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Abstract 
Phase transformations (PT) are an important phenomenon in the material behaviour of steel. There is a large number 
of models mostly based on the Johnson-Mehl-Avrami-Kolmogorov kinetics for diffusive transformations, and based 
on the Koistinen-Marburger equation for martensitic transformation. Besides this, generalisations have been 
developed in order to get more practicable tools for simulations, and to deal with the multi-phase case. It is the main 
aim of the current paper to develop a quite general phenomenological model of PT based on differential equations, 
generalising the proposals presented before in a suitable manner. The usual well-known models of PT are included in 
our general approach. The necessary parameters can be obtained from dilatometer experiments or from 
transformation diagrams. We present examples for that, based on real data, and perform simulations. 
In a further paper [Wol07c],  we evaluate the proposed phenomenological model, comparing it with several other PT 
models. These results show that the proposed model gives a good approximation to experiments.   
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1 Introduction 

Phase transformations (PT) in steel represent a wide field of investigation. The isothermal 
diffusive PT is well described by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) kinetics, 
there are essential open questions in modelling of non-isothermal PT as well as of PT under 
stress or pre-deformation of austenite, e.g. As a consequence of this there are many proposals for 
modifications of PT models. For this matter we refer to [Böh03], [Den97], [Leb84, 85], 
[Lem01], [Rét87, 97], [Ron00] for overview and for [Böh04], [Cab01], [Dac03], [Den92], 
[Fer85], [Gar98], [Hou86], [Hun99], [Leb84, 85], [Mio04], [Mit92, 02], [Rét98, 99a, 99b, 01], 
[Sur04], [Sys03], [Wil86], [Wol03a, 03c, 07b, 07c] for investigations and discussions of stress-
free PT. There are proposals in order to generalise the classical approach due to JMAK [Avr39, 
40, 41], [Joh39] to take the multi-phase case into account, and, last but not least, to obtain 
practicable tools for simulations (cf. [Leb84, 85], [Rét98, 99b, 01], [For00]). 
To investigate stress-free phase transformations one usually performs tests with dilatometers. 
Stress-dependent phase transformations are investigated with special devices under controlled 
temperature and stress, measuring length and diameter of the specimen (cf. [Ahr00, 02, 03], 
[Dal04] for experimental device, and [Ahr00, 02, 03], [Dal04], [Shi04], [Wol03a, 03b, 03c, 05a, 
06b, 06c, 06d, 06e, 07b] for experiments and data processing, e.g.). In real processes like heat 
treatment we normally encounter a situation in which the evolution of phase fractions, 
temperature and mechanical entities (and sometimes of the carbon content in austenite) is 
mutually influenced. Thus, modelling and simulation of complex material behaviour like heat-
treatment processes of work-pieces generally requires the implementation of PT models 
describing the multi-phase case in more general situations. We refer to [Ald06], [Bes93], 
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[Ber99], [Dav94], [Den97, 02], [Fuh99], [Höm96, 02, 04, 06a, 06b], [Ino85, 89], [Kim05], 
[Pie00], [Ron00], [Sch06], [Sjö84], [Suh05], [Vid94], [Wol04, 05b, 06a, 06g], [Yu77] for 
modelling and/or simulation of complex material behaviour of steel. There are many textbooks 
and monographs dealing with iron and steel in the context of physics and engineering. Examples 
are: [Ber06], [Bur65], [Chr75], [Hor92], [Koh94], [Lem01], [Pol88], [Ros56, 72], [Sei99], 
[Van91]. For modelling of PT in mesoscopic and microscopic context we additionally refer to 
[Ant04], [Avr39, 40, 41], [Dac04], [Fis03], [Joh39], [Lev98], e.g.   
Here our main goals are 

• to develop a quite general phenomenological model of PT in steel in the multi-phase 
case, owing else a simple structure and being suitable for application in simulations, 

• to show the relation of this general model to some well-known models like those ones 
due to Leblond-Devaux (LD) [Leb84, 85] or Johnson-Mehl-Avrami-Kolmogorov 
[Avr39, 40, 41], [Joh39], 

• to give some remarks about interactions between phase evolution, temperature, and 
mechanical movement, 

• to give examples how to obtain the needed parameters from dilatometer data and from 
transformations diagrams, respectively, and to perform simulations, using these 
parameters,  

• to present some results demonstrating the advantage of the proposed model, referring to 
our detailed paper [Wol07c].     

In section 2 we will deal with modelling of PT. Some remarks about interactions between phase 
evolution, temperature, and mechanical movement will be given in section 3. In section 4, we 
will speak in short about mathematical questions arising from PT. Finally, in section 5, we will 
deal with parameter identification. Using real data, we will simulate examples of the multi-phase 
case. 

2 Phase transformations in steel in the multi-phase case 

2.1 General aspects 
The subsequent considerations up to formula (2.12) are valid not only for phase transformations 
(PT) in steel, but also for special (chemical or other) reactions in coexisting mixtures. In the 
context of macroscopic modelling we regard steel as a coexisting mixture of m (m ≥ 2) phases 
(constituents), which may transform into one another under appropriate conditions. Furthermore, 
we neglect any diffusion of these phases, assuming that they remain at their original places of 
formation.  
Let be pi (i = 1, ..., m) the mass fraction of the ith phase. We write in short p = (p1, …, pm). While 
in the general theory of mixtures mass fractions are used for modelling, volume fractions are 
mostly preferred when dealing with steel. Fortunately, due to small density differences of the 
steel phases (for the same temperature) the differences between mass and volume fractions are in 
the region of one-two percent in the case of steel (cf. [Wol03a, 03c, 07a]). So we will often speak 
only about “phase fractions”. The number of phases, m, depends on the sort of steel and on the 
circumstances. 
Independent of concrete models of PT we assume the subsequent general balance and non-
negativity relations 

(2.1)  ∑
i = 1

m
  pi(x, t) = 1, 
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(2.2)  pi(x, t) ≥ 0   for i = 1, ..., m, 
where x is the general spatial point of the body (work piece) Ω and t ≥ 0 is the time. A general 
macroscopic model of PT based on ordinary differential equations (ODE) (with the parameter x) 
usually reads as (cf. [Böh03, 04], [Den97], [For00], [Fuh99], [Höm95, 96, 97], [Hun99], [Ino89], 
[Leb84, 85], [Mio04], [Mit92, 02], [Rét97, 98, 99a, 99b, 01, 04], [Ron00], [Sur04], [Sys03] e.g.) 

(2.3)  
∂pi

∂t (x, t) = fi(x, t, p, θ, 
∂θ
∂t , S, ξ), 

completed by the initial conditions 
(2.4)  pi(x, 0) = p0i(x)  for all x, 
where θ - temperature, S - stress tensor, ξ - further possible parameters interpreted as internal 
variables (all depending on x and t) (cf. section 3), p0 = (p01, …, p0m) – initial phase fractions 

fulfilling (2.1) and (2.2). In the sequel, time derivatives will be denoted by dots (θ·  e.g.) as well as 
by the symbol in (2.3).  
Remark 2.1. (i) It is well-known, that the transformation behaviour essentially depends on the 
carbon content of the parent phases. Thus, in the case of inhomogeneous carbon content, the 
right-hand side of (2.3) additionally depends on uc = (uc1, uc2, …, ucm), where uci is the carbon 
content in the ith phase. This situation arises, when case hardening is modelled (cf. [Ber99], 
[Ino89], [Wol06g], e.g.). Formally, we can include uc into the variable ξ. 
(ii) For physical reason the dependence of S in (2.3) takes place through its invariants, the von 
Mises stress and the mean principal stress, e.g. For simplicity, except in section 3, we keep the 
notation as in (2.3).  
(iii) Generally, there is an interaction of mechanical movement, temperature and phase evolution. 
Thus, the stress tensor S implicitly depends on other entities, possibly on phase fractions via 
integral terms. We return to this in section 2.7. Hence, instead of the ODE in (2.3), some integro-
differential equations might be more appropriate. Since the subsequent discussion would be 
analogous, we focus on ODE’s for describing PT. We refer to [Ahr00, 02, 03], [Dal04], [Den97], 
[Ino85, 89], [Shi04], [Wol03b, 05a, 06d, 06f] for investigations of PT under stress.  
(iv) Generally, in (2.3), we allow an explicit dependence on x and t. Thus, it is possible to model 
spatial non-homogeneities (after chemical treatment, e.g., cf. [Fre06]). Moreover, one could use 
special PT models depending explicitly on time. For convenience, we suppress this in the 
forthcoming discussion. 
(v) As (macroscopic spatial) diffusion of the phases is neglected, the equations in (2.3) do not 
contain spatial partial derivatives like in diffusion equations. Hence, the spatial variable x plays 
only the role of a parameter. Therefore, in the subsequent models, it will be often suppressed in 
notation. 

A further consequence of (2.1) is the subsequent assumption for f = (f1, …, fm) 

(2.5)  ∑
i = 1

m
  fi = 0  for all possible arguments. 

