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Abstract. In the present paper, parametric initial-value problems for diffe-
rential–algebraic (DAE) systems are investigated. It is known that initial
values of DAE systems must satisfy not only the original equations in the sys-
tem but also derivatives of these equations with respect to time. Whether or
not this actually imposes additional constraints on the initial values depends
on the particular problem.

Often the initial values are not determined uniquely, so that the resulting
degrees of freedom can be used to optimize a given performance index. For
this purpose, a class of functions is defined which will be called consistency
functions. These functions map a set of parameters, which also include those
undetermined initial values, to consistent initial values for the DAE system.

Because of frequent gradient evaluations of the performance index and
the constraints with respect to these system parameters needed by many op-
timization procedures, we state conditions such that the consistency functions
represent differentiable functions with respect to these parameters.

Several examples are provided to illustrate the verification of the theoret-
ical assumptions and their differentiability properties.
Key Words. Parametric DAE systems, consistent initial values, sensitivity
analysis.

1 Introduction

Many engineering and scientific problems are described by systems of differential–
algebraic equations (DAEs). Typical applications for such DAE systems arise in
multi–body dynamics, process engineering, electric circuit simulation, robot path
planning problems or singular and constrained arcs in optimal control problems.
Though DAE systems are easy to formulate and are close to the ’engineer’s way of
thinking’, they pose several numerical problems: DAE’s are not ODE’s; see Ref. 1.
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Besides ill-conditioning, stiffness and stability problems in the numerical solution
of such DAE systems, the calculation of consistent initial values for nonlinear DAE
systems is a demanding problem. Several methods are proposed in the literature.
Among others, techniques are discussed that are based on index reduction methods,
artificial integration steps (Ref. 2), Taylor series expansions (Ref. 3), graph theo-
retic algorithms (Ref. 4), projection methods (Ref. 5), or methods that set up the
derivative array equations (Refs. 6-7). In all of these articles, a unique solution for
the consistent initial values is assumed.

In Büskens and Gerdts (Refs. 8-9), numerical methods are discussed where con-
sistent initial values can be calculated even in the case that no unique solution exists.
The proposed methods are based on finite dimensional optimization, where the non–
uniqueness is used for an optimal exploitation of the degrees of freedom left in the
consistent initial values. An objective function to be defined and certain equality
constraints are introduced to guarantee both consistency and optimality of the free
initial values. In this article we generalize the numerical investigations of Ref. 8 to
a more general class of consistency functions. Hereby, a consistency function will
be defined as a function which maps a set of parameters or variables to a locally
uniquely defined consistent initial value for a given DAE system.

Sensitivity analysis is concerned with the behavior of solutions of a given prob-
lem with respect to parameter variations or uncertainties. Solution differentiability,
i.e., the differentiability w.r.t. these parameters, is of particular importance. The
theoretical framework for a sensitivity analysis of optimization problems has been
developed by Fiacco (Ref. 10). In this book, the main result on solution differen-
tiability is based on second order sufficient conditions (SSC) and their numerical
verification. Since the computation of consistency functions is phrased in terms of
an optimization problem, we shall be able to derive conditions which ensure, roughly
speaking, that the consistency functions become differentiable functions of special
parameters. Second order sufficient conditions (SSC) are used to proof the stability
of the solution and the existence of sensitivity differentials.

The verification of SSC and the calculation of sensitivity differentials with re-
spect to the parameters by numerical methods, has been proven to be a very pow-
erful and helpful instrument for a multitude of mathematical problems, see Büskens
(Ref. 11). The investigation of differentiability properties of consistent initial values
with respect to parameters is not only an interesting problem on its own, but also
in combination with direct shooting methods for the numerical solution of DAE
optimal control problems these sensitivity differentials play a substantial role, see
Gerdts (Ref. 12). The intention of this paper is to give the theoretical basis for the
applicability of the numerical methods mentioned before.

The paper is organized as follows: First we give a short overview on DAE systems
and some of their formulations (Section 2). The index of DAE systems and the con-
sistency of their initial values are discussed in order to define consistency functions.
This leads to a nonlinear programming problem (NLP). Well-known necessary and
second order sufficient conditions for NLPs are presented in Section 3 in order to
establish conditions such that solutions of the NLPs are locally unique. Further-
more, strong differentiability conditions for consistency functions are formulated by
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applying these results. By extracting relevant information, these conditions can be
weakened as described in Section 4. Several examples are discussed in Section 5,
which show the applicability of the proposed ideas. A short conclusion completes
the paper.

2 Overview and Formulation of the Problem

In the following we investigate parametric DAE systems in the most general implicit
form. Without loss of generality, we restrict the discussion to autonomous problems:

F (x(t), ẋ(t), p) = 0, for all t ∈ [t0, tf ], (1)

with a sufficiently smooth function F : IRn×IRn×P → IRn, P ⊆ IRm. The argument
x(t) ∈ IRn denotes the state of the dynamical system (1) at time t ∈ [t0, tf ], ẋ(t) its
derivative w.r.t. t, while p represents an additional (fixed) parameter.

If the Jacobian Fẋ := ∂F/∂ẋ is nonsingular for all t ∈ [t0, tf ], equation (1) de-
scribes an implicit ordinary differential equation system (IODE system). In the fol-
lowing we confine the discussion to problems with singular Jacobian Fẋ (Refs. 1,13).
In this case, Eq. (1) contains differential equations as well as algebraic equations
and is called a differential-algebraic equation system.

DAE systems arising from engineering applications often have a special structure.
For instance dynamic models of chemical engineering processes and electric circuits
are described by DAE systems, which are linear in ẋ:

M(x(t), p) ẋ(t) = f(x(t), p), (2)

where M(x(t), p) is singular. Mechanical multi–body systems can be transformed
to semi-explicit DAE systems:

(

I 0
0 0

)(

ẋ(t)
ẏ(t)

)

=

(

ẋ(t)
0

)

=

(

f(x(t), y(t), p)
g(x(t), y(t), p)

)

(3)

where the matrix M in (2) is characterized by a special structure. Note that only
for the differential variables x(t) ∈ IRnx a differential equation ẋ(t) = f(x(t), y(t), p)
is given explicitly and that the dimensions of y(t) and g(x(t), y(t), p) are the same.
The algebraic variable y(t) ∈ IRny is implicitly given by the algebraic constraint
0 = g(x(t), y(t), p) or their derivatives w.r.t. time. Therefore in contrast to ODE
systems initial value problems for a semi-explicit DAE system with initial values
x(t0) = x0 and y(t0) = y0 are in general not solvable for arbitrary values (x0, y0).
This holds for problems of form (1) as well as of form (2). Since the more common
formulations (2) and (3) are only special cases of (1), we restrict our considerations
to the more general implicit form (1).

