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Abstract

Time-harmonic acoustic wave propagation in an inhomogeneous ocean with depth-
dependent sound speed can be modeled by the Helmholtz equation in an infinite, two-
or three-dimensional waveguide of finite height. Using variational theory in Sobolev
spaces we prove well-posedness of the corresponding scattering problem from a bounded
inhomogeneity inside such an ocean. To this end, we introduce an exterior Dirichlet-
to-Neumann operator for depth-dependent sound speed and prove boundedness, coer-
civity, and holomorphic dependence of this operator in function spaces adapted to our
weak solution theory. Analytic Fredholm theory then yields existence and uniqueness
of solution for the scattering problem for all but a countable sequence of frequencies.

1 Introduction

Propagation of sound waves inside an ocean is an active research area in applied mathematics
and engineering at least since the mid-20th century for its crucial importance for techniques
like SONAR or for oil exploration (see, e.g., the introduction of [BGWX04] or [Buc92]). After
the millenium change, precise models for sound propagation became even more important
due to the observation that man-made ocean noise pollution endangers marine mammals and
legal thresholds for emitted sound energies were set up. Checking these thresholds, e.g., for
acoustic pulses produced by an air guns, requires sufficiently accurate models yielding quan-
titatively exact simulations of sonic intensities. One approach satisfying this requirement
is to model scattering of time-harmonic acoustic waves in the ocean using the Helmholtz
equation and to discretize this equation using established approximation technique as, e.g.,
finite elements or boundary elements.

It is well-known that a sound knowledge on variation theory of weak solutions in Sobolev
spaces, in particular the existence of G̊arding inequalities, is crucial for proving convergence
of such numerical approximations, see [SS11]. However, to the best of our knowledge, weak
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solution theory for ocean scattering problems has up to now merely been set up for the
case of a constant sound speed, restricting the applicability of this approach to shallow
seas. For this reason, it is our aim in this paper is to provide rigorous theory for weak
solutions via a variational approach for wave scattering in a flat ocean with variable, depth-
dependent refractive index. The crucial and non-trivial difficulty compared to known results
for constant sound speed, see [AGL08, AGL11], is that the eigenmodes of the ocean are
not known explicitly for such a setting. In consequence, we exploit on the one hand via
estimates for these modes and their eigenvalues and, on the other hand, obtain holomorphic
dependence of the eigenvalues on the frequency from abstract perturbation theory.

Let us now introduce the model of sound propagation in the ocean investigated in the
result of the paper. The domain of interest is a waveguide Ω = Rm× (0, H), m = 2, 3, where
H > 0 is the constant depth. For points x ∈ Ω, we write

x = (x̃, xm)> with x̃ = x1 for m = 2 and x̃ = (x1, x2)> for m = 3.

If we denote by ω > 0 the angular frequency and by c : (0, H) → R the speed of sound de-
pending on the depth of the ocean, then the propagation of time-harmonic sound waves with
time-dependence exp(iωt) and small amplitude inside an inhomogeneous ocean is modeled
by the Helmholtz equation

∆u(x) +
ω2

c2(xm)
u(x) = 0 for x ∈ Ω. (1)

In this setting, a local perturbation inside the inhomogeneous waveguide Ω is modeled by a
refractive index n2 : Ω → C such that the support of the contrast q = n2 − 1 is a bounded
set D ⊂ Ω, i.e., supp(q) = D, such that sound waves in the perturbed ocean satisfy

∆u(x) +
ω2

c2(xm)
(1 + q(x))u(x) = 0 for x ∈ Ω. (2)

We assume in the following that the background sound speed c ∈ L∞(0, H) satisfies

0 < c− ≤ c(xm) ≤ c+ for almost all xm ∈ (0, H). (3)

This implies that

0 <
ω

c+

≤ ω

c(xm)
≤ ω

c−
for almost all xm ∈ (0, H). (4)

We model the free surface of the ocean by a sound-soft boundary and the seabed of the
ocean by a sound-hard boundary,

u = 0 on Γ0 := {x ∈ R3 : xm = 0} and
∂u

∂xm
= 0 on ΓH := {x ∈ R3 : xm = H}, (5)
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respectively. This setting yields a sufficiently accurate to model acoustic waves with small
amplitude in a sea with negligible seabed variation. More flexible boundary models for, e.g.,
the ocean-seabed interface exist, see, e.g., [GL97], but for simplicity we restrict ourselves to
the simpler condition Neumann condition from (5) describing a perfectly reflecting bottom.

When an incident sound field ui satisfies the unperturbed Helmholtz equation (1) subject
to the waveguide boundary conditions (5) then the inhomogeneous medium described by q
causes a scattered field us such that the total field u = ui+us solves the perturbed Helmholtz
equation (2) with contrast q, subject to u = 0 on Γ0 and ∂u/∂ν = 0 on ΓH . On interfaces
where q jumps we prescribe that both the trace and the normal derivative of u are continuous
across the interface. To ensure uniqueness of solution we further need to impose a radiation
condition on u. This condition will be constructed with the help of a modal analysis in
Section 3 below. Note that we seek for weak solutions to the scattering problem, i.e., for a
function u that is locally in H1 and satisfies∫

Ω

(
∇u · ∇v − ω2

c2(x3)
(1 + q(x))uv

)
dx = 0 for all v ∈ C∞0 (Ω).

The subsequent sections are organized as follows: Seeking solutions to (1) by separation
of variables, a Liouville eigenvalue problem turns up that we investigate in Section 2. After
showing holomorphic dependence of the eigenvalues on the frequency, we use these eigenval-
ues in Section 3 rigorously set up the scattering problem we investigate, and in Section 4
to prove spectral characterizations of Sobolev-type function spaces. Those are exploited in
Sections 5 and 6 for analyzing the exterior Dirichlet-to-Neumann operator for the waveguide
scattering problem. Finally, Section 7 contains and proves the main existence and uniqueness
result of the paper via a G̊arding inequality and analytic Fredholm theory.

2 A Liouville Eigenvalue Problem

We start by seeking solutions u to the Helmholtz equation (1) with boundary conditions (5)
by separation of variables. Separating the horizontal variable x̃ and the vertical variable
xm in the form u(x̃, xm) = w(x̃)φ(xm) one finds that w and φ need to solve the differential
equations

∆x̃w(x̃)

w(x̃)
= −φ

′′(xm)

φ(xm)
− ω2

c2(xm)
=: λ2 in Ω (6)

for some constant λ ∈ C. (Here, ∆x̃ is the m− 1-dimensional Laplacian in the variables x̃.)
We first investigate the eigenvalue problem

φ′′(xm) +

[
ω2

c2(xm)
+ λ2

]
φ(xm) = 0 in (0, H) (7)
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with boundary conditions φj(0) = 0 and φ′(H) = 0 corresponding to the boundary conditions
(5) for the solution u to the Helmholtz equation (1). To this end, we consider weak solutions
to this eigenvalue problem in the Sobolev space

H1
W (0, H) := {ψ ∈ H1(0, H) : ψ(0) = 0}.

The latter space is well-defined by the well-known continuous embedding of H1(0, H) in the
Hölder space C0,1/2(0, H). Multiplying (7) with a test function ψ ∈ H1

W ([0, H]), formally
integrating by parts and plugging in the boundary conditions for φ shows that the weak
formulation of this eigenvalue problem is to find an eigenvalue λ2 ∈ C and a corresponding
eigenfunction φ ∈ H1

W ([0, H]) such that

a(φ, ϕ) :=

∫ H

0

(
φ′ ψ

′ − ω2

c2(xm)
φψ

)
dxm

!
= λ2

∫ H

0

φψ dxm for all ψ ∈ H1
W ([0, H]). (8)

The sesquilinear form a on the left is obviously bounded in H1
W ([0, H]) and Poincaré’s in-

equality together with the compact embedding of H1
W ([0, H]) in L2(0, H) shows that a is

coercive in H1
W ([0, H]) up to a compact perturbation. Since ω/c2 is real-valued, a is moreover

symmetric, i.e., a(ϕ, ψ) = a(ψ, ϕ) for all ϕ, ψ ∈ H1
W ([0, H]). Thus, the eigenvalue theory

for self-adjoint and coercive variational problems in, e.g., [McL00, Theorem 2.7], shows that
there exists a sequence of eigenvalues {λ2

j}j∈N ⊂ R such that λ2
j → +∞ as j → ∞ and

associated eigenfunctions φj ∈ H1
W ([0, H]) that are orthonormal in L2(0, H). We order the

eigenvalues λ2
j ∈ R in increasing order, i.e., −∞ < λ2

1 ≤ λ2
2 ≤ λ2

3 ≤ . . . and define their
square roots by

λj =


√
λ2
j if λ2

j ≥ 0 and

−i
√
|λ2
j | if λ2

j < 0,
(9)

and extend the square root function from to positive real axis to a holomorphic function in
the slit complex plane with branch cut along the positive imaginary axis. The definition of
a weak derivative of a one-dimensional function in connection with the variational equation∫ H

0

[
ω2

c2(xm)
+ λ2

j

]
φj ψ dxm =

∫ H

0

φ′j ψ
′
dxm for all ψ ∈ H1

W ([0, H]).

shows that φ′j belongs toH1([0, H]). We conclude that φ ∈ H2([0, H]) and that the eigenvalue
equation

φ′′j (xm) +

[
ω2

c2(xm)
+ λ2

j

]
φj(xm) = 0

holds in L2(0, H). Since H2([0, H]) embeds continuously into the Hölder space C1,1/2([0, H])
it holds that φj ∈ C1,1/2([0, H]) satisfies the boundary conditions φj(0) = 0 and φ′(H) = 0
hold in the classical sense of a point evaluation.
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Remark 2.1. It is well-known that the eigenpairs (λj, φj)j∈N for constant background sound
speed c± are given by

λ2
j =

( π

2H
(2j − 1)

)2

− ω2

c2
±

and φj(xm) = sin
( π

2H
(2j − 1)xm

)
, xm ∈ [0, H].

Lemma 2.2. (a) For j ∈ N it holds that( π

2H
(2j − 1)

)2

− ω2

c2
−
≤ λ2

j ≤
( π

2H
(2j − 1)

)2

− ω2

c2
+

. (10)

In consequence, the absolute value |λ2
j | grows quadratically as j →∞.

(b) There are constants 0 < c < C such that cj ≤ ‖φ′j‖L2(0,H) ≤ Cj and ‖φ′j‖L2(0,H) ≤
C(1 + |λj|2)1/2 for all j ∈ N.
(c) There is C independent of j ∈ N such that |φj(xm)| ≤ C for 0 ≤ xm ≤ H.

Proof. (a) The min-max theorem implies for all j ∈ N that

λ2
j = min

Vj⊂H1
W ([0,H]),dim(Vj)=j

max
φj∈Vj ,‖φj‖=1

a(φj, φj)

= min
Vj⊂H1

W ([0,H]),dim(Vj)=j
max

φj∈Vj ,‖φj‖=1

∫ H

0

(
|φ′j|2 −

ω2

c(xm)2
|φj|2

)
dxm

≶ min
Vj⊂H1

W ([0,H]),dim(Vj)=j
max

φj∈Vj ,‖φj‖=1

∫ H

0

(
|φ′j|2 −

ω2

c2
±
|φ+
j |2
)
dxm =

( π

2H
(2j − 1)

)2

− ω2

c2
±
.

Since (π(2j − 1)/(2H))2 grows quadratically in j as j → ∞ there exists C > 0 such that
|λ2
j | ≤ Cj for all j ∈ N.

(b) By a partial integration, the boundary conditions φj(0) = 0 and φ′j(H) = 0 yield∫ H

0

|φ′j|2dxm = −
∫ H

0

φ′′j φjdxm +
[
φj φ

′
j

]H
0

=

∫ H

0

[
ω2

c2(xm)
+ λ2

j

]
|φj|2dxm. (11)

Since {φj}j∈N is an orthonormal basis in L2([0, H]), part (a) implies that

π2(2j − 1)2

4H2
+ ω2 c

2
− − c2

+

c2
+c

2
−
≤ ω2

c2
+

+ λ2
j ≤ ‖φ

′

j‖2
L2(0,H) ≤

ω2

c2
−

+ λ2
j ≤

π2(2j − 1)2

4H2
+ ω2 c

2
+ − c2

−

c2
+c

2
−

.

Thus, choosing c = π2/(2H)2 and C = π2/H2 + ω2(1/c2
− − 1/c2

+) implies that 0 < cj ≤
‖φ′j‖L2(0,H) ≤ Cj for all j ∈ N. The second estimate follows from part (a).
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(c) To show the uniform boundedness of φj we recall that (λj, φj) satisfies

φ′′j (xm) + λ2
jφj(xm) = − ω2

c2(xm)
φj(xm)︸ ︷︷ ︸

=:f(xm)

(12)

with boundary conditions φj(0) = 0 and φ′j(H) = 0. Interpreting the latter eigenvalue prob-
lem as a boundary value problem in [0, H] we choose the ansatz φj(xm) = α(xm) exp(iλjxm)
for its solution and note that

φ′j(xm) = α′(xm) exp(iλjxm) + iλjα(xm) exp(iλjxm),

φ′′j (xm) = α′′(xm) exp(iλjxm) + 2iλjα
′(xm) exp(iλjxm)− λ2

jφj(xm).