Obviously, the considerations above are valid for chemical reactions or general phase changes 
without diffusion of the constituents. 
We note, that the (macroscopic) model given by (2.3), (2.4) can be included into a general model 
of material behaviour of steel in the frame work of continuum mechanics. In this context the 
phase fractions are regarded as internal variables and the equations in (2.3) become their 
evolution equations. We refer to [Wol05b, 06a, 06h] for details and discussion. We note, that the 

dependence on the time derivative θ·  of the temperature θ in (2.3) is not compatible with the 
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standard internal-variable setting and requires additional efforts. Here we want to focus on PT 
themselves, and so we suppress this discussion. 
Now, we want to specialise f in order to obtain applicable PT models for multi-phase 
simultaneous and consecutive reactions, respectively. Following [Leb84, 85], [Rét98, 99b, 01], 
[For00], we assume, that the transformation of the ith phase into the jth phase (i ≠ j) abbreviated as 
i → j has the transformation rate – aij, i.e., for the transformation i → j (for i, j = 1, …, m, i ≠ j) 
the change of pi in favour to pj can be described by the transformation law in rate form  

(2.6)  p· i = – aij. 
In accordance with (2.6) the growth of pj at expense of pi is expressed as 

(2.7)  p· j = aij. 
As a consequence of (2.6) and (2.7) we set 
(2.8)  aii := 0    i = 1, …, m 
and 
(2.9)  aij ≥ 0    i, j = 1, …, m. 
If the transformation i → j does not take place, we have aij = 0. Generally, the aij depend on the 
same variables as the fi in (2.3). In case of 

(2.10)  aij = aij(pi, pj, θ, θ· , S, ξ)  
the PT i → j is not influenced by the presence of the remaining phases. But generally, there may 
be an influence of further present phases. In this case, we have 

(2.11)  aij = aij(pi, pj, pk, θ, θ· , S, ξ)  k ≠ i, j. 
Here, we do not specify the rates aij in accordance with the JMAK kinetics or with other 
approaches as in [Leb84, 85], [Rét98, 99b, 01, 04], [For00]. Later on (cf. (2.22)), we propose a 
more general ansatz leading to differential equations with several (possibly five) parameters. 
Based on the above considerations, the system (2.3) can be specialised in the following manner 

(2.12)  p· i = – ∑
j = 1

m
  aij + ∑

j = 1

m
 aji  i = 1, …, m, 

fulfilling the condition (2.5) (taking (2.8) into account). These equations are still quite general. 
Similarly as in [Leb84, 85], [Rét98, 99b, 01], [For00], we formulate two general assumptions for 
phase transformations in steel: 

(2.13) For each i, j ∈ {1, ..., N}, i ≠ j, there exists a quantity p
_

ij = p
_

ij(θ, S, ξ, pk, p0) (k ≠ i, j), such 
that the transformation pi → pj may only occur under the condition 

   pi > 0 and p
_

ij – pj > 0. 

 If a particular transformation can not occur under any conditions, we set p
_

ij = 0. 
(2.14) For each phase j, there exist two temperatures θjf and θjs generally depending on S, ξ (and 

possibly on θ·  and on pk, k ≠ i, j) such that the transformation i → j may only occur, if 
θjf ≤ θ < θjs. This last condition can be taken into account by a switch-off function Gij, 
which is one, if the condition is fulfilled, and which is zero otherwise. 

We want to comment on these last two assumptions. 

Remarks 2.2. (i) The quantity p
_

ij plays the role of a “limit value” of the jth phase fraction which 
can be obtained from phase i (cf. [For00]). That means, for the transformation i → j the maximal 
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possible fraction pj is p
_

ij, and p
_

ij depends on the current values of θ, S, ξ, the remaining phases pk, 
and possibly on the initial values p0 (cf. section 2.6.2). Sometimes, there was introduced an 

equilibrium value p
_

j of the jth phase which can be obtained under given θ, S, ξ from all possible 
phases (cf. [Leb84, 85], [Rét98, 01]). 
(ii) Of course, sometimes the limit values are equilibrium values, too. For instance, this is the 
case for the PT austenite into ferrite and vice versa in an non-alloyed hypoeutectoid steel for 
temperatures higher than 723 °C. The equilibrium values can be obtained from the Fe-Fe3C 
diagram, using the lever rule (cf. [Ber06], [Hor92], [Koh94], [Pol88], [Ros56, 72], [Wev54], 
[Van91]). 
(iii) The assumption (2.14) does not exclude a simultaneous forming and dissolution of a phase 
at the same time. Assuming additionally for a pair i, j 
(2.15)  θis ≤  θjf or θjs ≤  θif, 
the transformations i → j and j → i cannot be performed simultaneously. The condition (2.15) 
describes the typical situation for steel. 

Let be the Heaviside function H defined by 
(2.16)  H(s) := 0 for s ≤ 0, H(s) = 1 for s > 0. 
Taking the assumptions (2.13) and (2.14) into account, we propose the subsequent general model 
for PT in steel  

(2.17)  p· i = – ∑
j = 1

m
  aij H(pi) H(p

_
ij – pj) Gij + ∑

j = 1

m
 aji H(pj) H(p

_
ji – pi) Gji  i = 1, …, m. 

Clearly, if there are only two phases, i and j, and if the conditions (2.13) and (2.14) are fulfilled, 
(2.17) reduces to (2.6) and (2.7). As the functions aij may be quite general, one has to propose an 
ansatz. After this, the needed parameters must be determined by additional considerations, using 
dilatometer data or transformation diagrams. We will deal with this in the points 2.2 – 2.6. 
Remarks 2.3. (i) The condition (2.5) is fulfilled for the right-hand sides of (2.17).  
(ii) The number of phases under consideration depends on the specific situation of modelling. On 
one side, this number depends on the steel category (eutectoid, hypoeutectoid e.g.). On the other 
side, sometimes it may be convenient to deal with additional artificial phases (see section 2.6).  
(iii) The Heaviside function in (2.16) is not continuous in s = 0. Thus, for mathematical reason it 
could be necessary to regularise it (cf. section 4). The same concerns to the switch-off functions 
Gij. 
(iv) Experiments show, that PT in steel are generally not symmetric, i.e. in general, we have 
(2.18)  aij ≠ aji. 
(v) From the balance relations (2.1) it follows that the ODE in (2.3) (as well as in (2.12) and 
(2.17)) are not independent from each other. Thus, for convenience one can drop one ODE, as 
the one for austenite, e.g.  
Example 2.4. A simple specialisation of (2.6) consists in assuming 
(2.19)  aij = μij pi, 
where the non-negative μij may depend on the same arguments as aij. The last equation means, 
that the rate of decomposition of i into j is proportional to the fraction of i available for 
decomposition. In case of only two present phases 1 and 2 this leads to (cf. (2.6)) 

(2.20)  p· 1 = - μ12 p1.  
Using (2.1), we obtain for the forming phase 
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(2.21)  p· 2 = μ12 (1 – p2). 

Hence, in this case the entities p
_

12 and p
_

21 are 1 and 0, respectively. Thus, the ansatz (2.19) does 
not allow arbitrary “equilibrium” values. A slight generalisation of (2.19) leads to the approach 
developed in [Leb84, 85] (see section 2.3).  

2.2 A general phenomenological multi-phase model for PT in steel  
We are going to present proposals for the functions aij in (2.17) which determine the PT. As 
mentioned in the introduction, the PT laws presented before do not fit very well with available 
data in the case of varying temperature, under stress and after pre-deformation of austenite, 
respectively. Therefore, we present a phenomenological model owing else a simple structure and 
being capable for extensions (stress dependence, e.g.) as well as for possible simplifications, and, 
moreover, for applications in simulations. The involving parameters have to be identified at best 
by experimental data (see section 5.1). Slightly extending the suggestions in [Höm06a], we 
assume for the (both diffusive and martensitic) PT i → j the growth rate aij (of pj) (cf. (2.6)) 

(2.22) aij := (eij(θ, S, ξ) + pj)rij(θ, S, ξ) (p
_

ij – pj)sij(θ, S, ξ) gij(θ, S, ξ) hij(θ
· ) for i, j = 1, …, m. 

The parameters eij, rij, sij, gij, and hij have to fulfil 
(2.23)  eij ≥ 0, rij ≥ 0, sij > 0, gij ≥ 0, hij ≥ 0, h(0) = 1  for all admissible arguments. 

Remarks 2.5. (i) (Motivation of (2.22)) The ansatz in (2.22) is motivated by the subsequent 
considerations. Generally, a diffusive transformation begins and ends slowly. Thus, we may 
assume that the production rate of pj is proportional to pj itself as well as to the difference to the 
limit value. This leads to 

(2.24)      aij := pj (p
_

ij – pj) gij, 

and in generalisation to (2.22). The (small) parameter eij has been introduced for mathematical 
reason (see section 4). For martensitic transformation one can set rij = 0, because there is no delay 
at the beginning. This leads to the ansatz by Leblond and Devaux [Leb84, 85] (see section 2.3). 