The differentiation index describes a measure how hard the calculation of con-
sistent initial values is (Ref. 14):
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Definition 2.1 (Differentiation Index and Consistency) A natural number k ∈ IN0

is called the differentiation index of the DAE (1) if it is the smallest number such
that from

F (x(t), ẋ(t), p) = 0, (4a)

d

dt
F (x(t), ẋ(t), p) = 0, (4b)

...
dk

dtk
F (x(t), ẋ(t), p) = 0, (4c)

an explicit ODE system of type

ẋ(t) = Ψ(x(t), p) (5)

can be derived by algebraic manipulations. A set of initial values (x0, ẋ0) ∈ IR2n

for the DAE system (1) of differentiation index k at t = t0 is called consistent, if
(x0, ẋ0) fulfills Eqs. (4) and ẋ0 = Ψ(x0, p). We call the DAE (1) solvable if there
exist consistent initial values such that the ODE system (5) is solvable for each
consistent initial value.

The derivatives in Eq. (4) are short-hand notations. For example, it holds

d

dt
F (x(t), ẋ(t), p) = Fx(x(t), ẋ(t), p) · ẋ(t) + Fẋ(x(t), ẋ(t), p) · ẍ(t).

The higher order derivatives are defined recursively, as described in more detail in
Leimkuhler et al. (Ref. 3). In particular, notice that the kth derivative of F includes
the derivatives x, ẋ, ẍ, . . . , x(k+1). Implicitly it is assumed that these derivatives
actually exist. Furthermore, notice that a consistent initial value in general depends
on the parameters p.

Note that an ODE system (the Jacobian Fẋ is nonsingular) has the differentiation
index k = 0. Depending on the index, consistent initial values x0 yield initial values
ẋ0 for the first derivatives by equation (5) and must satisfy (4):

F (x0, ẋ0, p) = 0, (6a)

d

dt
F (x0, ẋ0, p) = 0, (6b)

...
dk

dtk
F (x0, ẋ0, p) = 0. (6c)

In general, the user may have some information about the initial state. Hence the
following problem can be stated:
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Problem 2.1 (Consistent Initial Values) Find consistent initial values (x(t0), ẋ(t0))
such that the DAE system (1) can be solved subject to an additional set of equality
constraints defined by the function ϕ : IRn × IRn × P → IRr, r ≤ n:

F (x(t), ẋ(t), p) = 0, for all t ∈ [t0, tf ], (7a)

ϕ(x(t0), ẋ(t0), p) = 0. (7b)

In the literature the special case ϕ(x(t0), ẋ(t0), p) := x(t0) − p often can be found.

Often, consistent initial values are determined uniquely by Eqs. (7). In this paper we
are particularly interested in the case where consistent initial values are not uniquely
determined for a given parameter p. For this purpose we introduce the concept of
consistency functions.

Definition 2.2 (Consistency Function) Let P ⊆ IRm and con : P → IR2n be a
function with con(p) = (con1(p), con2(p)), con1, con2 : P → IRn, that solves Problem
2.1 for all p ∈ P , i.e., F (con1(p), con2(p), p) = 0 and ϕ(con1(p), con2(p), p) = 0.
Then con is called a consistency function.

In the following we will concentrate on C1-consistency functions which have a wide
area of applications, e.g. in optimization problems and optimal control problems.
Our intention is to define a class of consistency functions for problems with both
non-unique and unique solutions. Hence our proposal is to investigate consistency
functions which are defined by the solutions of nonlinear optimization problems,
e.g.,

(NLP1(p)) min
z

g(z, p), (8a)

s.t. F (x(t0), ẋ(t0), p) = 0, (8b)

d

dt
F (x(t0), ẋ(t0), p) = 0, (8c)

...
dk

dtk
F (x(t0), ẋ(t0), p) = 0, (8d)

ϕ(x(t0), ẋ(t0), p) = 0. (8e)

The objective function g(z, p) has to be defined here appropriately for z :=

(x(t0), ẋ(t0), . . . , x
(k+1)(t0)). Let x̄(p) = (x̄0(p), . . . , x̄

(k+1)
0 (p))T be an optimal so-

lution of (8), then con(p) := (x̄0(p), ˙̄x0(p))T defines a consistency function.

In the sequel we will formulate conditions such that the consistency function
defined by the solution of (8) is a C1 function.

Please note that if no unique consistent initial value is given by the equality
constraints in (8), we have to define the objective g(z, p) in (8) such that the optimal
solution of (NLP1(p)) results in a locally unique solution.

In the sequel we tacitly assume that problem 2.1 is solvable.
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3 Strong Solution Differentiability of Consistency

Functions

A first step for the solution of problem (8) is to formulate necessary conditions.
Problem (8) represents a finite dimensional nonlinear optimization problem (NLP)
with equality constraints. Hence let

G(z, p) :=



















F (x(t0), ẋ(t0), p)
d
dt

F (x(t0), ẋ(t0), p)
...

dk

dtk
F (x(t0), ẋ(t0), p)

ϕ(x(t0), ẋ(t0), p)



















(9)

for G : IR(k+2)n × P → IR(k+1)n+r, and z defined as in (8). Then Problem (8) is of
form below:

(NLP(p)) min
z

g(z, p), (10a)

s.t. G(z, p) = 0. (10b)

Definition 3.1 (Admissible Set, Local Minimum)

(a) The set
S(p) := {z ∈ IR(k+2)n|G(z, p) = 0} (11)

is called a set of admissible variables or admissible set. A variable z ∈ S(p) is
called admissible variable.