Next, we insert φ′′j (xm) into (12) to get that α′′(xm) + 2iλjα
′(xm) = exp(−iλjxm)f(xm), i.e.,

(α′(xm) exp(2iλjxm))′ = f(xm) exp(iλjxm).

Twice integrating this equation shows that

α(xm) = α(0) + α′(H)xm −
∫ xm

0

exp(−iλjs)
∫ H

s

f(t) exp(iλjt) dt ds. (13)

Since the Dirichlet boundary condition shows that α(0) = 0, we plug xm = H into the last
equation and obtain

α(H) = α′(H)H −
∫ H

0

exp(−iλjs)
∫ H

s

f(t) exp(iλjt) dt ds =: α′(H)H + C. (14)

Since α(xm) = φj(xm) exp(−iλjxm) it holds that

α′(xm) = φ′j(xm) exp(−iλjxm)− iλj exp(−iλjxm)φj(xm).

Choosing xm = H in the last equation shows that

α′(H) = −iλj exp(−iλjH)φj(H)︸ ︷︷ ︸
=α(H)

. (15)

Consequently, equation (14) and (15) imply that(
1 −H
iλj 1

)(
α(H)
α′(H)

)
=

(
C
0

)
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that is, α′(h) = −iλjC/(1 + iλjH) and, due to (13),

α(xm) = C
−iλj

1 + iλjH
xm −

∫ xm

0

exp(−iλjs)
∫ H

s

f(t) exp(iλjt) dt ds.

Plugging the last equation into the ansatz φj(xm) = α(xm) exp(iλjxm) and then applying
the Cauchy-Schwartz inequality finishes the proof.

The eigenvalues λ2
j obviously depend on the frequency ω > 0. Writing λ2

j = λ2
j(ω) we

show next that ω 7→ λ2
j(ω) can be extended as a holomorphic function into a complex open

neighborhood of R>0 in C.

Lemma 2.3. For all ω∗ > 0 there exists an open neighborhood U(ω∗) ⊂ C and and index
functions `j : U(ω∗) → N that satisfy ∪j∈N`j(ω) = N and `j(ω) 6= `′j(ω) for j 6= j′ ∈ N
and all ω ∈ U , such that the eigenvalue curves ω 7→ λ2

`j(ω)(ω) are real-analytic functions in

U(ω∗) ∩ R and extend to holomorphic functions in U(ω∗) for all j ∈ N.

Proof. We exploit results on holomorphic families of operators from [Kat95, Chapter VII,
§2 and §4]. Choose some ω∗ > 0. The differential operators L(ω)u = u′′ + ((ω∗)

2/c2)u on
(0, H) with boundary conditions u(0) = 0 and u′(H) = 0 yield a selfadjoint holomorphic
family of type (A) since u 7→ (ω2

∗/c
2)u is bounded on L2(0, H), ω∗ 7→ (ω2

∗/c
2)u is holomorphic

in ω∗ ∈ C, and the domain {u ∈ H2(0, H), v(0) = 0} of L(Ω) is independent of ω∗ ∈ C,
compare [Kat95, Ch. VII, §1.1, §2.1, Th. 2.6]. These differential operators also form of a
holomorphic family of type (B) since the associated sesquilinear form a from (8) is bounded.

From [Kat95, Ch. VII, §3.1, Example 4.23] it follows that for each eigenvalue λ2
j(ω∗),

j ∈ N, with multiplicity one that there is a complex neighborhood Uj of ω∗ such that
ω 7→ λ2

j(ω) can be extended from Uj ∩ R as a holomorphic function of ω into Uj. If λ2
j(ω∗)

is a multiple eigenvalue, then the function ω 7→ λ2
j(ω) is in general not differentiable at ω∗,

such that the eigenvalue index needs to be re-ordered to obtain smooth eigenvalue curves,
compare [Kat95, Ch. VII, §3.1, Ch. 2, Th. 6.1]. Indeed, the latter reference shows that if
λ2
j(ω∗) is a multiple eigenvalue then it has finite multiplicity and there exists a complex

neighborhood Uj of ω∗ and an index function `j : Uj ∩ R → N such that ω 7→ λ2
`j(ω)(ω)

can be extended holomorphically from Uj ∩ R into Uj. Thus, while the curves ω 7→ λ2
j(ω)

are merely piecewise analytic for real ω > 0 and the corresponding eigenvalue sheets are
piecewise holomorphic in a complex neighborhood of R>0), analyticity can be obtained by
re-ordering indices via the index functions `j.

It remains to show that the intersection of the neighborhoods Uj is non-empty. This
is certainly true for any finite union ∪Nj=1Uj with N ∈ N. Moreover, the eigenvalue esti-
mates (10) imply that the distance dj of λ2

j(ω∗) to the rest {λ2
`(ω∗), λ

2
`(ω∗) 6= λ2

j(ω∗)} of the
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spectrum of L(ω∗), i.e.,

dj =

{
λ2
j(ω)− λ2

j−1(ω) j ≥ 2,

λ2
2(ω)− λ2

1(ω) j = 1,

is bounded from below by 1 whenever j > j∗ ∈ N, with

j∗ :=

⌈
ω2
∗H

2

2π2

(
1

c2
−
− 1

c2
+

)
+
H2

2π2

⌉
.

Thus, Theorem 4.8 in [Kat95, Ch. VII], compare also (4.45) in the same chapter, implies
that for all j > j∗ the holomorphic extension of λ2

j(ω∗) has a convergence radius of at least
(1 + ‖q‖L∞(0,H))

−1. (Set ε = 2 and a = 1, b = 0, and c = ‖q‖L∞(0,H) in (4.45).) In particular,

all eigenvalues λ2
j(ω∗) extend to a holomorphic functions in U(ω∗) := ∪j∗j=1Uj ∪B(ω∗, 1).

Theorem 2.4. There exists an open complex neighborhood U of R>0 and index functions
`j : U → N such that the eigenvalue curves λ2

`j(ω)(ω) are real-analytic curves that extend
to holomorphic functions in U for all j ∈ N. For each compact subset W of U , the set
K0 = {ω ∈ W, there is j ∈ N such that λ2

j(ω) = 0} is finite.

Proof. We cover the positive real half axis [0,∞) with the neighborhoods U(ω) of ω > 0
constructed in Lemma 2.3. For each compact interval [0, `] for ` ∈ N there exists a finite sub
cover, which allows to continue the real eigenvalue functions ω 7→ λ2

`j(ω)(ω) into a complex

neighborhood of [0, n] for all j ∈ N and n ∈ N. Finally, Theorems 1.9 and 1.10 in [Kat95,
Ch. VII, §1.3] state that on compact subsets W of U either for each number ω ∈ W there
is j = j(ω) ∈ N such that λj(ω)2 = 0 or that the number of such ω is finite. Since the first
alternative obviously does not hold, the above-introduced set K0 is finite.

3 The Scattering Problem

In this section we rigorously set up the mathematical formulation of acoustic scattering in
the above-introduced ocean model, based on the eigenpairs (λj, φj)j∈N.

We first go back to the construction of solutions to the Helmholtz equation (1) by sepa-
ration of variables and note that the series

u(x̃, xm) =
∑
j∈N

c(j)wj(x̃)φj(xm) with coefficients c(j) ∈ C (16)

is a formal solution to the Helmholtz equation whenever wj : Rm−1 → C solves

∆x̃wj − λ2
jwj = 0 in Rm−1. (17)
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Thus, the eigenfunctions φj give for instance rise to plane wave-solutions uj(x; θ) = exp(iλj θ·
x̃)φj(xm) of the Helmholtz equation in Ω with direction θ ∈ Rm−1 such that |θ|2 = 1. These
so-called waveguide modes satisfy the waveguide boundary conditions at Γ0,H by construction
of φj. They are called propagating whenever λj ∈ iR (i.e., λ2

j < 0) and evanescent whenever
λj ∈ R (i.e., λ2

j > 0). The number of such propagating modes is (up to rotation or reflection)
determined by the largest integer J = J(ω, c,H) such that λ2

J < 0. Whenever λ2
j = 0, the

mode uj is obviously constant in x̃ – this somewhat exceptional will be investigated later on.
If one aims to find physically meaningful scattered fields via the series representation (16)

one additionally needs to prescribe radiation conditions for the functions wj: If iλj ∈ R>0

is purely imaginary then Sommerfeld’s radiation condition determines solutions that are
outwards radiating in any horizontal direction; if λj ∈ R>0 is positive then we prescribe that
wj must be a bounded solution to (17). Obviously, whenever λj = λ2

j = 0 for some j ∈ N
neither of two classifications applies (the corresponding mode does not depend on x̃); in this
case, we call the frequency ω > 0 an exceptional frequency. As in corresponding studies
of scattering in waveguides with constant sound speed, see, e.g., [AGL08], we exclude this
case from now on. (We will show later that such exceptional frequencies form an at most
countable set without finite accumulation point.)

Assumption 3.1. In the sequel we assume that the frequency ω > 0 is chosen such that
λ2
j 6= 0 for all j ∈ N.

Under this assumption we call a solution u to the Helmholtz equation radiating whenever
for some ρ0 > 0 > 0 and all x ∈ Ω such |x̃| > ρ0 one can represent u in the form (16) with
solutions wj to (∆x̃ − λ2

j)wj = 0 in {|x̃| > ρ0} such that

if iλj ∈ R>0 then lim
|x̃|→∞

√
x̃
(∂wj
∂|x̃|

+ λjwj

)
= 0 uniformly in

x̃

|x̃|
, (18)

whereas
if λj ∈ R>0 then wj(x̃) is uniformly bounded for |x̃| > ρ0. (19)

Remark 3.2. The sign in front of λj in the radiation condition (18) for the propagating
modes is indeed correct: As iλj ∈ R>0, i.e., λj ∈ iR<0, (18) implies that (∂wj/∂|x̃|) −
i|λj|wj → 0 as |x̃| → ∞. This difference from the usual convention in scattering theory is
due to the choice of the sign of λ2

j in (6) that respects the standard choice of Sturm-Liouville
theory.

Recall from the introduction that the contrast function q : Ω → C is supported in the
scattering object D supposed to be a bounded Lipschitz domain included in Ω. It is moreover
physically reasonable to assume that Im(q) ≥ 0, i.e., we allow for energy absorption inside
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the penetrable scatterer D. When a source emits an incident sound field ui that satisfies the
unperturbed Helmholtz equation subject to the waveguide boundary conditions,

∆ui(x) +
ω2

c2(xm)
ui(x) = 0 for x ∈ Ω, ui(x) = 0 for x ∈ Γ0 and

∂ui

∂xm
(x) = 0 for x ∈ ΓH ,

(20)
then the inhomogeneous medium described by q causes a scattered field us such that the
total field u = ui + us solves the perturbed Helmholtz equation with contrast q, i.e.,

∆u(x) +
ω2

c2(xm)
(1 + q(x))u(x) = 0 for x ∈ Ω, (21)

subject to u = 0 on Γ0 and ∂u/∂ν = 0 on ΓH and, additionally, the scattered field us is
radiating, i.e., possesses a representation of the form (16) that satisfies (18–19). On interfaces
where q jumps we prescribe that both the trace and the normal derivative of u are continuous
across the interface.

Since we are interested in existence theory of weak solutions to this scattering problem,
we define for ρ > 0 domains Ωρ = {x ∈ Ω, |x̃| < ρ} and for arbitrary Lipschitz domains
U ⊂ Ω the Sobolev space

H1
W (U) =

{
v ∈ H1(U), v|U∩{xm=0} = 0

}
.

This space is well-defined due to the well-known trace theorem in H1. For l ∈ N we further
set

H l
W,loc(Ω) =

{
v : Ω→ C, v|Ωρ ∈ H

1
W (Ωρ) ∩H l(Ωρ) for all ρ > 0

}
.

Now we can rigorously formulate the above-introduced scattering problem: Given c ∈
L∞(0, H) such that 0 < c− ≤ c ≤ c+, q ∈ L∞(Ω) such that Im(q) ≥ 0 and supp(q) ⊂ Ωρ, and
ui ∈ H2

W,loc(Ω) that satisfies the Helmholtz equation in (20) in L2
loc(Ω) and the waveguide

boundary conditions in (20) in the trace sense, we seek for u ∈ H1
W,loc(Ω) such that∫

Ω

(
∇u · ∇v − ω2

c2(xm)
(1 + q)uv

)
dx = 0 for all compactly supported v ∈ H1

W (Ω),

(22)
and, additionally, for some ρ0 > 0 it holds that

us(x) = u(x)− ui(x) =
∑
j∈N

c(j)wj(x̃)φj(xm) for all |x̃| > ρ0. (23)

The latter series is required to converge in H1(Ωρ \ Ωρ0) for all ρ > ρ0 and the solutions
wj ∈ C∞(|x̃| > ρ0) to the Helmholtz equation (∆x̃ − λ2

j)wj = 0 in |x̃| > ρ0 need to satisfy
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that{
lim|x̃|→∞

√
x̃
(
∂wj
∂|x̃| + λjwj

)
= 0 uniformly in x̃

|x̃| if iλj ∈ R>0,

wj(x̃) is uniformly bounded for |x̃| > ρ0 if λj ∈ R>0,
for all j ∈ N. (24)

Any solution to the Helmholtz equation outside Ωρ that satisfies (24) for all j ∈ N is in the
sequel called a radiating solution.