(ii) The ansatz in (2.22) works well, if the phase j forms only from phase i (as a ferritic phase 
from austenite). Contrary to this, the forming of austenite from several ferritic phases may lead to 
some problems when defining the limit values. We will return to this in section 2.6.2.   

(iii) Furthermore, it is possible, that the parameters in (2.22) depend on the remaining phases pk, 
k ≠ i, j. In this case, the parameter identification is more complicated. But even in this case, the 
subsequent discussions remain valid with adequate modifications. Therefore, we focus on the 
approach in (2.22).     

In accordance with (2.8) we set 
(2.25)  eii = rii = sii = gii = hii := 0     for i = 1, …, m. 
For completely non-occurring transformations we set gij = 0. In section 4 we discuss further 
restrictions to the parameters eij, rij and sij coming both from physical and mathematical reasons. 
Depending on the circumstances, one can deal without the parameter h in (2.22) or not. In 
section 5, we return to this, using real data. But, anyway, we assume 
(2.26) hij(0) = 1 for diffusive PT, hij(0) = 0 for the martensitic PT. 
Hence, for isothermal diffusive PT (under constant stress) there are the four parameters eij, rij, sij 
and gij which have to be identified, using experimental data obtained from special testing 
machines like dilatometer. After this, the parameter h can be optimised for linear cooling. 
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Alternatively, transformation diagrams can be used for determining the needed parameters. We 
will discuss these questions of parameter identification in section 5.  
Finally, combining (2.17) and (2.22), we obtain a quite general mathematical model for multi-
phase transformations in steel: 

(2.27)  p· i = – H(pi) ∑
j = 1

m
  (eij + pj)rij (max{p

_
ij – pj, 0})sij gij hij Gij + 

+ ∑
j = 1

m
  (eji + pi)rji (max{p

_
ji – pi, 0})sji gji hji Gji H(pj) i = 1, …, m. 

As we will show in the next sections, some well-known PT laws are included in the ansatz (2.22) 
as special cases. 

2.3 The Leblond-Devaux proposal   
In [Leb84, 85] the authors proposed a model for anisothermal phase transformations in steel in 
the case of more than one phase for diffusive as well as for martensitic transformations. (In 
[For00], a generalisation was presented.) The goal in [Leb84, 85] was to present a model being 
“nearly” linear, taking (2.13) into account and generalising the simplest possible transformation 
in case of two phases. Contrary to our more general approach, Leblond and Devaux [Leb84, 85] 

assumed that each phase i has its equilibrium value p
_

i, and that the transformation  i → j is only 
possible, if 

(2.28)  pi > p
_

i and p
_

j > pj. 
In this case they proposed for two existent phases:  

(2.29)  p· j =  
p
_

j – pj

τij
, 

where the non-negative parameter τij has the dimension of time (“delay time”) and characterises 

the speed of the transformation. In the simplest case, p
_

j and τij are only regarded as temperature 
dependent. Obviously, the phenomenological model defined by (2.22) includes the ansatz in 

(2.29) for the parameter choice rij := 0, sij := 1 and gij := τ-1
ij , hij = 0. Clearly, pj(t) tends to p

_
j for 

t → ∞ for constant temperature. For convenience, we introduce the reciprocal value  

(2.30)  μij := τ-1
ij . 

We define  

(2.31)  aij := μij (p
_

j – pj ),  μii := 0  i, j = 1, …, m.  
Assuming independence like in (2.10), and regarding (2.28) as a side condition, the ansatz (2.31) 
leads to the subsequent system for the multi-phase system 

(2.32) p· i = – H(pi – p
_

i) ∑
j = 1

m
 μij max{p

_
j – pj, 0} Gij + max{p

_
i – pi, 0} ∑

j = 1

m
 μji H(pj – p

_
j) Gij 

i = 1, …, m. 
Additionally, if the μij are independent of the phase fractions, the system (2.32) is “nearly” linear. 
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Remarks 2.6 (i) Alternatively to (2.31), Leblond and Devaux [Leb84, 85] propose 

(2.33)  aij := μij (p
_

j pi – p
_

i pj ),  μii := 0  i, j = 1, …, m. 
Using (2.1) and (2.31), in case of only two phases, the equation (2.29) can be rewritten as    

(2.34)  p· 1 = – μ12 (p
_

2 p1 - p
_

1 p2). 
Generalising this ansatz in [Leb84, 85], the subsequent system for the multi-phase case reads as 

(2.35) p· i = – H(pi - p
_

i) ∑
j = 1

m
 μij (p

_
j pi – p

_
i pj ) H(p

_
j - pj) + 

+ H(p
_

i- pi) ∑
j = 1

m
 μji (p

_
i pj – p

_
j pi ) H(pj – p

_
j) i = 1, …, m. 

Clearly, if pi > p
_

i and pj < p
_

j, then the aij in (2.33) are non-negative. We note, that in the case of 
simultaneous PT the model (2.34) does not recover a single transformation like (2.29).   

(iv) Generally, the parameters μij in (2.30) as well as the equilibrium values p
_

i may depend on the 
same variables as aij in (2.10). Furthermore, it is possible to consider the system (2.32) or (2.35) 
in the more general case (2.11) (cf. remark 2.5). 

2.4 A multi-phase model based on the Johnson-Mehl-Avrami-Kolmogorov kinetics  
Now we want to show how to specialise the general model in (2.17) to the JMAK kinetics for 
diffusive PT (cf. the pioneering works [Avr39, 40, 41], [Joh39] as well as [Böh03], [Bur65], 
[Chr75], [Lem01], [Rét97] e.g.). As in section 2.3 we begin with the case of a single 
transformation, for instance with the transformation of austenite into ferrite for a hypoeutectoid 
low alloyed steel at a temperature where both phases may exist in equilibrium. 
At constant temperature θ the forming phase 2 of this transformation 1 → 2 grows according to 
the JMAK formula 

(2.36)  p2(t) = p
_

12 (1 – exp(– ( t
τ12(θ))

n12(θ) )) 

where τ12 > 0 and n12 > 1 are temperature-dependent material parameters characterising the PT 

1 → 2. Usually, in the JMAK approach, the value p
_

12 stands for the equilibrium value (as in the 

LD approach) and will be denoted by p
_

2. To be in accordance with our more general approach, 
we regard this value as “limit value” (cf. (2.13) and remark 2.2 (i)). Clearly, (2.36) implies for 
the initial time 
(2.37)  p2(0) = 0. 
Taking the time derivative (for constant θ) and excluding the exponential and the explicit time 
dependence, we obtain from (2.36) the autonomous ODE for the PT 1 → 2 

(2.38)  p· 2(t) = (p
_

12 – p2(t)) 
n12

τ12
 (– ln(1 – p2(t) p

_–  1
12 ) )

1 - 1

n12(θ) . 

Therefore, assuming the JMAK kinetics for all possible PT i → j and for varying temperature, 
we define 
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(2.39)  aij := (p
_

ij – pj(t))  
nij

τij
 (– ln(1 – pj(t) p

_-1
ij ) )

1 - 1

nij(θ)  for i, j = 1, …, m, i ≠ j. 

  aii := 0       for i = 1, …, m. 
This and (2.17) imply   

(2.40) p· i = – H(pi) ∑
j = 1, aij ≠ 0

m
  max{ p

_
ij – pj(t), 0} 

nij

τij
 (– ln(1 – pj(t) p

_–  1
12  )

1 - 1

nij(θ) Gij + 

+ ∑
j = 1, aij ≠ 0

m
   H(pj) max{ p

_
ji – pi(t), 0}  

nji

τji
 (– ln(1 – pi(t) p

_–  1
12  )

1 - 1

nji(θ) for i = 1, …, m. 

We conclude this point with some remarks again. 

Remarks 2.7 (i) The JMAK model (2.39) is not a special case of the general ansatz (2.22). A 
linearisation of the logarithm in (2.39) yields the following approximation for small values of p2 

(2.41)  p· 2(t) = (p
_

12 – p2(t)) 
n12

τ12
 ( p2(t) p

_–  1
12  )1 - 1

n12(θ). 