(b) A variable z̄ ∈ S(p) is called a local, resp. strong local minimum of Problem
(10), if a neighborhood V ⊆ IR(k+2)n of z̄ exists, such that

g(z̄, p) ≤ g(z, p) for all z ∈ S(p) ∩ V

resp.
g(z̄, p) < g(z, p) for all z ∈ S(p) ∩ V, z 6= z̄.

Let us introduce the Lagrangian function for the nonlinear optimization problem
(NLP(p))

L : IR(k+2)n × IR(k+1)n+r × P −→ IR, (12a)

L(z, µ, p) := g(z, p) + µT G(z, p), (12b)

with multiplier µ ∈ IR(k+1)n+r, where (·)T denotes the transpose. Herewith first or-
der necessary optimality conditions can be formulated, cf., e.g., Fletcher (Ref. 15):
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Theorem 3.1 (Strong Necessary Optimality Conditions for (NLP(p))) Let g and
G be continuously differentiable with respect to z in a neighborhood of a local
minimum z̄ for Problem (10). Furthermore let the Jacobian Gz(z̄, p) be of full rank.
Then there exist a uniquely determined multiplier µ ∈ IR(k+1)n+r satisfying

Lz(z̄, µ, p) = gz(z̄, p) + µT Gz(z̄, p) = 0. (13)

Besides necessary conditions, second order sufficient conditions (SSC) have to be
checked to ensure the local optimality of solutions. These SSC play an important
role for selecting optimal solutions. Another important aspect of SSC appears in
the sensitivity analysis of Problem (10) where SSC are used to proof the existence
of sensitivity differentials. SSC for problems of form (NLP(p)) can be validated
numerically using linear algebra techniques.

Fiacco (Ref. 10) has derived conditions which ensure that solutions (z, µ) of Eq.
(13) become differentiable functions of the parameter p. Let us fix a reference
or nominal parameter p0 to conduct a local sensitivity analysis. Furthermore let us
consider problem (NLP(p0)) as the unperturbed or nominal problem. We assume that
there exists a local solution (z0, µ0) of the reference problem (NLP(p0)) satisfying
the necessary KKT conditions (13) for the nominal parameter p0.

As a first step let us summarize different assumptions to formulate conditions for
the solution differentiability of the optimal solutions of (8). We focus on the vector
valued function G(z, p) in Eq. (9).

Assumption 3.1

(i) Let the functions G(z, p) and g(z, p) be twice continuously differentiable with

respect to z in a neighborhood of z0 := (x0, ẋ0, . . . , x
(k+1)
0 ) for the nominal

parameter p = p0.

(ii) Let the rank of the Jacobian of G be maximal, i.e.,

rank(Gz(x0, ẋ0, . . . , x
(k+1)
0 , p0)) = (k + 1)n + r. (14)

(iii) Assume that there exists a multiplier µ0 ∈ IR(k+1)n+r, such that z0 and µ0 sat-
isfy the necessary optimality conditions of Theorem (3.1) with the Lagrangian

L(z0, µ0, p
0) = g(x0, ẋ0, . . . , x

(k+1)
0 , p0) + µT

0 G(x0, ẋ0, . . . , x
(k+1)
0 , p0). (15)

(iv) Let the functions gz(z, p), Gz(z, p) and G(z, p) be continuously differentiable
with respect to p in a neighborhood of z0 and p0.

(v) The Hessian of the Lagrangian is positive definite on

Ker(Gz(x0, ẋ0, . . . , x
(k+1)
0 , p0)). (16)
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Due to the special structure of the derivatives in Eq. (4) we find that Assumption 3.1
(i) is equivalent to

Assumption 3.1 (i’) Let the DAE in (1) be of index k. Moreover let the function
F (x, ẋ, p) be k + 2 times continuously differentiable with respect to x and ẋ, let the
function ϕ(x, ẋ, p) be twice continuously differentiable with respect to x and ẋ and
let the function g(z, p) be twice continuously differentiable with respect to z in a
neighborhood of z0 for the nominal parameter p = p0.

Similarly, Assumption 3.1 (iv) can be expressed in terms of the components of
G in (9).

Note, that if Assumptions 3.1 (i)-(iii) hold, z0 = (x0, ẋ0, . . . , x
(k+1)
0 ) and µ0 satisfy

the conditions of Theorem 3.1, especially µ0 is unique.

Then it holds, cf. Fiacco (Ref. 10):

Theorem 3.2 (Strong Sensitivity Analysis for Solutions of (NLP1(p))) Let As-
sumption 3.1 be fulfilled for the NLP (8). Then,

(a) z0 = (x0, ẋ0, . . . , x
(k+1)
0 ) is a strong local minimum of (8) and fulfills Eqs. (6).

In particular, (x0, ẋ0) is a consistent initial value,

(b) there exists a neighborhood P 0 ⊆ P of p0 and unique continuously differen-
tiable functions xi

0 : P 0 −→ IRn, i = 0, . . . , k + 1, and µ0 : P 0 −→ IR(k+1)n+r

with

(i) x
(i)
0 (p0) = x

(i)
0 , i = 0, . . . , k + 1,

(ii) µ0(p
0) = µ0,

(iii) (x0(p), . . . , x
(k+1)
0 (p)), µ0(p) satisfy the conditions in Assumption 3.1 for

the perturbed problem (NLP1(p)) for all p ∈ P 0.

In particular (x0(p), . . . , x
(k+1)
0 (p), µ0(p)) is a unique strong local mini-

mum of (NLP1(p)),

c) the first order derivatives of (x0(p), . . . , x
(k+1)
0 (p)) and µ0(p) are given by

















dx0

dp
(p0)
...

dx
(k+1)
0

dp
(p0)

dµ0

dp
(p0)

















= −
(

Lzz(z0, µ0, p
0) Gz(z0, p

0)>

Gz(z0, p
0) 0

)−1 (

Lzp(z0, µ0, p
0)

Gp(z0, p
0)

)

.

(17)

As a direct consequence of Theorem 3.2 we find:
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Theorem 3.3 (Strong Differentiability Conditions for the Consistency Function
con(p)) Let Assumptions 3.1 be fulfilled for the NLP (8) with reference parame-
ter p = p0. Then, there exists a neighborhood P 0 ⊆ P of p0 such that con(p) :=
(x0(p), ẋ0(p))T defines a C1 consistency function on P 0.