Remark 3.3 (Radiating solutions are well-defined). Any solution v that solves the Helmholtz
equation and the boundary conditions in (20) in Ω \ Ωρ0 that belongs to H1

loc(Ω \ Ωρ0) can
be represented in series form as in (23) since the eigenfunctions {φj}j∈N ⊂ H1

W (0, H) are a
complete orthonormal system of L2(0, H). Thus, the above assumption on the scattered field
us merely requires the conditions (24) to be satisfies. The series representation automatically
follows from the fact that us ∈ H1

loc(Ω\Ωρ0) satisfies the homogeneous Helmholtz equation and
the waveguide boundary conditions. In particular, the radiation and boundedness conditions
are well-defined for any such solution to the Helmholtz equation.

4 Characterizations of Function Spaces

To analyze whether the scattering problem defined in the last section possesses a unique
solution we will transform it into a variational problem on the bounded domain Ωρ for
ρ > 0 chosen so large that supp(q) ⊂ Ωρ′ for some ρ′ < ρ. To this end, we define and
analyze exterior Dirichlet-to-Neumann operators in the next section. In the remainder of
this section, we introduce several technical tools and results for those operators; note that
all results hold true even if Assumption 3.1 it not satisfied. First, we introduce the weighted
inner product

〈φ, ψ〉� =

∫ H

0

ω2

c2(xm)
φ(xm)ψ(xm) dxm on L2(0, H). (25)

Obviously, the norm defined by the inner product 〈·, ·〉� is equivalent to the standard norm
in L2(0, H), i.e., there is C > 0 such that C−1〈φ, φ〉� ≤ ‖φ‖2

L2(0,H) ≤ C〈φ, φ〉� for all φ ∈
L2(0, H). Further, as for any separable Hilbert space there exists an orthonormal basis
{ψj}j∈N of (L2(0, H), 〈·, ·〉�), i.e., the ψj form a dense subset of L2(0, H) and satisfy∫ H

0

ω2

c2(xm)
ψj(xm)ψl(xm) dxm = δj,l j, l ∈ N. (26)

11



Second, we note that the standard theory on orthogonal bases in Hilbert spaces allows to
expand a function u ∈ L2(Ωρ) into its Fourier series with respect to the basis {φj}j∈N,

u(x) =
∞∑
j=1

û(j, x̃)φj(xm) where û(j, x̃) =

∫ H

0

u(x̃, xm)φj(xm) dxm. (27)

The latter series converges in L2(Ωρ) and Parseval’s identity states that

‖u‖2
L2(Ωρ) =

∞∑
j=1

‖û(j, ·)‖2
L2({|x̃|<ρ}) for u ∈ L2(Ωρ).

Note that we use the notation û(j, x̃) also for vector-valued functions u ∈ L2(Ωρ)
l with l

components.

Lemma 4.1. (a) For u ∈ H1
W (Ωρ) it holds that the coefficients û(j, ·) from (27) belong to

H1({|x̃| < ρ}), and

‖∇x̃u‖2
L2(Ωρ) =

∑
j∈Z

‖∇x̃û(j, ·)‖2
L2({|x̃|<ρ}) .

(b) If u ∈ C2(Ωρ) then the series expansion (27) converges absolutely and uniformly. Ad-
ditionally, this expansion can be derived term by term with respect to xm and the resulting
series representation converges absolutely and uniformly,

∂u

∂xm
(x) =

∞∑
j=1

û(j, x̃)φ′j(xm) for x ∈ C(Ωρ). (28)

Proof. (a) The function u =
∑∞

j=1 û(j, x̃)φj(xm) ∈ L2(Ωρ) belongs to H1(Ωρ) if and only

if its first-order distributional derivatives all belong to L2(Ωρ). Since u 7→ ∂u/∂xi is a
continuous operation from H1(Ωρ) into L2(Ωρ), we can exchange this differential operator
for i = 1, . . . ,m− 1 with the inner product of L2(0, H),∫ H

0

∂u

∂xi
(x)φl(xm) dxm =

∂

∂xi

∫ H

0

∞∑
j=1

û(j, x̃)φj(xm)φl(xm) dxm =
∂

∂xi
û(l, x̃). (29)

The right-hand side is square-integrable, since the left-hand side can be estimated by∥∥∥∥∫ H

0

∂u

∂xi
(x̃, xm)φl(xm) dxm

∥∥∥∥2

L2({|x̃|<ρ})
≤

∥∥∥∥∥
∫ H

0

∣∣∣∣ ∂u∂xi (x̃, xm)

∣∣∣∣2 dxm
∥∥∥∥∥
L2({|x̃|<ρ})

≤
∥∥∥∥ ∂u∂xi

∥∥∥∥
L2({|x̃|<ρ},L2(0,H))

=

∥∥∥∥ ∂u∂xi
∥∥∥∥
L2(Ωρ)
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Thus, all partial derivatives x̃ 7→ ∂û(l, x̃)/∂xi for i = 1, . . . ,m − 1 are square integrable,
which implies that û(l, x̃) ∈ H1({|x̃| < ρ}). By (29) and Parseval’s identity,∥∥∥∥ ∂u∂xi

∥∥∥∥2

L2(Ωρ)

=
∞∑
j=1

∥∥∥∥ ∂

∂xi
û(l, x̃)

∥∥∥∥2

L2({|x̃|<ρ})
, i = 1, . . . ,m− 1.

(b) This follows from results on function expansions in terms of the Sturm-Liouville eigen-
functions {φj}j∈N, compare, e.g., [LS60, Chapter 2, §4-§6].

In the next next lemma we write ‖u‖2
1 ' ‖u‖2

2 to indicate the equivalence of the two norms
‖ · ‖1,2, i.e., the existence of C > 0 independent of u such that C−1‖u‖2

1 ≤ ‖u‖2
2 ≤ C‖u‖2

1.
Working in dimension m = 2 we further abbreviate the weak partial derivative ∂û(j, x1)/∂x1

by û′(j, x1).

Lemma 4.2. For m = 2 and u ∈ H1
W (Ωρ) it holds that

‖u‖2
H1(Ωρ) '

∞∑
j=1

∫ ρ

−ρ

[
(1 + |λj|2)|û(j, x1)|2 + |û′(j, x1)|2

]
dx1. (30)

Proof. It is sufficient to show the claim for u ∈ H1
W (Ωρ)∩C2(Ωρ), since H1

W (Ωρ)∩C2(Ωρ) is
a dense subset of H1

W (Ωρ). For u ∈ H1
W (Ωρ) ∩C2(Ωρ) Lemma 4.1 states that the series rep-

resentation (∂u/∂x2)(x) =
∑∞

j=1 û(j, x1)φ′j(x2) of ∂u/∂x2 holds and additionally converges
absolutely and uniformly in Ωρ.

Using the expression of the Fourier series in (27) we write uN(x) =
∑N

j=1 û(j, x1)φj(x2)

and note that uN → u as N → ∞ in H1(Ωρ) since u is twice differentiable, such that

Lemma 4.1 applies. Clearly, ‖uN‖2
L2(Ωρ) =

∫ ρ
−ρ
∑N

j=1 |û(j, x1)|2 dx1 ≤ ‖u‖2
L2(Ωρ) and

∇uN =
∂uN
∂x1

e1 +
∂uN
∂x2

e2 where e1 = (1, 0)> and e2 = (0, 1). (31)

Lemma 4.1 implies that ‖∂uN/∂x1‖2
L2(Ωρ) =

∫ ρ
−ρ
∑N

j=1 |û′(j, x1)|2 dx1. As uN → u in H1(Ωρ)
and since the norm is continuous, we can take the limit as N →∞ to obtain that

‖u‖2
L2(Ωρ) =

∫ ρ

−ρ

∞∑
j=1

|û(j, x1)|2 dx1 and

∥∥∥∥ ∂u∂x1

∥∥∥∥2

L2(Ωρ)

=

∫ ρ

−ρ

∞∑
j=1

|û′(j, x1)|2 dx1.

Moreover, a straightforward computation shows that∥∥∥∂uN
∂x2

∥∥∥2

L2(Ωρ)
=

∫ ρ

−ρ

N∑
j,j′=1

û(j′, x1)û(j′, x1) dx1

∫ H

0

φ′j(x2)φ′j′(x2) dx2.
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The variational formulation of the eigenvalue problem (7) for (λj, φj) shows that

∥∥∥∂uN
∂x2

∥∥∥2

L2(Ωρ)
=

∫ ρ

−ρ

N∑
j,j′=1

û(j, x1)û(j′, x1)

∫ H

0

( ω2

c2(x2)
+ λ2

j

)
φj(x2)φj′(x2) dx2dx1 (32)

=
N∑

j,j′=1

∫ ρ

−ρ
û(j, x1)û(j′, x1) dx1

[
λ2
j

∫ H

0

φjφj′ dxm + 〈φj, φj′〉�
]

=
N∑
j=1

λ2
j

∫ ρ

−ρ
|û(j, x1)|2 dx1 +

N∑
j,j′=1

∫ ρ

−ρ
û(j, x1)û(j′, x1) dx1 〈φj, φj′〉�

where we exploited the definition of the scalar product 〈·, ·〉� in (25). Recall that {φj}j∈N is

an orthonormal basis of L2(0, H) for the standard inner product (φ, ϕ) 7→
∫ H

0
φϕdxm. Since

〈·, ·〉� is equivalent to the standard inner product, Theorem 2.1 in Chapter VI of [GK69]
implies that the infinite matrix (〈φj, φj′〉�)∞j,j=1 ∈ CN×N defines a bounded and boundedly
invertible operator

A : l2 → l2, {aj}j∈N 7→
{
j′ 7→

∞∑
j=1

aj〈φj, φj′〉�
}
j′∈N

. (33)

Thus, the estimate
∑N

j,j′=1 û(j, x1)û(j′, x1)〈φj, φj′〉� ≤ ‖A‖l2→l2
∑N

j=1 |û(j, x1)|2 holds due to
the Cauchy-Schwartz inequality uniformly in N and implies that

∥∥∥∂uN
∂x2

∥∥∥2

L2(Ωρ)
≤

N∑
j=1

(‖A‖+ λ2
j)

∫ ρ

−ρ
|û(j, x1)|2 dx1 ≤ C

N∑
j=1

(1 + |λj|2)

∫ ρ

−ρ
|û(j, x1)|2 dx1. (34)

Since A is boundedly invertible, we moreover obtain the estimate

N∑
j,j′=1

∫ ρ

−ρ
û(j, x1)û(j′, x1) dx1 〈φj, φj′〉� ≥ c

N∑
j=1

∫ ρ

ρ

|û(j, x1)|2 dx1

for some c > 0 independent of N . As above we exploit that ∂uN/∂x2 → ∂u/∂x2 in L2(Ωρ)
and continuity of the norm in L2(Ωρ) to take the limit as N →∞ in (32) and to show that∥∥∥ ∂u

∂x2

∥∥∥2

L2(Ωρ)
≥

∞∑
j=1

(c+ λ2
j)

∫ ρ

−ρ
|û(j, x1)|2 dx1. (35)
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Now we show by a contradiction argument that there is c∗ > 0 such that∥∥∥ ∂u
∂x2

∥∥∥2

L2(Ωρ)
≥ c∗

∞∑
j=1

(1 + |λ2
j |)
∫ ρ

−ρ
|û(j, x1)|2 dx1 for all u ∈ H1

W (Ωρ). (36)

Indeed, if the latter inequality does not hold uniformly for all u ∈ H1
W (Ωρ) there is a

sequence {u(l)}l∈N ⊂ H1
W (Ωρ) such that ‖∂u(l)/∂x2‖L2(Ωρ) → 0 as l → ∞ while

∑∞
j=1(1 +

|λ2
j |)‖û(l)(j, ·)‖2 = 1 for all l ∈ N.