Obviously, (2.41) is a special case of (2.22). 
(ii) The solution of the problem (2.36), (2.37) is not unique. Besides the obvious solution p2 = 0, 
there exist non-zero solutions. An example is p given by (2.35) in the case of constant 
temperature. This is an un-pleasant mathematical disadvantage of the JMAK model. Therefore, 
for calculations one usually takes a small value for p2(0), 10-5, e.g., instead of zero. Another way 
out consists in using the more general ansatz in (2.22) with a small positive parameter eij. 
(iii) Experiments show that for non-isothermal diffusive transformations the model (2.38) (as 
well as (2.40)) does not approximate the reality sufficiently well (cf. [Böh04], [Fer85], [Hun99], 
[Hou86], [Rét97] e.g.). Therefore, there are several proposals in order to extend the ODE (2.38), 
or to use other approaches (cf. [Ber99], [Böh03, 04], [Cah56], [Dac03], [Den92], [Höm97], 
[Ino85, 89], [Leb84, 85], [Lem01], [Mit92, 02], [Rét97, 99a, 04], [Sys03], [Ver87] e.g.). This 
physical disadvantage of the JMAK kinetics was the reason for introducing our general model 
based on (2.17), (2.22). For constant transformation temperature the JMAK model (2.38) 
describes the diffusive PT more correctly than the linear equation (2.29) proposed in [Leb84, 85]. 
We will return to this in section 5, when dealing with simulations. Contrary to this, under non-
isothermal conditions the LD model (2.29) (and therefore (2.32), (2.35)) has a simpler structure.  
(iv) Clearly, the LD model (2.29) comes from the JMAK model (2.39) for nij = 1. Only in this 
case the parameters τij in (2.29) and (2.39) are the same.  
2.5 The martensitic transformation  
For the multi-phase models presented in 2.2, 2.3 and 2.4 each PT i → j has the same structure as 
its inverse j → i. There are only differences in the values of material parameters. However, one 
can include arbitrary PT laws into the general concept presented above. We demonstrate this 
with the martensitic transformation.   
It is well known, that the formation of martensite does not follow the JMAK kinetics. Due to 
Koistinen and Marburger (cf [Koi59], [Lem01]) the martensite fraction forming from a given 
austenite fraction p1(tms) at the temperature θ less than the martensite-start temperature θms reads 
as 

(2.42)  p
_

1m(θ) = p1(tms) (1 – exp( - 
θms - θ
θm0

 )), 
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where tms is the time when the martensite-start temperature θms is reached, and θm0 is a positive 
material parameter (depending on the steel sort and on stress (cf. [Ahr03], [Den97], [Shi04], 
[Wol06f] e.g.), and usually being independent of temperature). In the sequel we indicate the 
martensite by the number m and the austenite by 1. Of course, if the martensitic transformation 
starts with pure austenite, we have p1(tms) = 1. The formula (2.42) does not contain any 
information about the martensite evolution. It is known by experiments that the formation of 
martensite is very fast (with the speed of sound). This fact suggests the following approach: 
Assuming a monotone decreasing temperature θ = θ(t) (below θms), we regard the current 
martensite fraction as the final fraction at θ(t), i.e., 

(2.43)  pm(t) := p
_

1m(θ(t)). 
In this case equation (2.42) also describes the martensite evolution, i.e. we have  

(2.44)  pm(t) = p1(tms) (1 – exp( – 
θms – θ(t)
θm0

 )), 

where the corresponding initial conditions are 
(2.45)  pm(tms) = 0,  θ(tms) = θms.  
Taking the time derivative and excluding the exponential, we obtain from (2.42) 

(2.46)  p· m(t) = (p1(tms) – pm(t)) – θ·  (t)
θm0

 . 

Furthermore, experiments show that martensite can only form if the temperature decreases, and 
if the current temperature is not higher than the minimum temperature during the cooling (cf. 
[Ant04] e.g.). To be more precise, we have instead of (2.46) the extended version (cf. [Böh03], 
[Wol07a]) 

(2.47)  p· m(t) = (p1(tms) – pm(t)) – 1
θm0

 
d
dt( min

0 ≤ s ≤ t
{θ(s)}) H(θms – θ(t)). 

The minimum function in (2.47) can be regarded as an internal variable, when dealing with the 
bulk behaviour of steel (cf. [Wol05b, 06a, 06h], e.g.). Of course, (2.46) is numerically more 
convenient than (2.47). In the case of (rapid) quenching one can assume that θ falls 
approximately monotonously. Thus, (2.46) seems to be applicable in special situations (cf. 
[Wol07a] for experiments and evaluations). Strictly spoken, tms is the last time when the 
martensite-start temperature was reached. Below the martensite-start temperature, practically no 
other phases form. Hence, we can write 

(2.48)  p1(tms) – pm(t) = 1 – ∑
j = 2

 m - 1
  pj(t) – pm(t), 

and we obtain the equation 

(2.49)  p· m(t) = (1 – ∑
j = 2

 m - 1
  pj(t) – pm(t)) – 1

θm0
 
d
dt( min

0 ≤ s ≤ t
{θ(s)}) H(θms – θ(t)). 

Thus, the “limit value” of martensite can be defined as (cf. (2.13) and remark 2.2 (i)) by 

(2.50)  p
_

1m(t) := 1 – ∑
j = 2

 m - 1
  pj(t). 

Moreover, we can define the rate a1m for the martensite formation 

(2.51)  a1m = (1 – ∑
j = 2

 m - 1
  pj(t) – pm(t)) – 1

θm0
 
d
dt( min

0 ≤ s ≤ t
{θ(s)}), 
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where the switch-off function H(θms – θ(t)) is included in G1m (cf. (2.17)). As above (cf. (2.46), 
(2.47)), in the case of (rapid) quenching, the time derivative in (2.51) can be approximately 

replaced by θ· (t). 
Finally, we note that Leblond and Devaux [Leb84, 85] suggested applying the linear approach in 
(2.29) to the martensitic transformation, too. In this case, one has 

(2.52)  a1m = (p
_

1m – pm(t)) μ1m, 
with 

(2.53)  p
_

1m(t) =  (1 – ∑
j = 2

 m - 1
  pj(t) ) (1 – exp( – 

θms – θ(t)
θm0

 )) 

in accordance with (2.42). The parameter can be fitted by dilatometer data (cf. [Wol07a]). We 
refer to [Böh03], [Wil86], [Yu77] for modifications of the KM approach.  

2.6 Special cases of PT 
In general, the multi-phase models presented above allow arbitrary transformations. But for steel 
most of the formally possible phase transformations do not materialise. Moreover, in many 
practical situations like quenching, one is faced with transformations in only one direction. Thus, 
one often has to deal with simpler cases than described above.   

2.6.1 Dissolution of austenite 
During quenching processes austenite normally undergoes only a (complete or incomplete) 
dissolution, while the ferritic phases can only grow. That means, that the temperature path and 
other influences only allow austenite to decrease and the ferritic phases to increase. Let us 
assume that we have m relevant phases. For instance, for an hypoeutectoid steel we have 
austenite (labelled in all cases by the index 1), ferrite, pearlite, bainite and martensite (labelled by 
m). For an hypereutectoid steel one has austenite, cementite, pearlite, bainite, martensite, 
sometimes upper and lower bainite. As assumed, austenite can only dissolute, the remaining 
phases can only form. In section 5, we consider concrete examples. Thus, specialising (2.17), we 
have 

(2.54)  p· 1 = – H(p1) ∑
j = 2

m
  a1j H(p

_
1j – pj) G1j, 

(2.55)  p· k = a1k H(p1) H(p
_

1k – pk) G1k  for k = 2, …, m. 

The limit values p
_

1k must be determined for the steel sort under consideration, using information 
from the Fe-Fe3C diagram and/or from the transformation diagrams. In section 5.2 we will go 
into details. Besides this, in [Rét01] e.g. this procedure is done for concrete steels. The limit 

value p
_

1m for martensite may be chosen differently, depending on the model used. In the case of 
the Leblond-Devaux approach (2.52), we have (cf. (2.53)) 

(2.56)  p
_

1m(t) =  (1 – ∑
j = 2

m - 1
 pj(t) ) (1 – exp( – 

θms – θ(t)
θm0

 )). 

But for the Koistinen-Marburger approach (2.51) one has 

(2.57)   p
_

1m(t) = 1 – ∑
j = 2

m
 pj(t). 
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The switch-off functions Gij have to be determined by special considerations, too (cf. [Wol06g] 
for an example). 
Remark 2.8. Clearly, due to (2.5), the equations (2.54), (2.55) are dependent. For practical use, 
one normally only works with the equations in (2.55).   
The transformation rates a1k (k = 2, …, m) in (2.54), (2.55) have to be determined by dilatometer 
data or by transformation diagrams, using alternatively the general ansatz (2.22) or the special 
ones by JMAK (2.39), by LD (2.31), and by KM (2.46), respectively. In our situation, the initial 
conditions are 
(2.58)  p10 = 1,  pk0 = 0   for k = 2, …, m. 
Thus, the phase fractions are determined for a given temperature path (see section 4). Generally, 
we have a coupled problem with temperature, mechanics and, possibly carbon diffusion (see 
section 3). 
Remark 2.9. Another model describing the dissolution of austenite (into several phases) based 
on JMAK kinetics was developed in [Rét98, 99b].  

2.6.2 Formation of austenite 
This case exhibits some differences to the one considered in section 2.6.1. More than one phase 
are now sources for the austenite. Besides this, the dissolution of the ferritic phases is a complex 
physical phenomenon. Especially, when taking into account the changes which martensite 
undergoes (tempering effects). The possible presence of retained austenite has an essential 
influence of the forthcoming PT. For this matter we refer to [Pet89], [Yan89], e.g. Here, we want 
to focus more on the phenomenological side of modelling. As before, austenite is labelled by 
“1”. For the initial condition (2.4), we assume 

(2.59)  p01 < 1,  ∑
j = 1

m
  p0j = 1, p0j ≥ 0  for j = 1, …, m. 