Assumption 3.1 describes sufficient conditions needed to proof the differentiability
of consistency functions defined by (8). However, we can in general not expect that
all of these conditions are fulfilled as the simple Example 3.1 shows:

Example 3.1 Let z := (x1(t0), x2(t0), . . . , x
(k+1)
1 (t0), x

(k+1)
2 (t0)) and t0 = 0:

min
z

x2
2(t0), (18a)

s.t. ẋ1(t) =

{

1
6
x3

2(t), if x2(t) ≥ 0,
−1

6
x3

2(t), if x2(t) < 0,
(18b)

x2(t) − t = 0, (18c)

x1(t0) − p = 0. (18d)

Obviously, the index of the DAE system in (18) is k = 1 and a unique solution is
given by x2(t0) = ẋ1(t0) = ẍ1(t0) = ẍ2(t0) = 0, x1(t0) = p, ẋ2(t0) = 1.
Hence z = (x1(t0), x2(t0), ẋ1(t0), ẋ2(t0), ẍ1(t0), ẍ2(t0)), we find the (NLP1(p))

min
z

x2
2(t0), (19a)

s.t. ẋ1(t0) =







1
6
x3

2(t0), if x2(t0) ≥ 0,

−1
6
x3

2(t0), if x2(t0) < 0,
(19b)

x2(t0) = t0, (19c)

ẍ1(t0) =







1
2
x2

2(t0), if x2(t0) ≥ 0,

−1
2
x2

2(t0), if x2(t0) < 0,
(19d)

ẋ2(t0) = 1, (19e)

x1(t0) = p. (19f)

Since the equation for ẍ1(t0) in (19) is not twice continuously differentiable with
respect to x2(t0), Assumption 3.1 is not fulfilled. Hence Theorem 3.2 and Theo-
rem 3.3 can not be applied. On the other hand, ẍ1(t) is not used to find consistent
initial values for the DAE system (18). Hence we can dispense with Eqs. (19) for
ẍ1(t0).
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4 Weak Solution Differentiability of Consistency

Functions

Concerning the difficulties with Example 3.1 in applying Theorem 3.2 and Theorem
3.3 we will show in this section, that the differentiability assumption 3.1 can be
appropriately weakened. The idea is to determine relevant equations for finding
consistent initial values.

First we reorder the components of the vector x(t0) of initial values and then
partition it as follows:

x(t0) = (xN(t0), x
B(t0))

T

with

xN (t0) = (xN
1 (t0), . . . , x

N
n−q(t0))

T , xN
i (t0) ∈ {x1(t0), . . . , xn(t0)},

xB(t0) = (xB
1 (t0), . . . , x

B
q (t0))

T , xB
i (t0) ∈ {x1(t0), . . . , xn(t0)}.

Here, xN (t0) denotes the vector of initial values which can be expressed by the
unspecified (free) initial values in the vector xB(t0). In the following, we use the
notation INn̄ := {1, 2, . . . , n̄}, n̄ ∈ IN.

Definition 4.1 (Degree of Freedom) Suppose that (7) is solvable. A natural num-
ber q ∈ {1, . . . , n} is called degree of freedom in the initial vector x(t0) of system (7),
i.e., the dimension of xB(t0), if it is the largest number, such that the following holds:
nE

B ∈ IN(k+1)n+r is the smallest number of equations, such that
Ḡ = (Ḡ1, . . . , ḠnE

B
)T is a collection of equations of (9), and ẑ = (ẑ1, . . . , ẑnV

B
)T is

a collection of variables, such that Ḡ(ẑ, p) = 0 can be transformed into
(

xN (t0)
ẋ(t0)

)

= G̃(xB(t0), p). (20)

Remark 4.1 Herewith, the dependent initial values xN
i (t0) are expressed as func-

tions of the free initial values xB
j (t0). The second equation in (20) corresponds to

the underlying ODE (5) and since (7) is assumed to be solvable, there always exists
a transformation like (20).

Definition 4.2 (Basis of Necessary Variables and Equations) Let q ∈ {1, . . . , n} be
the degree of freedom in (7). Let Ḡ = (Ḡ1, . . . , ḠnE

B
)T and ẑ = (ẑ1, . . . , ẑnV

B
)T be

defined as in Definition 4.1. Furthermore let z∗ = (z∗1 , . . . z
∗
nE

B

)T , z∗i ∈ {ẑ1, . . . , ẑnV
B
},

i = 1, . . . , nE
B, with Ḡz∗ nonsingular. We call the set BV ⊆ (INk+2 ∪ {0}) × INn of

tuples of indices basis of necessary variables for Problem 2.1 and BE ⊆ (INk+1 ∪
{0}) × INn of tuples of indices basis of necessary equations for Problem 2.1 if

a) (1, j) ∈ BV , if xj(t0) ∈ {xN
1 (t0), . . . , x

N
n−q(t0)},

(2, j) ∈ BV , for all j ∈ INn,

(i, j) ∈ BV , if x
(i−1)
j = di−1

dti−1 xj(t0) ∈ {z∗1 , . . . , z∗nE
B

}, i ≥ 3
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b) (0, j) ∈ BE, if ϕj(t0) ∈ {Ḡ1, . . . , ḠnE
B
},

(i, j) ∈ BE, if di−1

dti−1 Fj(x(t0), ẋ(t0), p) ∈ {Ḡ1, . . . , ḠnE
B
}.

Remark 4.2

• In the sets of tuples BV and BE, resp., the first index is associated with the
derivative and the second with the component of the vector x(t0), resp., of the
equation in (9).

• For a given problem the determination of a basis of necessary variables and
a basis of necessary equations is a demanding task, since a carefully analysis
of all functions in Problem 2.1 is necessary, compare Pantelides (Ref. 4).
The intention of this paper is the analysis of differentiability properties of
consistency functions, hence we do not discuss how to obtain these bases.