To derive a contradiction, we show that ‖v‖L2(Ωρ) ≤ C‖(∂v/∂xm)(x̃, ·)‖L2(Ωρ) holds
for all v ∈ H1

W (Ωρ). To prove the latter estimate we note that for all v ∈ H1
W (Ωρ) ∩

C2(Ωρ) Poincaré’s inequality in one dimension applied to v(x̃, ·) shows that ‖v(x̃, ·)‖2
L2(0,H) ≤

(H2/2)‖(∂v/∂xm)(x̃, ·)‖2
L2(0,H) and integration over x̃ implies that

‖v‖L2(Ωρ) ≤ H‖(∂v/∂xm)(x̃, ·)‖L2(Ωρ). (37)

Since H1
W (Ωρ) ∩ C2(Ωρ) is a dense subset of H1

W (Ωρ) (37) holds for all v ∈ H1
W (Ωρ). Recall

from Section 2 that J = J(ω, c,H) denotes the number of propagating waveguide modes,
that is, the number of eigenvalues λ2

j that are negative. Estimate (37) implies that

J∑
j=1

(1+|λj|2)

∫ ρ

−ρ
|û(l)(j, x1)|2 dx1 ≤ C‖u(l)‖2

L2(Ωρ) ≤ CH
∥∥∥∂u(l)

∂x2

∥∥∥2

L2(Ωρ)
→ 0 as l→∞ (38)

for C = max1≤j≤J(1 + |λj|2). (Of course, the same argument holds for any finite truncation
index; truncation at J is however sufficient for the following argument.) Thus, (35) directly
yields

∞∑
j=J+1

(1+|λ2
j |)‖û(l)(j, ·)‖2 ≤

∥∥∥∂u(l)

∂x2

∥∥∥2

L2(Ωρ)
+

J∑
j=1

(|λj|2 − c)
∫ ρ

−ρ
|û(l)(j, x1)|2 dx1︸ ︷︷ ︸

→ 0 by (38)

→ 0 as l→∞.

In consequence,
∑∞

j=1(1 + |λ2
j |)‖û(l)(j, ·)‖2 → 0 as l→∞, which contradicts our assumption

and hence proves (36). Note that the lower estimate (36) finally allows to take the limit as
N →∞ in the upper estimate (34). Together with (35) and the similar bounds for the two
other terms of ‖ · ‖H1(Ωρ) this implies the claimed norm equivalence.

For a norm equivalence corresponding to the last lemma in three dimensions we introduce
the cylindrical part Σρ of the boundary of Ωρ,

Σρ := {x ∈ Ω : |x̃| = ρ} m=3
=
{
x = (ρ cosϕ, ρ sinϕ, x3)>, ϕ ∈ (0, π), x3 ∈ (0, H)

}
. (39)
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The functions {exp(inϕ)φj}n∈Z,j∈N form an orthogonal basis of L2(Σρ). Thus, we can further
expand a function u(x) =

∑
j∈Z û(j, x̃)φj(x3) ∈ L2(Ωρ) in cylindrical coordinates as

u(x) =
∞∑
j=1

∑
n∈Z

û(j, n, r) exp(inϕ)φj(x3), x =
( ρ cosϕ
ρ sinϕ
x3

)
, (40)

where û
(
j, r
( cosϕ

sinϕ

))
=
∑

n∈Z û(j, n, r) exp(inϕ), i.e.,

û(j, n, r) =
1

2π

∫ 2π

0

∫ H

0

u(r, ϕ, x3) exp(inϕ)φj(x3) dx3, dϕ, n ∈ Z, j ∈ N, 0 < r < ρ.

The transformation formula and Parseval’s identity yield

‖u‖2
L2(Ωρ) =

∞∑
j=1

∑
n∈Z

∫ ρ

0

|û(j, n, r)|2 r dr for u ∈ L2(Ωρ).

Lemma 4.3. For m = 3 and u ∈ H1
W (Ωρ) it holds that

‖u‖2
H1(Ωρ) '

∞∑
j=1

∑
n∈Z

∫ ρ

0

[
(1 + |λj|2)|û(j, n, r)|2 + |û′(j, n, r)|2 +

n2

r2
|û(j, n, r)|2

]
r dr. (41)

Proof. The same density argument as in the proof of Lemma 4.2 for the two-dimensional case
shows that it is sufficient to prove the above norm equivalence for arbitrary u ∈ H1

W (Ωρ) ∩
C2(Ωρ). We truncate the Fourier series of dimension three in (40) to define

uN(x) =
N∑
j=1

N∑
n=−N

û(j, n, r) exp(inϕ)φj(x3), x ∈ Ωρ, N ∈ N. (42)

As in the proof of Lemma 4.2, the orthogonality of the eigenfunctions {φj}j∈N and the
trigonometric monomials implies that

‖u‖2
L2(Ωρ) = lim

N→∞

N∑
j=1

N∑
n=−N

∫ ρ

0

|û(j, n, r)|2r dr. (43)

Recall the representation of the gradient in cylinder coordinates,

∇uN =
∂uN
∂r

er +
1

r

∂uN
∂ϕ

eϕ +
∂uN
∂x3

ex3 , with er =
( cosϕ

sinϕ
0

)
, eϕ =

(
− sinϕ
cosϕ

0

)
,
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and ex3 = (0, 0, 1)>. Lemma 4.1 shows that ∇x̃u ∈ H1({|x̃| < ρ), that ‖∇x̃u‖2
L2(Ωρ) =∑

j∈N ‖∇x̃û(j, ·)‖2
L2({|x̃|<ρ}), and the transformation theorem together with the orthogonality

of the trigonometric polynomials implies that (see, e.g., (A.35) in [Kir11])

‖∇x̃û(j, ·)‖2
L2({|x̃|<ρ}) = 2π

∞∑
j=1

∑
n∈Z

∫ ρ

0

[(
1 +

n2

r2

)
|û(j, n, r)|2 + |û′(j, n, r)|2

]
r dr. (44)

Precisely the same arguments as in the proof of Lemma 4.2 finally also allow to prove the
existence of constants 0 < c < C independent of u such that

c
∞∑
j=1

(1 + |λj|2)‖û(j, ·)‖2
L2({|x̃|<ρ}) ≤

∥∥∥∂uN
∂x3

∥∥∥2

L2(Ωρ)
≤ C

∞∑
j=1

(1 + |λj|2)‖û(j, ·)‖2
L2({|x̃|<ρ}),

such that (43) yields the norm claimed equivalence.

It is well-known that the trace operator T , first defined for continuous functions u ∈
C(Σρ) by u 7→ u|Σρ , can be extended to a bounded linear operator from H1(Ωρ) into

H1/2(Σρ), see, e.g., [McL00]. We will now introduce special subspaces of this trace space
adapted to H1

W (Ωρ). To this end, note that in the two-dimensional case the boundary
Σρ = Σ+

ρ ∪Σ−ρ consists of two parts Σ±ρ = {(±ρ, x2)>, x2 ∈ (0, H)}. Thus, in the case m = 2
we set

V2 =

{
v ∈ L2(Σρ) : v|Σ±ρ =

∞∑
j=1

v̂±(j)φj,
∞∑
j=1

(1 + |λj|2)1/2|v̂±(j)|2 <∞
}
⊂ L2(Σρ)

with inner product defined by (u, v)V2 =
∑

~∈±
∑∞

j=1(1 + |λj|2)1/2û~(j)v̂(j) for u, v ∈ V2.

The dual of V2 with respect to L2(0, H) is V ′2 , a Hilbert space for the inner product (u, v)V ′2 =∑
±
∑∞

j=1(1 + |λj|2)−1/2û±(j)v̂(j), defined for u, v ∈ V ′2 . For m = 3, we set

V3 =

{
v(x) =

∞∑
j=1

∑
n∈Z

v̂(j, n) exp(inϕ)φj(x3), (ϕ, x3) ∈ (0, 2π)× (0, H) :

∞∑
j=1

∑
n∈Z

(1 + |n|2 + |λj|2)1/2|v̂(j, n)|2 <∞
}
⊂ L2(Σρ)

with inner product (u, v)V3 := 2πρ
∑∞

j=1

∑
n∈Z(1 + |n|2 + |λj|2)1/2û(j, n)v̂(j, n) for u, v ∈ V3.

The dual space V ′3 with respect to L2(Σρ) of V3 is equipped with scalar product (u, v)V ′3 =

2πρ
∑∞

j=1

∑
n∈Z(1 + |n|2 + |λj|2)−1/2û(j, n, r)v̂(j, n, r) for u, v ∈ V ′3 .
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Theorem 4.4. (Trace Operator) In dimension m = 2 and m = 3 it holds that ‖Tu‖Vm ≤
C‖u‖H1(Ωρ) for all u ∈ H1

W (Ωρ).

Proof. Again, we prove the result merely for smooth functions u in the dense set H1
W (Ωρ)∩

C1(Ω) and start with the two-dimensional case. The Cauchy-Schwarz inequality in L2(−ρ, ρ)
gives the estimate

(2ρ)2|u(j, ρ)|2 =

∫ ρ

−ρ

d

dx1

(
(x1 + ρ)2|û(j, x1)|2

)
dx1

= 2

∫ ρ

−ρ
(x1 + ρ)|û(j, x1)|2 dx1 + 2

∫ ρ

−ρ
(x1 + ρ)2 Re[u(n, ρ)u′(n, ρ)] dx1

≤ 4ρ

∫ ρ

−ρ
|û(j, x1)|2 dx1 + 2

(∫ ρ

−ρ
(x1 + ρ)2|û(j, x1)|2 dx1

∫ ρ

−ρ
(x1 + ρ)2|û′(j, x1)|2 dx1

)1/2

holds. As 2ab ≤ a2 + b2, (x1 + ρ)2 ≤ 4ρ2 for |x1| < ρ, and (1 + |λj|2)1/2 ≤ 1 + |λj|2, we
conclude that

(1 + |λj|2)1/2|u(j, ρ)|2 ≤ C(ρ)(1 + |λj|2)

∫ ρ

−ρ
|û(j, x1)|2 dx1 +

∫ ρ

−ρ
|û′(j, x1)|2 dx1.

Repeating the same computation for −ρ instead of ρ and summing over j ∈ N shows that

‖Tu‖2
V2

= ‖ u|Σρ ‖
2
V2

=
∑
j∈N

(1 + |λj|2)1/2
[
|u(j, ρ)|2 + |u(j,−ρ)|2

]
≤ C(ρ)

∑
j∈N

∫ ρ

−ρ

[
(1 + |λj|2)|û(j, x1)|2 + |û′(j, x1)|2

]
dx1

(30)

≤ C‖u‖2
H1(Ωρ).

In the three-dimensional case, the Cauchy-Schwarz inequality in L2(0, ρ) implies that

ρ2|u(j, n, ρ)|2 =

∫ ρ

0

d

dr
(r2|u(j, n, ρ)|2) dr

= 2

∫ ρ

0

r|u(j, n, ρ)|2 dr + 2 Re

∫ ρ

0

u(j, n, ρ)u′(j, n, ρ)r2dr

≤ 2

∫ ρ

0

|u(j, n, ρ)|2r dr + 2ρ
(∫ ρ

0

|u(j, n, ρ)|2r dr
)1/2(∫ ρ

0

|u′(j, n, ρ)|2r dr
)1/2

.

and, as in the proof for the two-dimensional case, we find that

(1 + |n|2 + |λj|2)1/2|u(j, n, ρ)|2 ≤ C(1 + |n|2 + |λj|2)

∫ ρ

0

[
|u(j, n, r)|2 + |u′(j, n, r)|2

]
r dr

≤ C max(1, ρ2)

∫ ρ

0

[(
1 +
|n|2

r2

)
|u(j, n, r)|2 + (1 + |λj|2)|u(j, n, r)|2 + |u′(j, n, r)|2

]
r dr.

Summation over n ∈ Z and j ∈ N, together with (41), thus implies ‖Tu‖V3 ≤ C‖u‖H1(Ωρ).
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Since V ′2,3 are the dual spaces to V2,3 for the pivot space L2(Σρ) we abbreviate

〈u, v〉 = (u, v)V ′m×Vm for u ∈ V ′m and v ∈ Vm, m = 2, 3.

Note that the definition of Vm and V ′m and the orthogonality of the basis functions {φj}j∈N
and {exp(in ·)}n∈Z implies that

|〈u, v〉| =
∣∣(u, v)V ′m×Vm

∣∣ ≤ {∑∞j=1 û(j, x1)v̂(j, x1) for m = 2,

2πρ
∑∞

j=1

∑
n∈Z û(j, n, r)v̂(j, n, r) for m = 3.

This shows that |(u, v)V ′m×Vm| ≤ ‖u‖V ′m‖v‖Vm for all u ∈ V ′m and v ∈ Vm.

5 The 3D Exterior Dirichlet-to-Neumann Operator

Our aim is now to determine a exterior Dirichlet-to-Neumann map on the surface Σρ that
maps Dirichlet boundary values in Vm to the Neumann boundary values of the (unique)
radiating solution in Ω \ Ωρ to the Helmholtz equation (1). We establish properties of this
mapping first in three dimensions, before treating to the (easier) two-dimensional case in the
next section.

As above, we assume that Assumption 3.1 holds, i.e., no eigenvalue λ2
j ∈ R vanishes.

Thus, in the three-dimensional case, i.e., m = 3, all terms in following series are well-defined,

u(x) =
∞∑
j=1

∑
n∈Z

û(j, n)H(1)
n (iλjr) exp(inϕ)φj(x3), x =

( r cosϕ
r sinϕ
x3

)
∈ Ω \ Ωρ. (45)

Hence, u defines a formal solution to the Helmholtz equation (1) in Ω \Ωρ that satisfies the
waveguide boundary conditions u(x) = 0 for x3 = 0 and ∂u/∂ν = 0 for x3 = H. Indeed, the

Hankel function H
(1)
n of the first kind and order n satisfies Bessel’s differential equation such

that
x̃ 7→ vj,n(x̃) = H(1)

n (iλjr) exp(inϕ), x̃ = r
( cosϕ

sinϕ

)
, r > 0,

satisfies the two-dimensional Helmholtz equation (∆x̃ − λ2
j)vn,j = 0 in R2 \ {0}, see [CK12].