If there is no retained austenite, we will have p01 = 0. Neglecting tempering effects (cf. [Wan04] 
for modelling and discussion), we assume that each phase j = 2, …, m completely transforms 
into austenite. If there are only two phases 1 and j, the transformation j → 1 can be modelled (cf. 
(2.22) and remark 2.5 (i)) as 

(2.60)  p· 1 = (ej1 + p1)rj1(θ) (1 – p1)sj1(θ) gj1 hj1(θ
· ). 

The equation (2.60) has the same structure as (2.22) with p
_

j1 = 1. Clearly, we have pj = 1 – p1. 
The generalisation to m – 1 ferritic phases consists in replacing 1 – p1 by pj in (2.60). This 
corresponds to the fact that the austenite production due to the jth phase ends, if pj becomes zero. 
Thus, we have for the PT j → 1 

(2.61)  p· 1 = (ej1 + p1)rj1(θ) pj
sj1(θ) gj1 hj1(θ

· )  for j = 2, …, m. 
Summing up the equations in (2.61), and introducing suitable switch-off functions, we obtain for 
the whole austenite  

(2.62)   p· 1 = ∑
j = 2

m
  (ej1 + p1)rj1(θ) pj

sj1(θ) gj1 hj1(θ
· ) Gj1  

as well as for the ferritic phases 

(2.63)  p· j = – (ej1 + p1)rj1(θ) pj
sj1(θ) gj1(θ) hj1(θ

· ) Gj1  for j = 2, …, m. 

Clearly, we assume that the temperature path does not allow a dissolution of austenite. 
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Remarks 2.10. (i) Due to (2.61), a later dissolution of a ferritic phase is influenced by the 
dissolution of a former one. For instance, let us assume, that the process starts without retained 
austenite. Then the first PT j → 1 starts slowly (because, generally, ej1 is quite small). After that, 
the next PT starts with the already formed austenite, i.e. that PT has no “incubation” (cf. remark 
(iii), too). Of course, here is not the place to discuss the physical background. Nevertheless, the 
system (2.62), (2.63) has its advantages: Its structure is simple, it does not depend on the initial 
values p0j. 
(ii) When using JMAK kinetics, the initial value p01 must be positive (cf. remark 2.7 (ii)).  
(iii) The model in (2.61), (2.62) starts with the formation of austenite from each ferritic phase (cf. 
[Mio04], e.g.). Another approach can be found in [Sur04]. There the authors start with the 
JMAK kinetics applied to the decomposition of the ferritic phases, i.e. they assume for 
isothermal decomposition 

(2.64)  pj(t) = p0j exp(– ( t
τj(θ))

nj(θ) ). 

Taking the time derivative (for constant θ), one obtains the subsequent JMAK like differential 
equations 

(2.65)  p· j = – pj 
nj

τj
 (– ln(pj p

-1
0j) )

1 - 1

nj.  in case of p0j > 0, 

which will be applied to non-isothermal transformation, too. At the beginning, i.e. for p0j – pj 
small, one can linearise the logarithm, obtaining an approximation of (2.65) 

(2.66)  p· j = – pj 
nj

τj
 (p-1

0j)
1 - 1

nj (p0j – pj )1 - 1

nj. 

The term p0j – pj stands for the austenite (newly) formed from pj, whereas, in (2.61), p1 stands for 
the whole current austenite. That means, (2.66) takes incubation into account (cf. remark (i)). 
Nevertheless, if ej1 = 0, (2.66) and (2.61) have the same structure. But, for nj > 1, (2.66) depends 
on the initial values.  

2.6.3 The general case of PT 
Of course, the general case of PT can be dealt with by combining the approaches in the sections 
2.6.1 and 2.6.2. Thus, one gets (“1” stands for austenite again) 

(2.67) p· 1 = ∑
j = 2

m
  (ej1 + p1)rj1(θ) pj

sj1(θ) gj1 hj1(θ
· ) Gj1 – H(p1) ∑

j = 2

m
  a1j H(p

_
1j – pj) G1j, 

(2.68) p· j = a1k H(p1) H(p
_

1k – pk) G1k – (ej1 + p1)rj1(θ) pj
sj1(θ) gj1(θ) hj1(θ

· ) Gj1    for j = 2, …, m. 
Clearly, we have to add the initial conditions (2.4) fulfilling (2.1) and (2.2). The system (2.67), 
(2.68) has the same property as described in remark 2.10 (i). The presence of “retained fractions” 
at the beginning of a PT influences substantially the subsequent forming. A model which 
excludes such effects requires internal variables in order to take an “incubation” for diffusive 
transformations into account. 

3 Some remarks on interaction of phase evolution, mechanical movement 
and temperature 

Up to this time we have investigated phase transformations assuming given paths of temperature 
and of stress, and possibly of other quantities. Of course, in reality, we have an interaction of 
mechanical movement, temperature, phase evolution, and possibly of other quantities. In this 
context, there are two specific issues related with PT: 
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• Transformation-induced plasticity (TRIP). This macroscopic phenomenon leads to a 
permanent deformation, if PT occur under non-vanishing deviatoric stress. We refer to 
[Ahr03], [Ant04], [Bes93], [Cor02, 04], [Dal04, 06a, 06b], [Dav94], [Den97], [Fis96, 
00], [In096], [Leb86a, 86b, 89a, 89b], [Lem01], [Nag00, 01, 02], [Sjö94], [Pet04], 
[Tal03, 06], [Wol03b, 05a, 06b, 06c, 06d, 06e, 07a] and the literature cited therein. 

• Stress-dependent PT. An applied stress (as well as a possible pre-deformation of the 
parent phase) essentially influences the kinetics of PT. For this matter we refer to [Ahr00, 
02, 03], [Ant04], [Dal04], [Den97], [Shi04], [Wol03b, 05a, 06b, 06d, 06e].  

Thus, the modelling and simulation of the bulk behaviour of steel must take these phenomena 
into account. The following references are examples: [Ald06], [Bes93], [Ber99], [Dav94], 
[Den97, 02], [Fuh99], [Höm96, 02, 04, 06a, 06b], [Ino85, 89], [Kim05], [Pie00], [Ron00], 
[Sch06], [Sjö84], [Suh05], [Vid94], [Wol04, 05b, 06a, 06g], [Yu77]. As we want to focus on PT, 
we only show how their laws may be modified in this more general situation, giving a very short 
outline.  
In case of small deformations, we have the well-known balance equations for linear momentum 
and energy (tacitly assuming Fourier’s law of heat conduction) 

(3.1)  ρ0 
∂2u
∂t2  – div S = f, 

(3.2)  ρ0 
∂e
∂t  – div(λθ ∇θ) = S : ∂ε∂t + r. 

These equations (as well as the subsequent ones) have to be satisfied in the space-time domain 
Ω×]0, T[, where Ω is the body under consideration, and T > 0 is a fixed time. The notations are 
standard ones: ρ0 - bulk density in the reference configuration, that means for t = 0, u – 
displacement vector, S – (symmetric) Cauchy stress tensor, f – volume density of external forces, 
ε – linearised Green strain tensor, θ - absolute temperature, e – mass density of internal energy, 
λθ – heat conductivity, r – volume density of heat supply. Besides this, we have the well-known 
defining relation for ε: 

(3.3)  ε = ε(u) := 12 (∇u + ∇uT)  (∇uT – the transposed of ∇u). 

In (3.2) we employ the following abbreviation for the scalar product of tensors: 

(3.4)  α : β := (α | β) := tr(α βT) = ∑
i, j = 1

3
 αij βij, 

with tr(α) – trace of α, i.e. the sum of diagonal elements. 
In the framework of small deformations we decompose ε additively in accordance with 
(3.5)  ε = εte + εtrip + εcp, 
where εte is the thermoelastic strain (including isotropic strain due to phase transformations), εtrip 
is the (non-isotropic) strain due to transformation-induced plasticity (TRIP) (cf. further on), and 
εcp is the strain due to classical plasticity (CP) (i.e. usual plasticity in metal behaviour). Viscous 
effects can be taken into account, too. As usual, we assume volume conservation for the TRIP- 
and classical inelastic deformation, i.e. 
(3.6)  tr(εcp) = 0,  tr(εtrip) = 0. 
The stress tensor S and the thermoelastic part εte of the strain tensor are connected by the law of 
thermoelasticity taking density changes due to phase transformations into account 

(3.7)  S = 2 μ εte* + K tr(εte) I – 3Kα (θ - θ0) I – K ∑
i = 1

m
 (

ρ0
ρi(θ0) - 1) pi I, 
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where μ (shear modulus), K (compression modulus) and Kα can be defined via linear mixture 
rules: 

(3.8) μ(θ, p) := ∑
i = 1

m
 μi(θ) pi, K(θ, p) := ∑

i = 1

m
 Ki(θ) pi,  Kα(θ, p) := ∑

i = 1

m
 Ki(θ) αi(θ) pi, 

where the μi, Ki and αi are shear modulus, compression modulus and heat-dilatation coefficient 
of the ith phase, respectively. Moreover, I is the unity tensor, ρi(θ0) is the density of the ith phase 
at initial temperature θ0, i.e. for t = 0. As usual, the deviator εte* of the tensor εte is defined by 

(3.9)  εte* := εte - 
1
3 tr(εte) I    (in 3d case).  