Those definitions ensure that if a basis of necessary variables and equations exist,
the system (9) can be transformed into an ODE system like (5), where the maximal
information on x(t0) is exploited by the consistency equations. Note, that neither
the basis of necessary variables nor of equations need to be unique as well as their
dimensions. Furthermore the regularity condition in Definition 4.2 ensures the ap-
plicability of the implicit function theorem and herewith the following

Theorem 4.1 (Weak Solution Differentiability) Let BV be a basis of necessary
variables of dimension nE

B, and let BE be a basis of necessary equations for Problem
2.1. Furthermore let ẑ = (ẑ1, . . . , ẑnE

B
)T be necessary variables BV and Ḡ necessary

equations BE. As collection of necessary variables and initial variables x(t0) we
define C := {ẑ1, . . . , ẑnE

B
} ∪ {x1(t0), . . . , xn(t0)} = {z1, . . . , zn̂}, n̂ = nE

B + q, and

z := (z1, . . . , zn̂)T . Suppose that (z0, µ0) satisfies Assumption 3.1 for the problem

(NLP2(p)) min
z

g(z, p), (21a)

s.t. Ḡ(z, p) = 0. (21b)

Then

(a) (z0, µ0) is a strong local minimum of (NLP2(p0)),

(b) there exists a neighborhood P 0 ⊆ P of p = p0 and unique continuously differ-
entiable functions z : P 0 −→ IR(k+2)n, µ : P 0 −→ IR(k+1)n+r with the following:

(i) z(p0) = z0,

(ii) µ(p0) = µ0,

(iii) for all p ∈ P 0: z(p), µ(p) satisfy Assumption 3.1 for the perturbed prob-
lem (NLP2(p)). In particular (z(p), µ(p)) is a unique strong local mini-
mum of (NLP2(p)),
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(c) the first order derivatives of z(p) and µ(p) are given by

(

dz
dp

(p0)
dµ

dp
(p0)

)

= −
(

Lzz(z
0, µ0) Ḡz(z

0)T

Ḡz(z
0) 0

)−1 (

Lzp(z
0, µ0)

Ḡp(z
0)

)

, (22)

where the Lagrangian L in (22) is given by

L(z, µ, p) := g(z, p) + µT Ḡ(z, p). (23)

The proof of this theorem is equivalent to that of Theorem 3.2 and will not be
discussed here. Besides the weaker assumptions, this formulation is especially ad-
vantageous in practical applications, e.g., for semi-explicit DAE systems, since the
number of variables and equations in (NLP2(p)) is generally (considerably) reduced
in comparison to (NLP1(p)).

Again as a direct consequence we find:

Theorem 4.2 (Weak Differentiability Conditions for the Consistency Function con(p))
Suppose there exist consistent initial values for Problem 2.1 and the assumptions in
Theorem 4.1 are fulfilled for a reference parameter p = p0. Without loss of gener-
ality let zi = xi(t0), zn+i = ẋi(t0) for i = 1, . . . , n and z as in Theorem 4.1. Then,
for x0(t0) = (x1(t0), . . . , xn(t0))

T , ẋ0(t0) = (ẋ1(t0), . . . , ẋn(t0))
T there exists a neigh-

borhood P 0 ⊆ P of p0 such that con(p) := (x0(p), ẋ0(p))T defines a C1 consistency
function on P 0.

This implies that for p near to p0 the unperturbed solution (z0, µ0) can be embed-
ded into a C1–family of perturbed optimal solutions (z(p), µ(p)) for (NLP(p)) with
(z(p0), µ(p0)) = (z0, µ0). Note again, that in general it is not an easy task to specify
a basis of necessary variables and a basis of necessary equations. Hence a carefully
analysis of all functions in Problem 2.1 is necessary.

5 Examples

Three different examples will be discussed in this section. In general the nominal
perturbation parameter p0 represents a fixed value. In the sequel we evaluate the
theoretical results from the previous sections in an analytical way. This helps us
to demonstrate, that the derivatives of the consistency function defined in Theorem
3.3 [resp. Theorem 4.2] calculated by formula (17) [resp. formula (22)] coincide
with a direct differentiation of the solutions obtained after evaluating the necessary
conditions (13).

Example 5.1 As the first example let us revisit Example 3.1, which could not be
solved according to Theorem 3.2 [resp. Theorem 3.3] because of the too strong
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differentiability assumptions. By defining the basis of necessary variables and equa-
tions

BV := {(1, 1), (1, 2), (2, 1), (2, 2)}, (24a)

BE := {(0, 1), (1, 1), (1, 2), (2, 2)} (24b)

we obtain for t0 = 0:

z := (x1(t0), x2(t0), ẋ1(t0), ẋ2(t0))
T , (25a)

Ḡ(z, p0) :=











ẋ1(t0) − 1
6
x2(t0)

3

x2(t0) − t0
ẋ2(t0) − 1
x1(t0) − p0











= 0, if x2(t0) ≥ 0, (25b)

Ḡ(z, p0) :=











ẋ1(t0) + 1
6
x2(t0)

3

x2(t0) − t0
ẋ2(t0) − 1
x1(t0) − p0











= 0, if x2(t0) < 0. (25c)

For µ ∈ IR4 the Lagrangian is given by L(z, µ, p0) = x2(t0)
2 + µT Ḡ(z, p0). Eval-

uating the necessary conditions of Theorem 3.1 yields Lz(z, µ, p0) = (x2(t0)
2)z +

µT Ḡz(z, p
0) = 0 and, together with the equality constraints (25), we obtain

z̄ = (p0, 0, 0, 1)T , (26a)

µ̄ = (0, 0, 0, 0)T (26b)

as a candidate for an optimal solution of

min
z

x2(t0)
2, (27a)

s.t. Ḡ(z, p0) = 0. (27b)

To check the second order sufficient conditions for z̄ and µ̄ we calculate

Lzz(z̄, µ̄, p0) =











0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0











(28)

and

Ḡz(z̄, p0) =











0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0











. (29)

Since Ḡz(z̄, p0) is of full rank we find Ker(Ḡz(z̄, p
0)) = (0, 0, 0, 0)T and the Hessian