Thus, the results from Section 2 on solutions to (1) via separation of variables imply that
each term in the series (45) solves the Helmholtz equation (1). An asymptotic expansion

of H
(1)
n for large arguments moreover shows that each term of u satisfies either the radia-

tion condition (18) or the boundedness condition (19), i.e., u is a radiating solution to the
Helmholtz equation. We can formally compute the normal derivative on Σρ as

∂u

∂r
(x) = i

∞∑
j=1

∑
n∈Z

λjû(j, n)H(1)′

n (iλjρ) exp(inϕ)φj(x3) for x =
( ρ cosϕ
ρ sinϕ
x3

)
∈ Σρ.
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This formula motivates the following definition.

Definition 5.1. (Dirichlet-to-Neumann operator) For ψ ∈ V3 with corresponding Fourier
coefficients ψ̂(j, n) we formally define the Dirichlet-to-Neumann operator Λ by

Λψ(x) := i

∞∑
j=1

∑
n∈Z

λj
H

(1)′
n (iλjρ)

H
(1)
n (iλjρ)

ψ̂(j, n) exp(inϕ)φj(x3) for x =
( ρ cosϕ
ρ sinϕ
x3

)
∈ Σρ. (46)

The following result shows that the Dirichlet-to-Neumann operator Λ is well-defined and
bounded from V3 into V ′3 .

Lemma 5.2. (1) The Dirichlet-to-Neumann operator Λ defined in (46) is well-defined and
bounded from V3 into V ′3 , i.e., ‖Λψ‖V ′3 ≤ C‖ψ‖V3 for ψ ∈ V3 and some constant C > 0.

(2) If ψ ∈ V3, then the function

u(x) =
∞∑
j=1

∑
n∈Z

ψ̂(j, n)
H

(1)
n (iλjr)

H
(1)
n (iλjρ)

exp(inϕ)φj(x3), x =
( r cosϕ
r sinϕ
x3

)
∈ Ω \ Ωρ, (47)

belongs to H1
loc(Ω\Ωρ) and there is C = C(ρ) > 0 independent of ψ such that ‖u‖H1

loc(Ω\Ωρ) ≤
C‖ψ‖V3. Further, u is a weak solution to the Helmholtz equation

∆u+
ω2

c2(xm)
u = 0 in Ω \ Ωρ (48)

and satisfies both the waveguide boundary conditions u(x) = 0 for x3 = 0 and ∂u/∂ν = 0 for
x3 = H and the radiation and boundedness conditions (24).

Proof. (1) For simplicity, we introduce the auxiliary coefficients

ŵ(j, n) =

{
ψ̂(j, n) for n = 0,

(|ψ̂(j, n)|2 + |ψ̂(j,−n)|2)−1/2 for n 6= 0.
(49)

Due to the relation H−n(z) = (−1)nHn(z) for z 6= 0 from (9.1.5) in [AS64], we compute that

H
(1)′
n (iλjρ)

H
(1)
n (iλjρ)

=
H

(1)′

−n (iλjρ)

H
(1)
−n(iλjρ)

.
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Assume now that ψ ∈ V3 is given by ψ =
∑∞

j=1

∑
n∈Z ψ̂(j, n) exp(inϕ)φj(x3). By the defini-

tion of the Dirichlet-to-Neumann operator and the Fourier coefficients ŵ(j, n) we compute

‖Λψ‖2
V ′3

=
∞∑
j=1

∑
n∈Z

(1 + |n|2 + |λj|2)−1/2

∣∣∣∣∣λjψ̂(j, n)
H

(1)′
n (iλjρ)

H
(1)
n (iλjρ)

∣∣∣∣∣
2

=
∞∑
j=1

∞∑
n=0

(1 + |n|2 + |λj|2)−1/2ŵ(j, n)2

∣∣∣∣∣λjH(1)′
n (iλjρ)

H
(1)
n (iλjρ)

∣∣∣∣∣
2

.

Note again that all terms are well-defined since λj 6= 0 for all j ∈ N by Assumption 3.1 and

since |H(1)
n (z)| is strictly positive for z > 0 and for z ∈ C with positive imaginary part (recall

that either λj or iλj are strictly positive). From the Appendix of [AGL08] we know that

H
(1)′
n (z)

H
(1)
n (z)

=
H

(1)
|n|−1(z)

H
(1)
|n| (z)

− |n|
z

for z ∈ C with arg(z) ∈ (−π/2, π/2]. (50)

This equality allows to estimate

‖Λψ‖2
V ′3
≤ C(ρ)

∞∑
j=1

∞∑
n=0

(1 + |n|2 + |λj|2)−1/2|λj|2|ŵ(j, n)|2
(∣∣∣∣∣H(1)

n−1(iλjρ)

H
(1)
n (iλjρ)

∣∣∣∣∣
2

+
n2

|λj|2ρ2

)
.

We estimate each part of the sum on the right-hand side of the last equation separately. Due
to the definition of the Fourier coefficients ŵ(j, n) in (49) we have

∑
j∈N

∑
n∈N0

(1 + |n|2 + |λj|2)−1/2|λj|2|ŵ(j, n)|2 n2

|λj|2ρ2

≤ 1

ρ2

∑
j∈N

∑
n∈Z

(1 + |n|2 + |λj|2)−1/2n2|ψ̂(j, n)|2 ≤ 1

ρ2
‖ψ‖2

V3
.

Next, by Lemma A.2 in [AGL08] we know that for z ∈ C such that |z| ≥ ρ > 0 and
arg(z) ∈ (−π/2, π/2] and n ∈ N there holds

∣∣∣H(1)
n−1(z)

H
(1)
n (z)

∣∣∣ ≤ C(ρ), for |z| ≥ ρ > 0, arg(z) ∈ (−π/2, π/2], n ∈ Z. (51)
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We recall from (10) that λ2
j ≤ Cj2. In particular, we find that

∞∑
j=1

∞∑
n=0

(1 + |n|2 + |λj|2)−1/2|λjŵ(j, n)|2
∣∣∣H(1)

n−1(iλjρ)

H
(1)
n (iλjρ)

∣∣∣2
≤ C(ρ)

∞∑
j=1

∑
n∈Z

(1 + |n|2 + |λj|2)−1/2|λj|2|ŵ(j, n)|2 ≤ C(ρ)‖ψ‖2
V3
.

(2) In this part we abbreviate the domain ΩR\Ωρ for R > ρ as Ωρ,R and the corresponding
two-dimensional domain {ρ < |x̃| < R} ⊂ R2 by Ω̃ρ,R. For |x̃| > ρ, the function u from (47)
can be written as

u(x) =
∑
j∈N

û(j, x̃)φj(x3) with û(j, x̃) =
∑
n∈Z

ψ̂(j, n)
H

(1)
n (iλjr)

H
(1)
n (iλjρ)

exp(inϕ), x̃ =
( r cosϕ
r sinϕ

)
.

We will first show that the latter series converges in H1(Ωρ,R) for arbitrary R > ρ, such that
u ∈ H1

loc(Ω \Ωρ). Since {φj}j∈N is an orthonormal basis of L2(0, H) we note, as in the proof
of Lemma 32

‖u‖2
L2(Ωρ,R) + ‖∇x̃u‖2

L2(Ωρ,R) ≤
∑
j∈N

‖û(j, ·)‖2
H1(Ω̃ρ,R)

‖φj‖2
L2(0,H) ≤

∑
j∈N

‖û(j, ·)‖2
H1(Ω̃ρ,R)

.

Moreover, the proof of Theorem 4.3 shows that

‖∂u/∂x3‖2
L2(Ωρ,R) ≤ C

∑
j∈N

(1 + |λj|2)‖û(j, ·)‖2
L2(Ω̃ρ,R)

.

Thus,

‖u‖2
H1(Ωρ,R) ≤ C

∑
j∈N

[
‖û(j, ·)‖2

H1(Ω̃ρ,R)
+ (1 + |λj|2)‖û(j, ·)‖2

L2(Ω̃ρ,R)

]
. (52)

For ξ ∈ R and a parameter k2 = 1 + maxj∈N(−λ2
j) <∞ we set

α(ξ) =

{√
k2 − ξ2 if k2 ≥ ξ2,

i
√
ξ2 − k2 if k2 ≥ ξ2.

The latter function is then used to define

ṽn,ξ(x̃) :=
H

(1)
n (rα(ξ))

H
(1)
n (ρα(ξ))

exp(inϕ) for x̃ = r
( cosϕ

sinϕ

)
∈ Ω̃ρ,R and n ∈ Z.
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It is not difficult to see that ṽn,ξ belongs to H1(Ω̃ρ,R). Moreover, Lemma A6 in [CH07] states
that there exists C > 0 independent of ξ ∈ R and n ∈ Z such that

‖ṽn,ξ‖2
H1(Ω̃ρ,R)

≤ C(ρ,R) (1 + n2 + ξ2)1/2.

Since k2 = 1 + maxj∈N(−λ2
j) it holds k2 + λ2

j > 1 for all j ∈ N such that there exists a
unique positive solution ξj > 0 to ξ2

j = k2 + λ2
j . Note that the latter equation implies that

α(ξj) = iλj and that ξ2
j ≤ C(k)(1 + |λj|2). Thus,

‖ṽn,ξj‖2
H1( ˜Ωρ,R)

≤ C(ρ,R) (1 + n2 + ξ2
j )

1/2

= C(ρ,R) (1 + n2 + k2 + λ2
j)

1/2 ≤ C(ρ,R, k) (1 + n2 + |λj|2)1/2.

Since the trigonometric monomials ϕ 7→ exp(inϕ) are orthogonal on (0, 2π), and since their
derivatives are ϕ 7→ in exp(inϕ), the functions ṽn,ξj are orthogonal for the inner product of

H1(Ω̃ρ,R). Thus, the last estimate implies that

‖û(j, ·)‖2
H1(Ω̃ρ,R)

=
∥∥∑
n∈Z

ψ̂(j, n)ṽn,ξj
∥∥2

H1(Ω̃ρ,R)

≤
∑
n∈Z

|ψ̂(j, n)|2‖ṽn,ξj‖2
H1(Ω̃ρ,R)

≤ C(ρ,R, k)
∑
n∈Z

(1 + n2 + |λj|2)1/2|ψ̂(j, n)|2.

Of course, the corresponding L2-estimate holds as well due to orthogonality,

‖û(j, ·)‖2
L2(Ω̃ρ,R)

=
∥∥∑
n∈Z

ψ̂(j, n)ṽn,ξj
∥∥2

L2(Ω̃ρ,R)
≤
∑
n∈Z

|ψ̂(j, n)|2‖ṽn,ξj‖2
L2(Ω̃ρ,R)

.

In consequence, (52) shows that

‖u‖2
H1(Ωρ,R) ≤ C

∑
j∈N

∑
n∈Z

[
(1 + n2 + |λj|2)1/2 + (1 + |λj|2)‖ṽn,ξj‖2

L2(Ω̃ρ,R)

]
|ψ̂(j, n)|2.

The L2-norm of ṽn,ξj is finally easy to estimate: First, for all j ∈ N,

‖ṽn,ξj‖2
L2(Ω̃ρ,R)

= 2π

∫ R

ρ

∣∣∣∣∣H(1)
n (iλjr)

H
(1)
n (iλjρ)

∣∣∣∣∣
2
dr

r
≤ 2π

ρ

∫ R

ρ

∣∣H(1)
n (iλjr)

∣∣2∣∣H(1)
n (iλjρ)

∣∣2 dr ≤ 2π(R− ρ)

23



since
∣∣H(1)

n (iλjr)
∣∣2/∣∣H(1)

n (iλjρ)
∣∣ ≤ 1 for r > 0 by Lemma A2 in [CH07]. Moreover, if j > J ,

i.e., if λ2
j > 0, then

∣∣H(1)
n (iλjr)

∣∣2/∣∣H(1)
n (iλjρ)

∣∣2 ≤ exp(−(r − ρ)|λj|) for r > ρ due to Lemma
A3 in [CH07] and

‖ṽn,ξj‖2
L2(Ω̃ρ,R)

≤ 2π

ρ

∫ R

ρ

e−(r−ρ)|λj | dr ≤ 2π

|λj|
(1− exp(−(R− ρ)|λj|)) ≤

4π

|λj|
≤ C

(1 + |λj|2)1/2
.

This shows that

‖u‖2
H1(Ωρ,R) ≤ C

∑
j∈N

∑
n∈Z

(1 + n2 + |λj|2)1/2|ψ̂(j, n)|2 = C‖ψ‖2
V3
.