The (classical) inelastic part εcp of the deformation tensor ε is connected by a special material law 
with the remaining quantities, for instance by a flow rule in plasticity (see [Leb86a, 86b],  
[Vid94], [Wol05b, 06a, 06g], e.g.,  for details in this context). We drop this here. But, we will 
give some explanation of transformation-induced plasticity (TRIP). If PT occur under non-
vanishing deviatoric stress, there will be a permanent non-isotropic deformation (TRIP) which 
cannot be described by CP at the macroscopic level. Usually one assumes that TRIP has no yield 
condition (cf. [Leb86a, 86b], [Fis96] for discussions, [Azz01], [Ino06] for possible alternative 
approaches). As in [Wol05b, 06a, 06b, 06g], we propose  

(3.10)  ε· trip = 32 (S* – Xtrip*) ∑
i = 1

m
 κi(θ, S, ξ) 

∂φi
∂pi

(pi) max{ p· i, 0}, 

where κi is the Greenwood-Johnson parameter (generally depending on temperature, stress, and 
possibly other quantities), and φi is the saturation function of the ith phase, respectively, fulfilling 
for all i = 1, …, m 

(3.11)  κi ≥ 0,  φi(0) = 0, φi(1) = 1, 
∂φi
∂p(p) ≥ 0 for all 0 < p < 1. 

Xtrip is a backstress associated with TRIP (cf. [Azz01], [Fis00], [Leb89b], [Nag00, 01, 02], 
[Tan03], [Wol05b, 06a, 06b, 06g] for discussion). Clearly, from (3.5) – (3.7) we get 
(3.12)  S* = 2 μ εte* = 2 μ (ε*(u) – εtrip – εcp),  tr(S) = 2 μ tr(ε(u)) = 2 μ div(u). 
We only want to demonstrate how the PT laws (2.3) may be specialised in case of modelling 
interactions of PT and mechanics. Therefore, we assume that there is no classical inelastic 
deformation εcp, and that there is no backstress Xtrip. Otherwise, the explanations would be more 
complicated (cf. [Wol06b, 06g]). Moreover, letting κi = κi(θ), we obtain from (3.10), (3.11) 

(3.13)  ε· trip(t) = 3 μ (ε*(u) – εtrip(t)) ∑
i = 1

m
 κi(θ) 

∂φi
∂pi

(pi) max{ p· i(t), 0}, 

suppressing the dependence on the spatial variable x∈Ω. Assuming the initial value εtrip(0) = 0, 
and using the abbreviation 

(3.14)  a(θ(t), p· (t)) := 3 μ ∑
i = 1

m
 κi(θ) 

∂φi
∂pi

(pi(t)) max{ p· i(t), 0}, 

we obtain the subsequent relation for εtrip: 

(3.15)  εtrip(t) = ⌡⌠
0

t

 a(θ(s), p· (s)) ε*(u(s)) exp(– ⌡⌠
s

t

 a(θ(τ),p· (τ)) dτ ) ds. 

Finally, (3.12) and (3.15) lead to 

(3.16)  S*(t) = 2 μ (ε*(u(t)) – ⌡⌠
0

t

 a(θ(s), p· (s)) ε*(u(s)) exp(– ⌡⌠
s

t

 a(θ(τ),p· (τ)) dτ ) ds). 
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We write (2.3) in the subsequent form (cf. remark 2.1 (ii)) 

(3.17)  p· i(t) = fi(p(t), θ(t), θ'(t), σ(S), tr(S), ξ) 
where σ(S) is the von Mises equivalent stress 

(3.18)  σ(S) := ( 32 S* : S*)
1
2. 

Sometimes, when performing mathematical investigations and simulations, the stress tensor S 
will be eliminated via (3.12) and (3.16). Hence, if TRIP and stress dependence of PT are taken 
into account, from (3.17), one obtains implicit integro-differential equations of the subsequent 
structure 

(3.19) p· i(t) = Fi(p(t), θ(t), θ· (t), 2μ div(u(t)), 

    ⌡⌠
0

t

 a(θ(s), p· (s)) ε*(u(s)) exp(– ⌡⌠
s

t

 a(θ(τ),p· (τ)) dτ ) ds, ξ). 

Clearly, the structure of (3.19) will be transmitted to the functions aij in the specialisation (2.10), 
and, finally, to the coefficients of the model presented in (2.22).  
As mentioned above, a (inelastic) pre-deformation of the parent phase generally influences the 
subsequent PT (as well as the subsequent TRIP behaviour) (cf. [Ahr03], [Pet04], [Tal06]). This 
phenomenon (“strain-dependent PT”) can be modeled by internal variables. We introduce the 
(classical) plastic strain of the parent phase (austenite, e.g.) and its corresponding accumulated 
strain by 

(3.20)  ε(1)
cp (t) := ⌡⌠

0

t

 ε·cp(τ) p1(τ) dτ, s(1)
cp (t) := ⌡⌠

0

t

 ( 23 ε·cp(τ) : ε· cp(τ) )
1
2 p1(τ) dτ, 

where the index 1 stands for the parent phase. Clearly, if only the parent phase is present during 
pre-deformation, we have the εcp and the usual accumulated plastic strain scp. Thus, in the case of 
pre-deformation, the variable ξ in (2.3) (and (3.17) and (3.19)) reads as 

(3.21)  ξ = (ε(1)
cp ,s(1)

cp ).    

4 Some remarks concerning mathematical questions  

Here is not the place for mathematical investigations in detail. And so we only want to give some 
remarks concerning mathematical aspects of PT. In practice, one expects that for a given path of 
temperature (and possibly of stress and other variables) there exists a unique solution of the 
initial-value problem (2.3), (2.4) for all time fulfilling (2.1), (2.2). The same concerns to the more 
general initial-value problem (3.19), (2.4). The mathematical kernel of this question is, under 
which assumptions about the right-hand side f (or aij) and about the initial value one can prove 
the existence of a global unique solution of the problem (2.3), (2.4) fulfilling (2.1), (2.2).  
Let us consider the general initial problem (2.17), (2.4). We remember it: 

(4.1) p· i = – ∑
j = 1

m
  aij H(pi) H(p

_
ij – pj) Gij + ∑

j = 1

m
 aji H(pj) H(p

_
ji – pi) Gji  i = 1, …, m, 

(4.2) pi(0) = p0i        i = 1, …, m. 
An essential problem is that the spatial variable x (stands for a body point) occurs as a parameter 
in (4.1), (4.2). Thus, it is helpful to formulate this problem as an equivalent operator equation in a 
suitable function space (cf. [Höm97], [Hüß07], [Ver87], [Vis87] e.g.). At first, one can prove the 
existence of a unique local (in time) solution. After having proven that this solution fulfils (2.1), 
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(2.2), one gets its boundedness, and can apply continuation arguments (cf. [Hüß07] e.g.). The 
main mathematical assumptions consist in: 

• The initial value p0 fulfils (2.2). 
• The functions aij have suitable continuity, measurability and growth properties. Besides 

this, they are locally Lipschitz continuous with respect to p. 
• The Heaviside function H and the switch-off functions Gij must be substituted by suitable 

continuous regularisations. For instance, instead of H one can use Hε(s) := 0 for s ≤ 0, 
Hε(s) := s/ε for 0 < s < ε, Hε(s) := 1 for s ≥ ε. 

• The functions aij and (the regularisations of) Gij must be non-negative. 
We refer to [Höm97], [Hüß07] for detailed explanations and mathematical results. Mathematical 
results taking phase transformations and mechanical behaviour (in steel) into account can be 
found in [Höm04, 06b], [Boe07].  
Finally, the subsequent additional assumptions (besides (2.23)) for the parameters of the proposal 
(2.22) follow from the theory of ODE (existence of global solutions): 
(4.3)   sij ≥ 1   for all arguments. 
In order to ensure a unique solution for all possible initial values p0i, it is convenient to assume 
(4.4)   eij ≥ eij0 > 0  for all arguments. 
In case of eij = 0, there must be 0 ≤ rij ≤ 1. Moreover, for the initial value p0j = 0, in this case, 
there is no unique solution (cf. remark 2.7 (ii)). 

5 Parameter identification and numerical examples 

In this section, we demonstrate how to obtain the needed parameters. This can be done, using 
experimental data (see section 5.1) or transformation diagrams (see section 5.2). Clearly, the 
information being in experimental data is more complete than this one extracted from 
transformation diagrams. 

