corresponding to
various ā and b̄ for the same given RTN texture. Obviously the dispersion
of Λij and Sij depend on the strength of the texture and increase with its
decrease.

For further insight into the relation between ā and b̄ and the correspond-
ing distributions of the various Sij quantities we did Monte Carlo simulations

2All other Sij result from cyclical re-arrangement of indices, e.g.

S66 = s44 + 4µs
(
g2
11g

2
12 + g2

21g
2
22 + g2

31g
2
32

)
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with 10000 realizations for several values of (ā, b̄). The resulting Sij distri-
butions are shown in Figures 4 - 11.

Obviously, with increasing parameters ā and b̄ the set of small rotations
Π(a, b) increases to the full set {0 ≤ θ ≤ π; −π ≤ ϕ1; ϕ2 ≤ π} and the
distribution of orientations becomes a uniform distribution on SO(3).

Using the distributions of the elastic moduli we are able to derive the
distributions of the Young’s modulus in arbitrary directions Eαα, of the Shear
modulus Gαα or of Poisson’s ratio ναα [14]. As an example we have

EWW = 1/S11 , GWQ = 1/S44 , νWQ = −S12/S11

Figures 12-17 display parameter distributions under two different textures,
each obtained for ā = 0.15, b̄ = 0.3 and n = 100, based on 10000 Monte Carlo
realizations. Figures in the left column contain EWW , GWQ and νWQ for the
texture (1,1,2)[1̄,1̄,1] from above, while the right column of figures refers to
the texture (1,1,0)[1,1̄,2]. The Young’s modulus in arbitrary directions α in
the rolling plane can be calculated according to the formulae

Sαα = S11 cos4 α + (2S12 + S66) cos2 α sin2 α + S22 sin4 α

and Eαα = 1/Sαα. Figure 18 shows the dependence of mean and quantiles of
the Young’s modulus distribution on the angle α between the rolling direction
and direction concerned for the texture (1,1,2)[1̄,1̄,1]. The dependence was
obtained for ā = 0.2, b̄ = 0.3 and n = 100, based on 2000 Monte Carlo
realizations.

Having determined the distributions of interest by Monte Carlo simulation
we can derive descriptive quantities for this distribution. As an example, we
have for the Shear modulus in the left column of Figures 12-17 (all values in
GPa)

Mean SD Min Q1 Median Q3 Max
26.54 0.40 25.08 26.27 26.54 26.81 27.87

Figure 19 displays the distribution of EQQ = 1/S22, again for the texture
(1,1,2)[1̄, 1̄, 1].

5. Discussion. In the preceding sections we showed a method for deriv-
ing the distribution of the elastic moduli Sij assuming a normal distribution
for the orientation of single crystalites in a textured polycrystal. As the
Sij are complicated functions of the Euler angles, we cannot describe their
distributions by simple standard distributions. However, we can obtain all
characterizing quantities of these distributions up to a histogram or density
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estimate of the complete distribution in a relatively simple way. As ad-
ditionally all distributions have compact support, a first approximation by
polynomials or mixtures of these may be considered. For strongly textured
material (ā ≤ 0.2 and b̄ ≤ 0.3) the distributions of some Sij may well be
approximated by normal or log-normal distributions. A more precise de-
scription of the Sij distributions can be obtained by mixtures of distribution.
This aspect, however, lies outside the scope of this contribution.

A further problem is the determination of the parameters q and r (corre-
sponding to ā and b̄) of the canonical normal distribution (3) of the experi-
mental material. These can be derived from the pole figures [11].

All distributions presented here were obtained while neglecting possible
correlations between properties of different crystalites. Including such cor-
relations into the consideration, which is especially necessary for analyzing
multiphase polycrystals, will be a further step.

The method employed here cannot only be used for the calculation of
elastic parameters, but also for the calculation of further material parameters
that allow representation by tensor quantities.
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Figure 1. Histogram of the distribution
of the nutation angle θ for ā = 0.2,
b̄ = 0.5 and n = 50
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Figure 2. Histogram of the distribution
of the nutation angle θ for ā = 0.1,
b̄ = 0.2 and n = 100, given a RTN texture
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Figure 3. Histogram of the distribution
of the nutation angleθ for ā = 0.2, b̄ = 0.4
and n = 100, given a RTN texture
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Figures 4-11. Distributions of various Sij for a set of ā und b̄ values.
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Figure 12-17. Histogram of the distribution of various elastic parameters for ā = 0.15,
b̄ = 0.3 and n = 100. Left column: texture (1,1,2)[1̄,1̄,1], right column: texture
(1,1,0)[1,1̄,2]
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Figure 18. Diagram of the Young’s
modulus Eαα = 1/Sαα for ā = 0.2,
b̄ = 0.3 and n = 100 with the quantiles;
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