The function u satisfies the Helmholtz equation (48) weakly by construction of the eigen-
functions ψj to (8), since ṽn,ξj solves (∆x̃ − λ2

j)ṽn,ξj = 0 in {|x̃| > ρ} and since the series
in (47) was shown to converge in H1(Ωρ,R). The same argument shows that u satisfies the
waveguide boundary conditions. Well-known properties of Hankel and Kelvin functions show
that ṽn,ξj is a radiating solution to the Helmholtz equation if 1 ≤ j ≤ J , i.e., λ2

j < 0, whereas
ṽn,ξj is bounded (and even exponentially decaying) if j ≥ J , i.e., λ2

j > 0. This implies that
u satisfies the radiation and boundedness conditions (24).

The next lemma formulates a weak coercivity result for Λ when applied to ψ ∈ V3 with
representation ψ =

∑
j,n ψ̂(j, n) exp(in ·)φj.

Lemma 5.3. There exist constants C > 0 and c > 0 such that Λ is L2-coercive at small
frequencies: For 0 < ω ≤ C it holds that

−〈Λψ, ψ〉 ≥ cω‖ψ‖2
L2(Σρ) for all ψ ∈ V3.

Proof. Due to (10) we can choose ω > 0 so small such that the lower bound (π(2j −
1)/(2H))2 − ω2/c2

− of all eigenvalues λ2
j is positive. With this choice, all roots λj are pos-

itive, too, i.e., all waveguide modes are evanescent. For ψ ∈ V3 we use again the auxiliary
coefficients ŵ(j, n) defined in (49) and note that

〈Λψ, ψ〉
2πρ

= i

∞∑
j=1

∞∑
n=0

λj
H

(1)′
n (iλjρ)

H
(1)
n (iλjρ)

|ŵ(j, n)|2 (50)
= i

∞∑
j=1

∞∑
n=0

λj

(H(1)
n−1(iλjρ)

H
(1)
n (iλjρ)

− n

iλjρ

)
|ŵ(j, n)|2.

Note that the argument of all Hankel functions in the last expression is purely imaginary
since λj > 0 for all j ∈ N. Thus, we can reformulate the last expression using the modified
Bessel functions Kn,

H
(1)
n−1(z)

H
(1)
n (z)

= i
K

(1)
n−1(|z|)

K
(1)
n (|z|)

for z ∈ iR>0, n ∈ Z.
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Note that the modified Bessel functions Kn satisfy

K−1(t)

K0(t)
≥ 1,

K0(t)

K1(t)
≥ 1− 2

t
, and 1 ≥ Kn(t)

Kn+1(t)
≥ t

t+ 2n
, t > 0, (53)

which is shown in [AGL08, Lemma A.1]. Moreover, K0(t) > 0 and K1(t) > 0 for t > 0 such
that the lower bound K0(t)/K1(t) ≥ 1− 2/t ensures the existence of a small constant c1 > 0
such that K0(t)/K1(t) ≥ c1 holds for all t ≥ λ1ρ. The increasing order 0 < λ2

1 ≤ λ2
2 ≤ . . .

hence implies that K0(λjρ)/K1(λjρ) ≥ c1 for all j ∈ N. Using this bound together with
those from (53), we obtain that

−〈Λψ, ψ〉 = 2πρ
∞∑
j=1

∞∑
n=0

(
λj
K

(1)
n−1(λjρ)

K
(1)
n (λjρ)

+
n

ρ

)
|ŵ(j, n)|2

≥ 2πρ
∞∑
j=1

[
λj|w(j, 0)|2 + c1λj|ŵ(j, 1)|2 +

∞∑
n=2

λj
( λjρ

λjρ+ 2n
+

n

λjρ

)
|
]
ŵ(j, n)|2.

Note that the binomial formula yields that

λj

(
λjρ

λjρ+ 2n
+

n

λjρ

)
≥ 2λj

(
n

λjρ+ 2n

)1/2

≥ 2λj

(
1

λjρ+ 2

)1/2

≥ 2

(
λ1

λ1ρ+ 2

)1/2

λ
1/2
j > 0,

because n 7→ n/(λjρ + 2n) and j 7→ λ1/(λ1ρ + 2) increase in n and j, respectively. By
Lemma 2.2(a) it holds for j ∈ N and 0 < ω < min{(πc−)/(4H), 1} that

3

c2
−
ω2 ≤ ω2

(
π2

4ω2H2
(2j − 1)2 − 1

c2
−

)
≤ λ2

j . (54)

Thus, for ω > 0 small enough and c∗ = 3/c2
− it holds that λ2

j ≥ c∗ω
2 for all j ∈ N.

Monotonicity of the square root function hence directly implies that λj ≥ c
1/2
∗ ω and λ

1/2
j ≥

c
1/4
∗ ω1/2 ≥ c

1/4
∗ ω since ω is smaller than one. If we further choose ω > 0 such that ω <

min(c
−1/2
∗ , (πc−)/(2H)) then λ2

j < 1 due to (54), i.e., λj ≤
√
λj. In consequence, we obtain

for some c > 0 that

−〈Λψ, ψ〉 ≥ c
∞∑
j=1

[
λj|w(j, 0)|2 + λj|ŵ(j, 1)|2 +

√
λj

∞∑
n=2

|ŵ(j, n)|2
]
≥ cω

∞∑
j=1

∑
n∈Z

|ψ̂(j, n)|2.
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Lemma 5.4. If ω > 0 then there exists C = C(ω) > 0 such that for all ψ ∈ V3 with Fourier
coefficients ψ̂(j, n) it holds that

−Re〈Λψ, ψ〉 ≥ −2πρC
J∑
j=1

∑
n∈Z

|ψ̂(j, n)|2 = −C‖ψ‖2
L2(Σρ),

where J = J(ω, c,H) denotes the number of propagating waveguide modes.

Proof. We use again the auxiliary coefficients ŵ(j, n) defined in (49) and, by the same argu-
ments as in the proof of Lemma 5.3, compute that

−Re〈Λψ, ψ〉 = 2πρRe
∞∑
j=1

∞∑
n=0

iλj

( n

iλjρ
−
H

(1)′

n−1(iλjρ)

H
(1)
n (iλjρ)

)
|ŵ(j, n)|2.

Further, since for j > J all eigenvalues λj are positive, the arguments of the proof of
Lemma 5.3 show that for j > J all terms in the series are positive. Omitting these terms
we obtain that

−Re〈Λψ, ψ〉 ≥ 2πρ Re
J∑
j=1

∞∑
n=0

iλj

(
n

iλjρ
−
H

(1)′

n−1(iλjρ)

H
(1)
n (iλjρ)

)
|ŵ(j, n)|2

≥ −2πρ
J∑
j=1

∞∑
n=0

iλj

∣∣∣∣∣H(1)′

n−1(iλjρ)

H
(1)
n (iλjρ)

∣∣∣∣∣|ŵ(j, n)|2,

because iλj > 0 for j = 1, . . . , J . Since the finite set of numbers {iλjρ}Jj=1 ⊂ R is bounded
away from zero, estimate (51) implies that∣∣∣∣∣H(1)′

n−1(iλjρ)

H
(1)
n (iλjρ)

∣∣∣∣∣ ≤ C for j = 1, . . . , J.

The constant C in the last estimate depends on ω, ρ, and of course also on the waveguide
setting. Therefore, we finally deduce that

−Re〈Λψ, ψ〉 ≥ −C
J∑
j=1

∞∑
n=0

|ŵ(j, n)|2 = −C
J∑
j=1

∑
n∈Z

|ψ̂(j, n)|2 ≥ −C‖ψ‖2
L2(Σρ).

To be able to apply analytic Fredholm theory when establishing existence theory for
the scattering problem (22–24) we finally show that Λ = Λω depends analytically (i.e.,
holomorphically) on the frequency ω.
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Lemma 5.5. For all ω∗ > 0 such that λj(ω∗) 6= 0 for j ∈ N and all ω∗ > 0 small enough to
satisfy the assumption of Lemma 5.3 there exists an open connected set U ⊂ C containing
ω∗ and ω∗ such that ω 7→ Λω is an analytic operator-valued function in U .

Proof. Due to Theorem 8.12(b) in [Muj85] we merely need to show that

〈Λu, v〉 = 2πiρ
∞∑
j=1

λj(ω)
∞∑
n∈Z

H
(1)′
n (iλj(ω)ρ)

H
(1)
n (iλ`j(ω)(ω)ρ)

û(j, n)v̂(j, n) (55)

= 2πiρ
∞∑
j=1

λ`j(ω)(ω)
∞∑
n∈Z

[H(1)′

n−1(iλ`j(ω)(ω)ρ)

H
(1)
n (iλ`j(ω)(ω)ρ)

− n

iλ`j(ω)(ω)ρ

]
û(j, n)v̂(j, n), u, v ∈ V ′3

is a holomorphic function in an open connected set U ⊂ C that satisfies the properties
claimed in the lemma. From Lemma 2.4 we know that all eigenvalue functions ω 7→ λ2

j(ω)
can be extended to some open neighborhood U0 of R>0. We choose δ1 > 0 such that
U1 = {z ∈ U, 0 ≤ Re(z) ≤ ω∗+ 1, | Im(z)| ≤ δ1} ⊂ U is connected, compact and contains ω∗
and ω∗. Due to Theorem 2.4, the set K0 = {ω ∈ U1, there is j ∈ N such that λj(ω)2 = 0} is
finite. Thus, by further reducing the parameter δ1 we can assume without loss of generality
that K0 contains merely real numbers. Recall that the square root function z 7→ z1/2 that
was defined for complex numbers via a branch cut at the positive real axis is holomorphic in
the slit complex plane C\iR≥0. The the roots ω 7→ λ`j(ω)(ω) are hence holomorphic functions
in the set U2 := {z ∈ U1, Im z < 0 if ω ∈ K0}. Further restricting this set we define the
open set U3 := {z ∈ U2, B(z, δ2) ⊂ U2} for a parameter δ2 > 0. For δ2 small enough U3

is open, connected and contains ω∗ and ω∗. Recall that the Hankel function z 7→ H
(1)
n (z)

and its derivative are holomorphic in the domain {z ∈ C, z 6= 0, −π/2 < arg(z) < π}. The

fraction z 7→ H
(1)′
n (z)/H

(1)
n (z) is holomorphic for z 6= 0 and arg(z) ∈ [0, π) since z 7→ H

(1)
n (z)

does not possess zeros in this domain. Moreover, an infinite number of zeros of z 7→ H
(1)
n (z)

in the lower complex half-plane is contained in the quadrant −π < arg(z) ≤ −π/2, while at
most n zero are contained in −π/2 < arg(z) ≤ 0, compare the paragraph on complex zeros
of the Hankel function in [AS64, pg. 373–374]. If follows from [CS82, eq. (2.8)] or [AS64,
pg. 374] that these finitely many zeros lie in the sector −π/2 < arg(z) ≤ −ε for some ε > 0,

independent of n, i.e., z 7→ H
(1)′
n (z)/H

(1)
n (z) is holomorphic in {z 6= 0, arg(z) ∈ (−ε, π+ ε)}.

Since the numbers iλj are either positive or purely imaginary with positive imaginary part
we deduce that, upon reducing the parameter δ1 > 0 for the construction of U1,2,3 a second

time, the function ω 7→ H
(1)′
n (iλ`j(ω)(ω)ρ)/H

(1)
n (iλ`j(ω)(ω)ρ) is holomorphic for ω ∈ U3.

Thus, each term in the series in (55) is holomorphic in U3 and can hence be developed
locally into a power series in ω. Holomorphy of the entire series follows from the uniform
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and absolute convergence of this series: If we set

gj(ω) = λj(ω)
∑
n∈Z

[H(1)
n−1(iλj(ω)ρ)

H
(1)
n (iλj(ω)ρ)

− n

iλj(ω)ρ

]
û(j, n)v̂(j, n) (56)

= λj(ω)
∑
n∈Z

H
(1)
n−1(iλj(ω)ρ)

H
(1)
n (iλj(ω)ρ)

û(j, n)v̂(j, n)−Rj(u, v), Rj(u, v) :=
∑
n∈Z

n

iρ
û(j, n)v̂(j, n),

then Rj(u, v) is a bounded sesquilinear form on V3 independent of ω. For all j > J(ω∗ +
1, c,H) it holds that iλj(ω) ∈ iR>0 for all ω ∈ U3 ∩ R such that∣∣∣∣∣H(1)

n−1(iλj(ω)ρ)

H
(1)
n (iλj(ω)ρ)

∣∣∣∣∣ =

∣∣∣∣Kn−1(λj(ω)ρ)

Kn(λj(ω)ρ)

∣∣∣∣ ≤ C for ω ∈ U3, n ∈ Z,

due to [AGL08, Lemma A.2 & (A10)]. For 1 ≤ j ≤ J(ω∗+1, c,H) the asymptotic expansion
of the Hankel functions for large orders, see [AS64, (9.3.1)], implies that there is a constant
C > 0 such that the last bound is uniformly valid for all j ∈ N. Thus,

|gj(ω)| ≤
∑
n∈Z

(C|λj(ω)|+ n/ρ) |û(j, n)v̂(j, n)| ≤ C‖u‖V ‖v‖V (57)

since ω 7→ λj(ω) is holomorphic on U0 and hence in particular bounded on the compactly
embedded subset U3. We deduce that the series in (56) converges absolutely and uniformly
for each ω ∈ U3. Since the analytic dependence of each series term on ω implies that each
term can locally be represented by its convergent Taylor series with coefficients d

(j)
l (u, v)

that yield bounded sesquilinear forms,

gj(ω) =
∑
n∈Z

∞∑
l=0

d
(j)
l (u, v)(ω − ω∗)l, ω ∈ U3.