Lzz(z̄, µ̄, p0) in (28) is positive definite on Ker(Ḡz(z̄, p0))\{0} (compare Assump-
tion 3.1.5).Hence (z̄, µ̄) is a strong local minimum of (27). Since all differentiability
properties are fulfilled we can apply Theorem 4.1 and Theorem 4.2 and find that
there exists a neighborhood P (p0) for any reference parameter p = p0 and a unique
C1 consistency function con : P (p0) −→ IR2n:

con(p) := (x0(p), ẋ0(p))T = (z1(p), z2(p), z3(p), z4(p))T. (30)
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The derivative dcon
dp

(p0) can be calculated with

Lzp(z̄, µ̄, p0) =











0
0
0
0











, Ḡp(z̄, p
0) =











0
0
0

−1











, (31)

and

(

Lzz(z̄, µ̄, p0) Ḡz(z̄, p0)T

Ḡz(z̄, p0) 0

)−1

=































0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 1 0 0 0 −2 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0































(32)

by applying Formula (22) as

dcon

dp
(p0) = (1, 0, 0, 0). (33)

This coincides with the direct differentiation of z̄ in (26) with respect to p0.

Example 5.2 (Implicit Problem) Assume the following implicitly given problem of
index k = 1:







x2(t) −x3(t) 0
−x2(t) x3(t) 0

0 0 0













ẋ1(t)
ẋ2(t)
ẋ3(t)





−







x3(t)
x1(t)

x1(t) + x2(t)





 = 0. (34)

We try to find consistent initial values for (x2(t0), x3(t0)) near to given values (p0
1, p

0
2):

min
z̃

(x2(t0) − p0
1)

2 + (x3(t0) − p0
2)

2,

subject to the DAE system (34) and its first derivatives,
(35)

where z̃ is defined by
z̃ := (x(t0), . . . , x

(k+1)(t0))
T . (36)

All differentiability assumptions hold for Theorem 3.2 and Theorem 3.3. However
we use Theorem 4.1 and Theorem 4.2 and follow the ideas of Section 4. A basis of
necessary variables and equations is given by

BV := {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1)}, (37a)

BE := {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. (37b)

This gives

z := (x1(t0), x2(t0), x3(t0), ẋ1(t0), ẋ2(t0), ẋ3(t0), ẍ1(t0))
T ,

Ḡ(z, p0) :=





















x2ẋ1 − x3 − x3ẋ2

x3ẋ2 − x1 − x2ẋ1

x2 + x1

ẋ2ẋ1 + x2ẍ1 − ẋ3 − ẋ2ẋ3 − x3ẍ2

ẋ3ẋ2 + x3ẍ2 − ẋ1 − ẋ1ẋ2 − x2ẍ1

ẋ2 + ẋ1





















= 0,
(38)
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where all components in Ḡ(z, p0) are evaluated at t0. Please note, that the compo-
nent ẍ2 occurs in (38). But, as we will see later, it turns out that this variable has
no influence on the initial values x(t0) and ẋ(t0).

For µ ∈ IR6 the Lagrangian is given by L(z, µ, p0) = (x2(t0)−p0
1)

2+(x3(t0)−p0
2)

2+
µT Ḡ(z, p0). The equality constraints from Ḡ(z, p0) = 0 in (38) and the necessary
conditions in Theorem 3.1 yield

z̄ := (−1

2
(p0

1 + p0
2),

1

2
(p0

1 + p0
2),

1

2
(p0

1 + p0
2),

1

2
,−1

2
,−1

2
, ẍ2, )

T , (39a)

µ̄ := (p0
1 − p0

2, p
0
1 − p0

2, p
0
1 − p0

2, 0, 0, 0, )
T . (39b)

The Hessian of the Lagrangian evaluated at (z̄, µ̄) is given by

Lzz(z̄, µ̄, p0) =



























0 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



























(40)

while the Jacobian of the constraints yield for β = 1
2
(p0

1 + p0
2),

Ḡz(z̄, p0) =





















0 1
2

−1
2

β −β 0 0
−1 −1

2
−1

2
−β β 0 0

1 1 0 0 0 0 0
0 ẍ2 −ẍ2 −1

2
1 −1

2
β

0 −ẍ2 ẍ2 −1
2

−1 −1
2

−β
0 0 0 1 1 0 0





















. (41)

The Jacobian Ḡz(z̄, p
0) is of maximal rank, hence the dimension of the kernel is one.

We find Ker(Ḡz(z̄, p
0)) = {v ∈ IR7 : v = (−α, α, α, 0, 0, 0, 0)T , α ∈ IR} and thus

obtain
vT Lzz(z̄, µ̄, p0)v = 4α2 (42)

for v ∈ Ker(Ḡz(z̄, p
0)). Hence, the Hessian is positive definite on Ker(Ḡz(z̄, p0))\{0}

(compare Assumption 3.1.5). Thus (z̄, µ̄) is a strong local minimum of (34). Since
all differentiability properties are fulfilled we can apply Theorem 4.1 and Theorem
4.2 and find that there exists a neighborhood P (p0) for any reference parameter
p = p0 and a unique C1 consistency function con : P (p0) −→ IR2n:

con(p) := (x0(p), ẋ0(p))T = (z1(p), z2(p), . . . , z6(p))T. (43)

With

Lzp(z̄, µ̄, p0) =



























0 0
−2 0

0 −2
0 0
0 0
0 0
0 0



























, Ḡp(z̄, p0) =





















0 0
0 0
0 0
0 0
0 0
0 0





















, (44)
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and by formula (22) the derivative dcon
dp

(p0) reads as

dcon

dp1

(p0
1) =

dcon

dp2

(p0
2) = (−1

2
,
1

2
,
1

2
, 0, 0, 0). (45)

This indicates, that small deviations in p = (p1, p2) cause the consistent initial
values for x(t0) to change. Especially x1(t0) is influenced by this perturbations
even though the deviations are only directly coupled with x2(t0) and x3(t0) in the
objective function. The derivative dcon

dp
(p0) coincides with a direct differentiation of

the first six arguments of z̄ in (39) with respect to p0.