5.1 Parameter identification using experimental data 
At first, we deal with stress-free transformation of austenite into pearlite of the bearing steel 
100Cr6 (SAE 52100). Neglecting carbide precipitation, we regard this transformation as 
complete in the temperature region between 550°C and 734°C. At first, one performs some 
dilatometer experiments for isothermal transformation. From the measured length of the probes 
one obtains the phase evolution of pearlite, and the parameters of the model chosen can be 
determined by optimisation. Clearly, in case of the complete transformation austenite into 
pearlite, the evolution of pearlite p is given by 

(5.1)  p· (t) = (e(θ) + p(t))r(θ) (1 – p(t))s(θ) g(θ). 
At first, θ will be kept constant. Analogously, the models by JMAK and by LD read as 

(5.2)  p· (t) = (1 – p(t))  
n(θ)
τ(θ) (– ln(1 – p(t)) )1 - 1

n (θ) 

and 

(5.3)  p· (t) = (1 – p(t)) μ(θ), 
respectively. The dilatometer data allows to determine the pearlite evolution independently of 
any PT model assumed. Thus, the parameters e, r, s and g in (5.1), the parameters τ and n in (5.2) 
as well as the parameter μ in (5.3) can be calculated by optimisation procedures. Using data 
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provided by the Institut für Werkstofftechnik Bremen (IWT), we have obtained the following 
parameter values for the pearlitic transformation (see table 1, cf. [Wol07c] for details). 

Parameter in (5.1) Parameter in (5.2) … in (5.3) 
θ [°C] e r s g n τ μ 
550 0.34. 10-3 0.26 1,02 2.90. 10-2 1.25 49.70 2.094. 10-2 
600 17.04.10-3 0.83 1,00 19.58. 10-2 2.22 16.91 6.231. 10-2 
650 1.97. 10-3 0.76 1,00 29.59. 10-2 2.49 12.15 8.425. 10-2 
700 1000.00. 10-3 3.52 1,00 0.17. 10-2 1.85 218.18 0.4910. 10-2 

Table 1: Fitted parameters of the models (5.1), (5.2) and (5.3) for isothermal pearlitic transformations. 
Using these values obtained for discrete temperatures, one can construct piece-wise linear 
parameter functions of the temperature θ. (These functions are regarded as constantly continued 
up to the ends of the temperature interval [550, 734].) Therefore, one obtains the corresponding 
models (5.1), (5.2) and (5.3) for non-isothermal transformations (in the given temperature range). 

In case of necessity, the parameter h = h(θ· ) in (2.22) can be added in all three differential 
equations (5.1), (5.2) and (5.3). Hence, we obtain 

(5.4)   p· (t) = (e(θ) + p(t))r(θ) (1 – p(t))s(θ) g(θ) h(θ· ), 

(5.5)  p· (t) = (1 – p(t))  
n(θ)
τ(θ) (– ln(1 – p(t)) )1 - 1

n (θ) h(θ· ), 

(5.6)  p· (t) = (1 – p(t)) μ(θ) h(θ· ). 

For determining h (at first for constant cooling rates θ· ), one needs dilatometer data for linear 
cooling. Using the already determined parameter functions e, r, s, g (or τ, n or μ), the parameter h 
can be obtained for some values of cooling rates via optimisation. The results are in table 2. 

θ·  [°C/s] 0 -0.17  -0.50 -0.80 -1.00 -1.60 -2.00 -2.67 -4.01 -8.00 

h(θ· ) for (5.1) 1.00 0.24 0.50 0.68 0.40 1.00 0.37 0.87 0.75 1.00 

h(θ· ) for (5.2) 1.00 0.65  1.69 4.33 2.00 3.29 1.73 3.17 2.50 3.95 

h(θ· ) for (5.3) 1.00 0.71 2.02 4.69 2.52 4.15 1.90 3.01 2.48 3.45 

Table 2: Parameter h for the models (5.4), (5.5) and (5.6).      
Finally, from the discrete values of h, one can obtain a function by interpolation (note h(0) = 1). 
Thus, one has PT models taking the current temperature and its current derivative into account. 
We present some plots comparing the models in (5.1), (5.2) and (5.3) as well as (5.4), (5.5) and 
(5.6). In the subsequent figures, the curves are denoted by the abbreviations: 

− data – phase fraction calculated by measured data (cf. [Wol07c] for details) 
− ODE – phase fraction predicted by our proposal (5.1) 
− JMAK-DE – phase fraction predicted by the JMAK model (5.2) 
− LD-DE – phase fraction predicted by the LD model (5.3) 
− ODE h – phase fraction predicted by our proposal (5.4) 
− JMAK-DE h – phase fraction predicted by the JMAK model (5.5) 
− LD-DE h – phase fraction predicted by the LD model (5.6) 

In accordance with [Wol07c] (cf. table 3), the model (5.4) yields the second best least-square 
approximation of the curve “data”. Figure 1 (right) shows that, nevertheless, there is a larger 
point-wise abbreviation before the end of the transformation. Zooming near the beginning (see 
figure 2), one sees that the model (5.4) gives a better agreement at the beginning of PT.     
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Figure 1: Evolution of pearlite for exponential cooling – calculated by measured data 

and predicted by the models (5.1) – (5.6) 

 
Figure 2: Zoom of the pictures in fig. 1 near the beginning of PT. 

Figure 3 shows that the modified models (5.4) – (5.6), in particular (5.4), gives a better 
approximation. 

 
Figure 3: Evolution of pearlite for linear cooling – calculated by measured data 

and predicted by the models (5.1) – (5.6) 
In order to get a qualitative criterion, one can compare the least-square deviations between the 
curve obtained from the data and the curves predicted by the models ((5.1) – (5.6), e.g.) In 
[Wol07c] have compared a lot of models for PT. Here we only present the comparison of the six 
models (5.1) – (5.6) in table 3. 
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PT model (5.1) (5.2) (5.3) (5.4) (5.5) (5.6) 

∅ deviation 6.53.10-2 9.46.10-2 12.08.10-2 5.53.10-2 3.82.10-2 8.72.10-2 

ranking 3 5 6 2 1 4 

Table 3: Average least-square deviation and ranking for the PT models (5.1) – (5.6) for 25 dilatometer 
experiments for isothermal transformations (4), linear (9) and exponential (12) cooling path 

for the pearlitic transformation of the steel 100Cr6 (SAE 52100). 
The general results of the comparison are (cf. [Wol07c] for details): 

• Among all tested models which do not contain the time derivative θ· , the 
phenomenological model (5.1) gives the best least-square approximation of the phase 
evolution. 

• Among all tested models, the model (5.4) gives the second best least-square 
approximation of the phase evolution. For moderate cooling rates, the model (5.4) gives 
the best least-square approximation of the phase evolution.  

For comparison of different PT models we also refer to [Rét97], [Böh04], [Dac03]. As pointed 
out in section 3, PT generally depend on stress. For determining the stress dependence of the 
coefficients e, r, s, g in (5.1) as well as of n, τ in (5.2) and μ in (5.3), one needs further 
experimental data from special devises (Gleeble machine, e.g.) which can perform PT under 
controlled temperature and stress, measuring length and diameter (cf. [Ahr00, 03], [Dal04, 06a, 
b], [Nag00, 01, 02], [Wol03b, 05a, 06b] for details). For the same discrete transformation 
temperature as when having determined the values e, r, s, g, one can perform experiments under 
different stresses (tension and compression, if possible under torsion, too). As a result, by 
interpolation again one obtains the parameters as function on stress and stress direction (cf. 
[Wol06e] for details). Finally, after performing this procedure for different temperatures, one 
gets the parameters as functions of temperature and stress (and stress direction). After this, the 
obtained PT model can be tested with data obtained from experiments with different 

temperature-stress paths. If necessary, in this direction one can proceed, taking θ·  (and possibly 
pre-deformation of austenite) into account. 
Knowing the transformation parameters, one can simulate the phase evolution in work pieces. 
Here, we present some calculations for dilatometer probes, assuming spatial homogeneity. 
Contrary to usual dilatometer experiments with controlled temperature, we calculate it 
simultaneously together with the phase fractions. For this, we need the transformation parameters 
of bainitic and martensitic transformation of the steel 100Cr6 (SAE 52100). Analogously as for 
the pearlitic transformation, we get the parameters for the bainitic transformation, using 
dilatometer data for constant transformation temperature (see table 4). 

Parameter in (5.1) Parameter in (5.2) … in (5.3)
θ [°C] e r s g n τ μ 
300 1.1.10-4  0.666  1.18 1.26.10-2  2.02 268.69 0.003921 
350 1.82.10-3  0.741 1.00  2.33.10-2  2.42 148.46 0.007028 
400 5.52.10-3 0.818  1.00  6.93.10-2  2.52  54.23 0.019238 
450  9.8.10-4  0.460  1.00  13.14.10-2  1.59  15.07 0.070788 
500  1.55.10-3  0.363  1.70  12.43.10-2  1.00  20.59  0.048557

Table 4: Fitted parameters of the models (5.1), (5.2) and (5.3) for isothermal bainitic transformations 
of the steel 100Cr6 (SAE52100). 