Uniform convergence of the series in n ∈ Z implies that the two limits in n and l can be
interchanged. Thus, gj has a convergent Taylor expansion as well and is hence a holomorphic
function of ω ∈ U3.

As in the proof of Lemma 5.2 one shows that the series of the exterior Dirichlet-to-
Neumann operator Λ in (55) is also uniformly convergent in j ∈ N, such that the Taylor
series expansion of gj can again be interchanged with the series in j ∈ N. This finally implies
the claim of the lemma.
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6 The 2D Exterior Dirichlet-to-Neumann Operator

In this section we study the exterior Dirichlet-to-Neumann operator for a two-dimensional
setting. The derivation of its representation and the results on its boundedness, coercivity
and analyticity are rather analogous and usually easier to prove than in the three-dimensional
case treated in the last section. For this reason we will announce the corresponding results
in this section and merely indicate where the proofs differ from those in dimension three.

As in the last section we assume that Assumption 3.1 holds, i.e., no eigenvalue λ2
j ∈ R

vanishes. In the case m = 2, solutions to the Helmholtz equation (1) in Ω \ Ωρ that satisfy
the waveguide boundary conditions u(x) = 0 for x3 = 0 and ∂u/∂ν = 0 for x3 = H gained
by separation of variables take the form

u(x) =
∞∑
j=1

û(j) exp(−λj|x1|)φj(x2), x = ( x1x2 ) ∈ Ω \ Ωρ, i.e., |x1| > ρ.

Hence, u defines a formal solution to the Helmholtz equation (1) in Ω \ Ωρ. If λ2
j > 0 then

iλj ∈ iR>0 and the mode x 7→ exp(iλj|x1|)φj(x2) satisfies the boundedness condition (19).
If λ2

j < 0 then iλj ∈ R>0 and the corresponding modes satisfies the radiation condition (18).
The normal derivative on Σ±ρ = {x ∈ Ω, x1 = ±ρ} equals

∂u

∂r
(x) = ± ∂u

∂x1

(x) = −
∞∑
j=1

λj exp(λj|x1|)û(j)φj(x2) for x = ( x1x2 ) ∈ Σρ.
±.

The Dirichlet-to-Neumann operator Λ, defined by

Λψ|Σ±ρ = −
∞∑
j=1

λjψ̂
±(j)φj for ψ ∈ V2 such that ψ|Σ±ρ =

∞∑
j=1

ψ̂±(j)φj, (58)

is bounded from V2 into V ′2 since |λj| ≤ (1 + |λj|2), since

‖Λψ‖2
V ′2

=
∑
~∈±

∞∑
j=1

(1 + |λj|2)−1/2
∣∣∣Λ̂ψ~

(j)
∣∣∣2 ≤∑

~∈±

∞∑
j=1

(1 + |λj|2)1/2|ψ̂~(j)|2 = ‖u‖2
V2
. (59)

(In the two-dimensional case this holds even in case that some eigenvalue λ2
j vanishes.)

Lemma 6.1. For ψ ∈ V2, the function

u(x) =

{∑∞
j=1 ψ̂

+(j)
exp(−λjx1)

exp(λjρ)
φj(x2) x1 > ρ,∑∞

j=1 ψ̂
−(j)

exp(λjx1)

exp(−λjρ)
φj(x2) x2 < −ρ,

x = ( x1x2 ) ∈ Ω \ Ωρ, (60)
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is the unique weak solution in H1
W,loc(Ω\Ωρ) to the Helmholtz equation ∆u+(ω2/c2)u = 0 in

Ω \Ωρ that satisfies the boundary condition u = ψ on Σρ and the radiation and boundedness
conditions 24.

Proof. The function u belongs to H1
W,loc(Ω \ Ωρ) since

‖u‖2
H1
W,loc(Ω\Ωρ) '

∑
j∈N

∫
ρ<|x1|<R

(1 + |λj|2)|û(j, x1)|2 dx1

≤
∑
j∈N

(1 + |λj|2)

∣∣∣∣∫
ρ<|x1|<R

exp(−λj(|x1| − ρ)) dx1

∣∣∣∣ |ψ̂(j)|2

= 2
∑
j∈N

(1 + |λj|2)

∣∣∣∣exp(−2λjρ)− exp(−λj(R + ρ))

λj

∣∣∣∣ |ψ̂(j)|2

≤ C
∑
j∈N

(1 + |λj|2)1/2|ψ̂(j)|2.

Moreover, as in each j ∈ N, the function x1 7→
∫ H

0
u(x1, x2)φj(x2) dx2

!!! continue !!!

Lemma 6.2. There are constants C > 0 and c > 0 such that for 0 < ω ≤ C it holds that
−〈ψ,Λψ〉 ≥ Cω‖ψ‖2

V2
for all ψ ∈ V2.

Proof. As in the proof of Lemma 5.3 we choose C > 0 so small that for 0 < ω ≤ C
no propagating modes exist, i.e., λj(ω) ≥ c1 > 0 for 0 < ω ≤ C. Orthogonality of the
eigenvectors φj implies that

−〈ψ,Λψ〉 =
∑
~∈±

∑
j∈N

|λj||ψ̂~(j)|2
∑
~∈±

≥ (1 + 1/c1)−1

∞∑
j=1

(1 + |λj|2)1/2|û~(j)|2 = c‖ψ‖2
V2
.

Lemma 6.3. Assume that ω > 0 is so large that J = J(ω, c,H) propagating waveguide
modes exist. Then there exists C = C(ω) > 0 such that

−Re〈Λψ ψ〉 ≥ −C‖ψ‖2
L2(Σρ) for all ψ ∈ V2.

The proof is analogous to the proof of the corresponding result in three dimensions, i.e.,
m = 3, see Lemma 5.4. As for m = 3, the Dirichlet-to-Neumann operator Λ = Λω in
two dimensions depends analytically on the frequency ω. Proving this result is easier than
the corresponding one in Lemma 5.5 since, in two dimensions, Λ does not involve special
functions possessing singularities.
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Lemma 6.4. For all ω∗ > 0 such that λj(ω∗) 6= 0 for j ∈ N and all ω∗ > 0 small enough to
satisfy the assumption of Lemma 6.2 there exists an open connected set U ⊂ C containing
ω∗ and ω∗ such that ω 7→ Λω is an analytic operator-valued function in U .

7 Existence Theory for Weak Solutions

We have now prepared all tools to provide existence theory for weak solutions of the waveg-
uide scattering problem (22–24).

Assume that ui ∈ H1
W,loc(Ω) is an incident field that solves the Helmholtz equation (20)

and the waveguide boundary conditions. Assume further that u ∈ H1
W,loc(Ω) solves (22) for

all v ∈ H1
W (Ω) with compact support and satisfies the radiation conditions (24). Since (22)

implies that ∆u = div∇u is locally square integrable, we acn integrate by parts,

0 =

∫
Ω

(
∇u · ∇v − ω2

c2(xm)
(1 + q)uv

)
dx =

∫
Ω

(
∆u+

ω2

c2(xm)
(1 + q)u

)
v dx

for all v ∈ H1(Ω) with compact support in Ω, to show that u satisfies ∆+(ω2/c2)(1+q)u = 0
in the L2(Ωr) for every r > 0. Since ω2/c2(1 + q) is bounded, we infer that ∆u ∈ L2

loc(Ω)
and elliptic regularity results hence imply that u ∈ H2

loc(Ω). Moreover, us = u − ui is by
assumption a radiating function outside of Ωρ. Hence, Lemma (5.2) in dimension three, i.e.,
m = 3, and Lemma (6.1) for m = 2 imply that

∂us

∂ν

∣∣∣∣
Σρ

= Λ(us|Σρ) in Vm.

In consequence, the normal derivative of u = ui + us on Σρ equals

∂u

∂ν
=
∂ui

∂ν
+
∂us

∂ν
=
∂ui

∂ν
+ Λ

(
u− ui|Σρ

)
in Vm.

Thus, we multiply the Helmholtz equation by a test function v ∈ H1
W (Ωρ) and integrate by

parts in Ωρ to find that

0 =

∫
Ωρ

(
∇u · ∇v − ω2

c2(xm)
(1 + q)uv

)
dx−

∫
Σρ

∂u

∂ν
v̄ ds+

∫
Γ0,ρ

∂u

∂ν
v̄ ds+

∫
ΓH,ρ

∂u

∂ν
v̄ ds

=

∫
Ωρ

(
∇u · ∇v − ω2

c2(xm)
(1 + q)uv

)
dx−

∫
Σρ

Λ(u) v̄ ds−
∫

Σρ

(
∂ui

∂ν
− Λ(ui)

)
v̄ ds,
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where ν denotes the unit normal vector corresponding to the boundary of Ωρ. Hence, the
variational formulation of the waveguide scattering problem (22–24) is to find u ∈ H1

W (Ωρ)
solving

Bω(u, v) =

∫
Ωρ

(
∇u · ∇v − ω2

c2(xm)
(1 + q)uv

)
dx−

∫
Σρ

Λ(u) v̄ ds
!

= F (v) (61)

for all v ∈ H1
W (Ωρ), where the continuous anti-linear form F is defined as

F (v) =

∫
Σρ

(
∂ui

∂ν
− Λ(ui)

)
v̄ ds, v ∈ H1

W (Ωρ). (62)

Of course, the variational problem (61) can also be considered for arbitrary continuous anti-
linear forms F : H1

W (Ωρ)→ C.

Theorem 7.1 (Existence and uniqueness of solution). (1) The sesquilinear form Bω in (61)
and the anti-linear form F in (62) are bounded on H1

W (Ωρ) and Bω satisfies a G̊arding
inequality. Thus, the Fredholm alternative holds: Whenever the variational problem (61) for
ui = 0 possesses only the trivial solution, existence and uniqueness of solution holds for any
continuous anti-linear form F : H1

W (Ωρ)→ C.
(2) There exists ω0 > 0 such that the variational problem (61) is uniquely solvable for all

incident fields ui for all frequencies ω ∈ (0, ω0).
(3) The variational problem (61) is uniquely solvable for all incident fields ui and all

frequencies ω > 0 except possibly for a discrete set of exceptional frequencies {ωj}Jj=1 ⊂ R>ω0.
If there are infinitely many exceptional frequencies, then ωj →∞ as j →∞.

Proof. (1) Due to the boundedness of Λ, see Lemma 5.2 for m = 3 and (59) for m = 2, and
the trace estimate shown in Theorem 4.4, the boundedness of Bρ and F on H1

W (Ωρ) follows
from

|Bω(u, v)| ≤
(

1 +
ω2

c2
−

+ ‖Λ‖Vm→V ′m

)
‖u‖H1(Ωρ)‖v‖H1(Ωρ), u, v ∈ H1

W (Ωρ).

Together with the trace estimate ‖∂ui/∂ν‖H−1/2(Σρ) ≤ ‖div∇ui‖L2(Ωρ) ≤ (ω2/c2
−)‖ui‖L2(Ωρ)

the same arguments shows that

|F (v)| ≤
[
ω2

c2
−
‖ui‖L2(Ωρ) + ‖Λ‖Vm→V ′m‖u

i‖H1(Ωρ)

]
‖v‖H1(Ωρ), v ∈ H1

W (Ωρ).

The G̊arding inequality for small frequencies follows from the lower bound of Λ at arbitrary
frequencies. First, the assumption that c− < c(xm) for xm ∈ (0, H) yields

Re(Bω(u, u)) ≥ ‖u‖2
H1
W (Ωρ) −

(
ω2

c2
−

(1 + ‖q‖L∞(Ωρ)) + 1

)
‖u‖2

L2(Ωρ) − Re
(∫

Σρ

Λu v̄ ds
)
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for arbitrary u ∈ H1
W (Ωρ). Second, Lemma 5.4 for m = 3 and Lemma 6.3 for m = 2 imply

that −Re(
∫

Σρ
Λ(u) v̄ ds) ≥ −C‖u‖2

L2(Σρ) for some constant C > 0. Thus,

Re(Bω(u, u)) ≥ ‖u‖2
H1
W (Ωρ) −

(
ω2

c2
−

(1 + ‖q‖L∞(Ωρ)) + 1

)
‖u‖2

L2(Ωρ) − C‖u‖2
L2(Σρ).

Since the embedding of H1
W (Ωρ) in L2(Ωρ) is compact and since further the trace operator

from H1
W (Ωρ) into L2(Σρ) is compact due to the compact embedding of H1/2(Σρ) in L2(Σρ)

the latter estimate is indeed a G̊arding inequality for the form Bω. In consequence, the
variational problem (61) is Fredholm of index zero. In particular, uniqueness of solution
implies existence of solution together with the continuous dependence of the solution on the
right-hand side F .