Example 5.3 (Mathematical Pendulum) The equations of motion of a mathemat-
ical pendulum with mass m and length l = 1 are given by

ẋ1(t) = x3(t), (46a)

ẋ2(t) = x4(t), (46b)

mẋ3(t) = − 2 x5(t) x1(t), (46c)

mẋ4(t) = −mg0 − 2 x5(t) x2(t), (46d)

0 = x1(t)
2 + x2(t)

2 − 1. (46e)

Here, x1(t), . . . , x4(t) denote the differential variables and x5(t) denotes the algebraic
variable.

Threefold differentiation of the algebraic constraint 0 = x1(t)
2 + x2(t)

2 − 1 w.r.t.
time yields the possibility to transform (46) to an ODE system, hence the differen-
tiation index is k = 3. Let additional initial values

x1(t0) =
1√
2
, (47a)

x2(t0) = − 1√
2

(47b)

be given.
In the sequel we investigate the problem

min
ẑ

(x3(t0) − s)2 + (x4(t0) − s)2, (48a)

s.t. equation (46), and its derivatives up to order 3, and (47) (48b)

with ẑ defined by
ẑ := (x(t0), . . . , x

(k+1)(t0))
T . (49)

As perturbation parameter we choose p = (m, g0, s). Please note, that similar prob-
lems arise in connection with direct solution methods for optimal control problems
with DAE systems of higher index and free initial values.

All differentiability assumptions hold for Theorem 3.2 and Theorem 3.3. How-
ever, due to the high dimension we favour Theorem 4.1 and Theorem 4.2 and follow
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the ideas of Section 4. A basis of necessary variables and equations is given by

BV := {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),

(3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2)}, (50a)

BE := {(0, 1), (0, 2), (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3),

(2, 4), (2, 5), (3, 1), (3, 2), (3, 5), (4, 5)}. (50b)

For a reference parameter p0 = (m0, g0
0, s

0) this leads to the optimization variables
and equations, resp.,

z := (x1, . . . , x5, ẋ1, . . . , ẋ5, ẍ1, . . . , ẍ4,
...
x1,

...
x2)

T ,

Ḡ(z, p0) :=

































































ẋ1 − x3

ẋ2 − x4

m0ẋ3 + 2x5x1

m0ẋ4 + m0g0
0 + 2x5x2

ẍ1 − ẋ3

ẍ2 − ẋ4

m0ẍ3 + 2ẋ1x5 + 2x1ẋ5

m0ẍ4 + 2ẋ2x5 + 2x2ẋ5

2x1ẋ1 + 2x2ẋ2
...
x1 −ẍ3
...
x2 −ẍ4

2ẋ2
1 + 2x1ẍ1 + 2ẋ2

2 + 2x2ẍ2

6ẋ1ẍ1 + 2x1
...
x1 +6ẋ2ẍ2 + 2x2

...
x2

x1 − 1√
2

x2 + 1√
2

































































= 0,
(51)

where all components in z and Ḡ(z, p0) are evaluated at t0. For µ ∈ IR15 the
Lagrangian is given by L(z, µ, p0) = (x3(t0) − s0)2 + (x4(t0) − s0)2 + µT Ḡ(z, p0).
The equality constraints from Ḡ(z, p0) = 0 in (51) and the necessary conditions in
Theorem 3.1 yield µ̄ = 0 ∈ IR15 and

z̄ =









































































1√
2

− 1√
2

s0

s0

1
4
m0(

√
2g0

0 + 4(s0)2)
s0

s0

−1
2
g0
0 −

√
2(s0)2

−1
2
g0
0 +

√
2(s0)2

−3
2
m0g0

0s
0

−1
2
g0
0 −

√
2(s0)2

−1
2
g0
0 +

√
2(s0)2

s0(
√

2g0
0 − 2(s0)2)

−2s0(
√

2g0
0 + (s0)2)

s0(
√

2g0
0 − 2(s0)2)

−2s0(
√

2g0
0 + (s0)2)









































































. (52)



18

The Hessian of the Lagrangian is defined by A := Lzz(z̄, µ̄, m0, g0
0, s

0) with

A = (A)i,j =

{

2, if i = j = 3, or i = j = 4,
0, else,

(53)

while the Jacobian of the constraints yield

Ḡz(z̄, p0) =






















































0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0

β1 0 0 0
√

2

m
0 0 0 1 0 0 0 0 0 0 0 0

0 β1 0 0 −
√

2

m
0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

−3s0g0

0
0 0 0 2 s

0

m
0 β1 0 0 0

√

2

m
0 0 0 1 0 0 0

0 −3s0g0
0 0 0 2 s

0

m
0 0 β1 0 0 −

√

2

m
0 0 0 0 1 0 0

2s0 2s0 0 0 0
√

2 −
√

2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1

−β2 β2 0 0 0 4s0 4s0 0 0 0
√

2 −
√

2 0 0 0 0

−β3 2β3 0 0 0 −β4 β4 0 0 0 6s0 6s0 0 0
√

2 −
√

2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0























































(54)

with

β1 = 2(s0)2 +
1√
2
g0
0, β2 = 2

√
2(s0)2 − g0

0, (55a)

β3 = −2s0(
√

2g0
0 − 2(s0)2), β4 = 6

√
2(s0)2 − 3g0

0. (55b)

The Jacobian is of maximal rank hence the dimension of the kernel is one and given
by

Ker(Ḡz(z̄, p0)) = {v ∈ IR16 :
v = (0, 0, c2, c2, c3, c2, c2,−c4, c4, c5,−c4, c4, α, c6, α, c6)

T , α ∈ IR}
(56)with

c1 = g0
0 − 3

√
2(s0)2, c2 =

α√
2c1

, c3 =
αs0

√
2m0

c1
, (57a)

c4 = 2
αs0

c1
, c5 = −3αm0g0

0

√
2

4c1
, c6 = −α(2g0

0 + 3
√

2(s0)2)

c1
. (57b)

Furthermore we get

vT Lzz(z̄, µ̄, p0)v =
2α2

(g0
0 − 3

√
2(s0)2)2

, (58)

independent on m0, hence the Hessian is positive definite on Ker(Ḡz(z̄, p0))\{0}
(compare Assumption 3.1.5). Thus (z̄, µ̄) is a strong local minimum of (34). Since
all differentiability properties are fulfilled we can apply Theorem 4.1 and Theorem
4.2 and find that there exists a neighborhood P (p0) for any reference parameter
p = p0 and a unique C1 consistency function con : P(p0) −→ IR2n:

con(p) := (x0(p), ẋ0(p))T = (z1(p), z2(p), . . . , z10(p))T. (59)
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From B := Lzp(z̄, µ̄, m0, g0
0, s