The pearlitic and bainitic transformations are alternatively calculated with the aid of the model 
(5.1) (i.e. (2.22)) as well as with the JMAK and LD kinetics. The martensitic transformation is 
calculated by the Leblond-Devaux approach in any case. We apply the multi-phase case as in 
section 2.6.1 (cf. [Boe07] for details). The parameter μ = 5,95 of the martensitic transformation 
(cf. (2.29), (2.30), (2.52)) as well as the martensite start-temperature θms = 260°C and the 
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parameter θm0 = 102°C (cf. (2.42), (2.53)) are taken from [Wol07b]. We consider three cooling 
scenarios determined by the heat-exchange coefficient. At first, δ = 20 W/(m2 K) yields a 
complete transformation into pearlite (see figures 4, 5 and 6).  

 
Figure 4: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 20 W/(m2 K). Pearlite is calculated by the phenomenological model (5.1) 

 
Figure 5: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 20 W/(m2 K). Pearlite is calculated by the JMAK kinetics (5.2) 

 
Figure 6: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 20 W/(m2 K). Pearlite is calculated by the LD kinetics (5.3) 

The heat-exchange coefficient δ = 200 W/(m2 K) leads to a mixture of all phases (see figures 7, 
8, 9). 
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Figure 7: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 200 W/(m2 K). Pearlite and bainite are calculated by the phenomenological model (5.1) 

 
Figure 8: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 200 W/(m2 K). Pearlite and bainite are calculated by the JMAK kinetics (5.2) 

 
Figure 9: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 200 W/(m2 K). Pearlite and bainite are calculated by the LD kinetics (5.3) 

The heat-exchange coefficient δ = 600 W/(m2 K) also leads to a mixture of all phases with a 
larger part of martensite (see figures 10, 11, 12). 
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Figure 10: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 600 W/(m2 K). Pearlite and bainite are calculated by the phenomenological model (5.1) 

 
Figure 11: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 600 W/(m2 K). Pearlite and bainite are calculated by the JMAK kinetics (5.2) 

 
Figure 12: Evolution of phases and temperature for a dilatometer probe, using the heat-exchange 

coefficient δ = 600 W/(m2 K). Pearlite and bainite are calculated by the LD kinetics (5.3) 

5.2 Parameter identification using transformation diagrams 
If there are no experimental data, one can get some information about PT from IT and CCT 
diagrams (cf. [Wev54], [Ros56], [Ros72], [Pol88], [Van91], [Koh94], [Sei99], [Ber06],  for 
details). Clearly, experimental data contains more information about PT. Therefore, it is difficult 
to determine the parameters e, r, s, g of the phenomenological model (5.1), using only 
transformation diagrams. But the JMAK parameters n and τ can be determined, using the 1% 
and 99% curves in the IT diagrams. For an example of this parameter identification and of 
simulations, we refer to [Hüß07]. Here we want only sketch the general way. 
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Figure 13: Scheme of an IT diagram for an unalloyed hypoeutectoid steel 

Let us consider an unalloyed hypoeutectoid steel with its schematic isothermal transformation 
diagram (IT diagram) in figure 13. The curves are interpreted by many authors as 1% and 99% 
curves. That means the left curve indicates the time after which 1% of the corresponding phase is 
formed. For example, for constant transformation temperatures in the region between B and Ms 
this curve indicates 1% of bainite. And the right curve (in the same region) indicates the time 
after which 99% of bainite is formed (it corresponds to 1% of remaining austenite). Thus in such 
regions the JMAK coefficients n and τ can be determined in an easy way. For a chosen 
temperature θ1 one can extract the corresponding times t1 and t2 to the 1% and 99% curves, 
respectively (see figure 13). The JMAK approach leads to two equations for determining n and τ: 

(5.7) 0.01 = 1 – exp(– ( 
t1
τ(θ) )

n(θ)), 0.99 = 1 – exp(– ( 
t2
τ(θ) )

n(θ)). 

Applying this procedure to some temperature values in the transformation region (of austenite 
into bainite, e.g.), one obtains temperature-dependent values of n and τ. After interpolation, one 
gets functions of θ. 
In regions with more than two phases, this procedure must be modified. In the region between 
Ac3 and B, pre-eutectoid ferrite and pearlite can be formed. In the IT diagram, three curves are 
plotted. Clearly, the left one indicates 1% of ferrite, the right 99% of ferrite and pearlite (=1% of 
austenite). Sometimes, the middle curve is simultaneously regarded as the 99% curve of 
maximally possible ferrite and as 1% curve of pearlite. The fraction of maximally possible ferrite 

p
_

12(θ) at the corresponding transformation temperature θ2 must be determined by the lever rule, 
using an Fe-Fe3C diagram (cf. [Pol88], [Hor92], [Koh94], [Sei99], [Ber06], e.g.). Thus, one 
obtains 

(5.8)  p
_

12(θ) = 
f- 1
SE(θ) – u

 f- 1
SE(θ) – f- 1

QP(θ)
 , 

with the given carbon content u. The values of the curves fSE (“cementite line”) and fQP (“ferrite 
line”) must be taken from the Fe-Fe3C diagram. After this, one has the following equations for 
determining the JMAK parameters n2, τ2, n3, τ3: 
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(5.9) 0.01 = 1 – exp(– ( 
s1

τ2(θ) )
n

2
(θ)),  0.99 . p

_
12(θ) = 1 – exp(– ( 

s2

τ2(θ) )
n

2
(θ)), 

(5.10) 0.01 = 1 – exp(– ( 
s2

τ3(θ) )
n

3
(θ)),  0.99 . (1 – p

_
12(θ)) = 1 – exp(– ( 

s3

τ3(θ) )
n

3
(θ)). 

We refer to [Hüß07] for concrete examples and calculations. Unfortunately, the IT diagrams 
usually do not give information about the transformation of austenite into ferrite above the 
eutectoid temperature Ac3. The 99% curve is missing. Finally, the IT diagram gives the 
martensite-start temperature Ms and the temperature θ90 of 90% of martensite forming. Thus, the 
Koistinen-Marburger parameter θm0 (cf. (2.42)) can be determined by 

(5.11)  0.90 = 1 – exp(– 
Ms – θ90

θm0
 ).  

This information is sufficient for applying the KM differential equation (2.46), but not for 
applying the Leblond-Devaux approach (2.52). For this one needs experimental (dilatometer) 
data (cf. [Wol07b], e.g.). This procedure of determining parameters can be repeated for steels 
with different carbon content. After interpolating over the carbon content, one obtains the 
transformation parameters as a function of temperature and carbon content. Thus, processes like 
case hardening can be modelled. In [Wol06f] we have modelled this situation and performed 
simulations for a hypoeutectoid steel with varying carbon content over the depth of the work 
piece. This leads to partial differential equations in one space dimension. Additionally, in 
[Wol06f] different quenching scenarios (by air and like during the Jominy test) have been 
considered. 
Finally, we remark that continuous cooling temperature diagrams (CCT diagrams) can be 
exploited for determining transformation parameters, using optimisation procedures (cf. [For00] 
e.g.). 

6 Summary and conclusions 

1) We have developed a quite general phenomenological model of phase transformations (PT) in 
steel in the multi-phase case (see sections 2.1 and 2.2). This proposal generalises approaches 
presented in [Leb84, 85], [Rét98, 99b, 01], [For00]. Its advantages are: 

• simple structure capable for extensions (stress dependence, e.g.) 
• easy handling in simulations, in particular in 3d simulations. 
• The dependence on the temperature rate can be taken into account or not without 

changing the basic structure of the model. 
• First evaluations yield good results (see section 5.1). 

The involving parameters have to be identified at best by experimental data (see section 5.1).  
2) We have discussed the relation of our approach to other existing models, giving a survey (see 
sections 2.3, 2.4, 2.5). Besides this, the multi-phase case of dissolution and of forming of 
austenite has been considered (see section 2.6). 
3) Some remarks about interaction of PT with mechanical movement and temperature have been 
given, in particular concerning transformation-induced plasticity (TRIP) and stress-dependent PT 
(see section 3). Additionally, some questions arising from the mathematical side of dealing with 
PT have been touched (see section 4). 
4) We have dealt with parameter identification and simulations. Using experimental data, we 
have determined the parameter set of the model presented in (2.22). Based on this data, we have 
performed some calculations for PT of dilatometer probes made of the steel 100Cr6 (SAE 
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52100). Besides this, we have given an outline for determining transformation parameters from 
IT diagrams. Unfortunately, this information is normally incomplete. 
Performing 3d simulations and comparing with experimental data, we will test our proposal in 
more general situations, in experiments with 3d work-pieces e.g.   
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