(2) The L2-coercivity of Λ shown in Lemma 6.2 and Lemma 5.3 for m = 3 and m = 3,
respectively, implies that Λ is a positive operator for small frequencies. Thus,

Re(Bω(u, u)) ≥ ‖∇u‖2
L2(Ωρ) −

ω2

c2
−

(1 + ‖q‖L∞(Ωρ))‖u‖2
L2(Ωρ) + cω‖u‖2

L2(Σρ), u ∈ H1
W (Ωρ).

Poincaré’s inequality states that ‖u‖2
L2(Ωρ) ≤ (H2/2)‖∇u‖2

L2(Ωρ)m for all u ∈ H1
W (Ωρ). In

consequence,

Re(Bω(u, u)) ≥ 1

2
‖∇u‖2

L2(Ωρ) +
1

H2
‖u‖2

L2(Ωρ) −
ω2

c2
−

(1 + ‖q‖L∞(Ωρ))‖u‖2
L2(Ωρ)

and the left-hand side is equivalent to ‖u‖2
H1
W (Ωρ)

if ω2 < c2
−(1 + ‖q‖L∞(Ωρ))/H

2. Thus, if ω

is small enough to satisfy this bound then Bω is coercive on H1
W (Ωρ) and the lemma of Lax

and Milgram implies that (61) is uniquely solvable for any right-hand side.
(3) Part (2) of the proof shows that (61) is uniquely solvable whenever ω > 0 is less

than some ω0 > 0. If ω is larger than or equal to ω0 we exploit that the operator-valued
function ω 7→ Λω depends analytically on ω. More precisely, fix an arbitrary ω∗ > 0 such that
λ2
j(ω) = 0 and some ω∗ ∈ (0, ω0). Depending on the dimension m = 2, 3, either Lemma 5.5

or Lemma 6.4 show that there exists an open connected set U ⊂ C containing ω∗ and ω∗

such that ω 7→ Λω is an analytic operator-valued function in U . In consequence, the entire
sesquilinear form

Bω(u, v) =

∫
Ωρ

(
∇u · ∇v − ω2

c2(xm)
(1 + q)uv

)
dx−

∫
Σρ

Λ(u) v̄ ds

depends analytically on ω in U . Moreover, choosing the frequency ω∗ ∈ U , the variational
problem (61) is uniquely solvable due to part (2) of this theorem. Hence, analytic Fredholm
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theory implies that problem (61) is uniquely solvable for all ω ∈ U except possibly for a
countable sequence of exceptional frequencies without accumulation point in U . In particu-
lar, there exists at most a countable set of real frequencies where uniqueness of solution fails.
If there exists an infinite set of real-valued exceptional frequencies then these frequencies
necessarily tend to infinity.

Remark 7.2. Analytic Fredholm theory is not able to prove uniqueness of solution for those
frequencies where some eigenvalue λ2

j(ω) vanishes; this does however not imply that unique-
ness of solution does indeed fail at those frequencies, compare [AGL08].

Theorem 7.3. Assume that Assumption 3.1 holds. (1) If the variational problem (61) is
uniquely solvable for any incident fields ui, then any solution u ∈ H1

W (Ωρ) can be extended
to a weak solution ũ ∈ H1

loc(Ω) of the waveguide scattering problem (22–24) by setting ũ|Ωρ =
u|Ωρ and

ũ(x) = ui(x) +
∞∑
j=1

∑
n∈Z

û(j, n)
H

(1)
n (iλjr)

H
(1)
n (iλjρ)

exp(inϕ)φj(x3) for x =
( r cosϕ
r sinϕ
x3

)
in Ω \Ωρ, (63)

where the coefficients û(j, n) are defined by

û(j, n) =

∫ H

0

∫ 2π

0

(u− ui)
( r cosϕ
r sinϕ
x3

)
e−inϕφj dϕ dx3, j ∈ N, n ∈ Z. (64)

Moreover, ũ is the unique weak solution to the waveguide scattering problem (22–24).
(2) If Im(q) ≥ c0 > 0 on a non-empty open subset D of Ωρ, then there are no exceptional

frequencies, i.e., the variational problem (61) and the scattering problem (22–24) are both
uniquely solvable for all incident fields ui and all frequencies ω > 0.

Proof. (1) Assume that u ∈ H1
W (Ωρ) is the unique solution (61). As in the beginning of this

section, we note that (61) implies that div∇u ∈ L2(Ωρ). Choosing v ∈ H1
W (Ωρ) such that

v|Σρ = 0 we can hence integrate by parts in (61), to find that

0 =

∫
Ωρ

(
∇u · ∇v − ω2

c2(xm)
(1 + q)uv

)
dx

= −
∫

Ωρ

(
∆u+

ω2

c2(xm)
(1 + q)u

)
v dx+

∫
ΓH∩{|x̃|<ρ}

∂u

∂xm
v ds.

Integrating now a second time by parts for a test function v ∈ H1
W (Ωρ) and exploiting the

definition of the right-hand side F (v) in (62) then shows that∫
Σρ

(
∂u

∂ν
− Λ(u)

)
v ds =

∫
Σρ

(
∂ui

∂ν
− Λ(ui)

)
v̄ ds (65)
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for all v ∈ H1
W (Ωρ). We define us ∈ H1

W (Ωρ) by u = ui + us and note that (65) implies that
the equation (∂us/∂ν)|Σρ = Λ(us|Σρ) holds in Vm.

Let us in the following indicate by (·)|±Σρ if a trace on Σρ is taken from the inside (-) or

from the outside (+) of Ω. Further we define us in Ω \ Ωρ by the series in (63) such that
ũ = ui + us holds in Ω \ Ωρ.

By the trace trace estimate from Theorem 4.4 and the representation of functions in Vm
we note that the coefficients û(j, n) in (64) are defined such that

(u− ui)
∣∣−
Σρ

(x) =
∞∑
j=1

∑
n∈Z

û(j, n) exp(inϕ)φj(x3), x =
( ρ cosϕ
ρ sinϕ
x3

)
∈ Σρ,

holds in V3. This implies that that u|−Σρ equals the restriction ũ|+Σρ , i.e., the extension
ũ is continuous over Σρ in the trace sense. By construction of Λ and ũ, it follows from
Lemma (5.2) in dimension three and Lemma (6.1) in dimension two that ũ is a radiating
solution to the Helmholtz equation in Ω \ Ωρ with normal derivative

∂ũ

∂ν

∣∣∣∣+
Σρ

=

[
∂ui

∂ν
+
∂us

∂ν

] ∣∣∣∣+
Σρ

=

[
∂ui

∂ν

] ∣∣∣∣+
Σρ

+ Λ(us|+Σρ) =

[
∂ui

∂ν

] ∣∣∣∣−
Σρ

+ Λ(us|−Σρ)

since we already showed above that (∂us/∂ν)|−Σρ = Λ(us|−Σρ). Since the normal derivative of
ũ across Σρ is hence also continuous in the trace sense, the latter function is a weak solution
in H1(Ω) to the Helmholtz equation in all of Ω. In consequence, ũ solves the waveguide
scattering problem (22–24). Note that interior elliptic regularity results [McL00, Chapter 4]
show that ũ ∈ H2

loc(Ω).
Finally, uniqueness of this scattering problem finally follows from uniqueness of solution

of the variational problem (61), since any non-trivial solution to the scattering problem for
ui = 0 is a non-trivial solution to the variational problem with vanishing right-hand side.

(2) Assume that Im(q) > 0 on a non-empty open subset D ⊂ Ωρ and consider a solution
u ∈ H1

W (Ωρ) to (61) with vanishing right-hand side F = 0 or, equivalently, vanishing incident
field ui = 0. Since ui vanishes, the first part of this proof shows that ∂u/∂ν = Λ(u) on Σρ.
We extend the solution u to all of Ω using the formula (63) and, by abuse of notation, call
the extended function again u. Recall from part (1) that this extension belongs to H2

loc(Ω)
and is a radiating solution to the Helmholtz equation ∆u + ω2/c2(xm)(1 + q)u = 0 in Ω.
Since ν is the exterior unit normal to Ωρ, taking the imaginary part of (61) with v = u shows
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that

0 = ImBω(u, u) = −
∫

Ωρ

ω2 Im(q)

c2(xm)
|u|2 dx− Im

∫
Σρ

Λ(u) ū ds

=

∫
Ωρ

ω2 Im(q)

c2(xm)
|u|2 dx− Im

∫
Σρ

∂u

∂ν
ū ds

=

∫
Ωρ

ω2 Im(q)

c2(xm)
|u|2 dx+ Im

∫
Ωr\Ωρ

[
|∇u|2 − ω2

c2(xm)
|u|2
]
dx− Im

∫
Σr

∂u

∂ν
ū ds.

The second-to-last term of the last equation obviously vanishes. We investigate the last
term, relying on the orthonormal expansion u(x) =

∑∞
j=1 û(j, x̃)φj(xm) valid in Ω,∫

Σr

∂u

∂ν
ū ds =

∞∑
j=1

∫
|x̃|=r

∂û(j, x̃)

∂ν
û(j, x̃) ds.

Since u is a radiating solution to the Helmholtz equation, the two-dimensional function
x̃ 7→ û(j, x̃) solves the Helmholtz equation (∆x̃ − λ2

j)û(j, x̃) = 0 for |x̃| > ρ. Moreover,
for 1 ≤ j ≤ J , the wave number iλj > 0 of the latter Helmholtz equation is positive and
û(j, ·) satisfies Sommerfeld’s radiation condition; for j > J the wave number iλj ∈ iR>0 of
the latter Helmholtz equation is purely imaginary and ũ(j, ·) is bounded in |x̃| > ρ. For
the solutions û(j, ·), 1 ≤ j ≤ J , to the Helmholtz equation with positive wave number that
satisfy Sommerfeld’s radiation condition it is well-known that

Im

∫
|x̃|=r

∂û(j, x̃)

∂ν
û(j, x̃) ds ≥ 0, 1 ≤ j ≤ J,

since the latter expression equals (a constant times) the L2-norm of the far field pattern of
û(j, ·) (see, e.g.,[CK12]). For j > J , −λ2

j is negative and the solution û(k, ·) is a bounded
solution to the latter equation; since iλj ∈ iR>0 is the wave number of the corresponding
Helmholtz equation, this bounded solution, together with all its derivatives decays exponen-
tially. (If m = 3, this also follows from the estimates of the Hankel functions in the proof of
Lemma 5.2; if m = 2, then the exponential decay is obvious from the series representation
of the solution, compare (59).) Thus,

Im

∫
|x̃|=r

∂û(j, x̃)

∂ν
û(j, x̃) ds→ 0 as r →∞, j > J.

Choosing r > 0 large enough, we hence conclude by our assumption on Im(q) that

0 = ImBω(u, u) =

∫
Ωρ

ω2 Im(q)

c2(xm)
|u|2 dx+ Im

∫
Σr

∂u

∂ν
ū ds ≥ c0

∫
D

ω2

c2(xm)
|u|2 dx ≥ 0.
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Thus, u vanishes on the open, nonempty set D. Now, the unique continuation property
for solutions of the Schrödinger-type equation ∆u + (ω2/c2(xm))(1 + q)u = 0, see [JK85,
Theorem 6.3, Remark 6.7], implies that u vanishes in all of Ω. Thus, uniqueness of solution
to (61) holds and implies by Theorem 7.1 that (61) is uniquely solvable for all right-hand
sides. Part (1) of this theorem then yields the claim.

Remark 7.4. If the inhomogeneous medium described by the contrast q is replaced by an
impenetrable obstacle D ⊂ Ωρ with either Dirichlet, Neumann or impedance boundary con-
dition, then the variational problem for the total field is posed in V = H1

W (Ωρ \ D) for a
Neumann or impedance boundary condition. For a Dirichlet boundary condition, functions
in V additionally have to satisfy a Dirichlet boundary condition on ∂D. The results of
Theorem 7.1 and Theorem 7.3(1) hold analogously.

References

[AGL08] T. Arens, D. Gintides, and A. Lechleiter. Variational formulations for scattering
in a three-dimensional acoustic waveguide. Math. Methods Appl. Sci., 31(7):821–
847, 2008.

[AGL11] T. Arens, D. Gintides, and A. Lechleiter. Direct and inverse medium scattering
in a 3d homogeneous planar waveguide. SIAM J. Appl. Math., 71(3):753–772,
2011.

[AS64] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions: With
Formulas, Graphs, and Mathematical Tables. Dover Publications, 1964.

[BGWX04] J. Buchanan, R. Gilbert, A. Wirgin, and Y. Xu. Marine Acoustics: Direct and
Inverse Problems. SIAM, Philadelphia, 2004.

[Buc92] M. J. Buckingham. Ocean-acoustic Propagation Models. J. Acoustique, 06:223–
287, 1992.

[CH07] X. Claeys and H. Haddar. Scattering from infinite rough tubular surfaces. Math.
Meth. Appl. Sci., 30:389–414, 2007.

[CK12] D. L. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering
Theory. Springer, New York, 3rd edition, 2012.

[CS82] A. Cruz and J. Sesma. Zeros of the Hankel function of real order and of its
derivative. Math. Comp., 39:639–645, 1982.

37
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