0) with

B = (B)i,j =

{

−2, if i = 3, j = 3, or i = 4, j = 3,
0, else,

(60)

and C := Ḡp(z̄, m0, g0
0, s

0) with

C = (C)i,j =



















































−
√

2g0
0+4(s0)2

2
√

2m0 , if i = 3, j = 1,
√

2g0
0+4(s0)2

2
√

2m0 , if i = 4, j = 1,

1, if i = 4, j = 2,

− s0(
√

2g0
0+4(s0)2)−3

√
2g0

0s0

2m0 , if i = 7, j = 1,

− s0(
√

2g0
0+4(s0)2)+3

√
2g0

0s0

2m0 , if i = 8, j = 1,
0, else,

(61)

the derivative dcon
dp

(p0) reads as

dcon

dp
(p0) =









































0 0 0
0 0 0
0 0 1
0 0 −

1
4

√
2(2

√
2(s0)2 + g0

0) −1
4

√
2m0 2m0s

0 0 1
0 0 1

0 −1
2

−2
√

2s0

0 −1
2

2
√

2s0

−3
2
s0g0

0 −3
2
m0s0 −3

2
g0
0m

0









































. (62)

Again the sensitivity derivative coincides with a direct differentiation of the first ten
arguments of z̄ in (52) with respect to (m0, g0, s0).

6 Conclusions

In this article parametric differential–algebraic systems are considered. Due to the
parameter dependency of the DAE system, in general the solution and in particular
consistent initial values depend on these parameters. Therefore the concept of con-
sistency functions is introduced. A consistency function maps a given parameter to
a consistent initial value for the DAE system. This consistent initial value need not
to be unique, such that the resulting degrees of freedom in the choice of the consis-
tent value can be exploited to optimize a given performance index. This leads to
optimal consistent initial values, which play an important role in conjunction with
direct shooting methods for the numerical solution of optimal control problems with
DAE systems of higher index and free initial values, see Refs. 8,12. One type of such
consistency functions is given in Section 2. Of particular importance, e.g. for DAE
optimal control problems, is the investigation, under which conditions consistency
functions are differentiable functions with respect to the parameters. Therefore nec-
essary and sufficient conditions are stated. It turns out that these conditions are
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too restrictive in some cases. An example is given in Section 3. Another class of
consistency functions given in Section 4 is based on the idea to extract only rele-
vant information and allows to formulate weaker conditions to obtain the desired
differentiability properties. The discussion of several illustrative examples shows the
capability of our investigations.

Because the required derivatives of the DAE system can not be provided nor
computed analytically, in realistic technical applications it is often not possible to
construct a consistency function in the depicted way. Therefore, methods for the
numerical approximation of consistency functions are needed. A first approach can
be found in Büskens and Gerdts (Ref. 8). As mentioned before, differentiable consis-
tency functions can be incorporated in direct shooting techniques for the numerical
solution of DAE optimal control problems. The sensitivities, i.e. the differentials of
the consistency function w.r.t. parameters, play an import role in the calculation of
gradients and Jacobians, e.g. by means of the so called sensitivity DAE system, see
Gerdts (Ref. 12).

References

1. Petzold, L.R., Differential/Algebraic Equations are not ODE’s, SIAM Jour-
nal on Scientific and Statistical Computing, Vol. 3, pp. 367–384, 1982.

2. Brenan, K. E., Campbell, S. L., and Petzold, L. R., Numerical Solu-
tion of Initial-Value Problems in Differential-Algebraic Equations, Classics in
Applied Mathematics, SIAM, Philadelphia, Pennsylvania, Vol. 14, 1996.

3. Leimkuhler, B., Petzold, L.R., and Gear, C.W., Approximation Meth-
ods for the Consistent Initialization of Differential-Algebraic Equations, SIAM
Journal on Numerical Analysis, Vol. 28, pp. 205-226, 1991.

4. Pantelides, C.C., The Consistent Initialization of Differential-Algebraic
Equations, SIAM Journal on Scientific and Statistical Computing, Vol. 9, pp.
213-231, 1988.

5. Lamour, R., A Shooting Method for Fully Implicit Index-2 Differential-Algebraic
Equations, SIAM Journal on Scientific Computing, Vol. 18, pp. 94-114, 1997.

6. Campbell, S.L., Least Squares Completions for Nonlinear Differential Alge-
braic Equations, Numerische Mathematik, Vol. 65, pp. 77-94, 1993.

7. Campbell, S.L., Kelley, C.T., and Yeomans, K.D., Consistent Ini-
tial Conditions for Unstructured Higher Index DAEs: A Computational Study,
Proceedings Computational Engineering in Systems Applications, Lille, France,
pp. 416-421, 1996.
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Torsten Köhler, Peter Maass, Peter Wust, Martin Seebass, Januar 2001.

01–02. Parallel Algorithms for LQ Optimal Control of Discrete-Time Periodic Linear Systems:
Peter Benner, Ralph Byers, Rafael Mayo, Enrique S. Quintana-Ort́ı, Vicente Hernández,
Februar 2001.

01–03. Peter Benner, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı:
Efficient Numerical Algorithms for Balanced Stochastic Truncation, März 2001.

01–04. Peter Benner, Maribel Castillo, Enrique S. Quintana-Ort́ı:
Partial Stabilization of Large-Scale Discrete-Time Linear Control Systems, März 2001.

01–05. Stephan Dahlke:
Besov Regularity for Edge Singularities in Polyhedral Domains, Mai 2001.

01–06. Fabian Wirth:
A linearization principle for robustness with respect to time-varying perturbations, Mai
2001.



01–07. Stephan Dahlke, Wolfgang Dahmen, Karsten Urban:
Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates, Juli
2001.

01–08. Ronny Ramlau:
Morozov’s Discrepancy Principle for Tikhonov regularization of nonlinear operators, Juli
2001.

01–09. Michael Wolff:
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