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This report shows results of regression models for the evaluation of ultrasonic testing of porosity in
carbon �ber reinforced polymers, based on work in a modeling project within the master degree studies
in Industrial Mathematics at the University of Bremen. The authors thank the Airbus Operations
GmbH in Bremen (for providing samples and ultrasonic testing equipment for the investigations), Kai-
Wah Chan, Matthias Rick, Jim van Kleef and Matthias Otten (for work in two former modeling projects)
and especially Professor Dr. Dr. h.c. Peter Maaÿ as supervisor at the Center for Industrial Mathematics,
faculty of Mathematics and Computer Science, University of Bremen.
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Chapter 1

Introduction

Before describing the task of the work presented in this report in section 1.3, a brief overview about
carbon �ber reinforced polymers and ultrasonic testing is given in section 1.1 and 1.2.

1.1 Carbon �ber reinforced polymers

Carbon �ber reinforced polymersb (CFRP) are layered composite materials. The layers consist of carbon
�bers, either aligned unidirectional or interwoven, and are embedded into a synthetic resin matrix. The

Figure 1.1: Carbon �ber fabric with interweaved structure. Image: [5]

main bene�t of CFRP compared to conventional metallic materials is their low density and nevertheless
high loading capacity, especially in �ber direction. More speci�cally the density of CFRP is by a factor
near 5 lower than the one of steel, while the tensile strength in �ber direction is comparable (cf. [9, p.
2�.]).

Because of these properties CFRP is in great demand, among others for the application in aircrafts.
Decrease in weight by 1 kg results in fuel saving of up to 2000 l during an airplane lifetime [10]. At Airbus
the usage of composites like CFRP has increased heavily over the last decades (�gure 1.2).

1.2 Ultrasonic testing for CFRP

The goal of non-destructive testing (NDT) is to assess the quality while preserving the functionality. In
contrast, destructive testing techniques like tensile or hardness tests usually result in the test object being
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Figure 1.2: Increasing quantity of composites at Airbus aircrafts
Graphic based on [1]

destroyed or damaged. NDT allows not only for testing during the development process or in samples,
but also for inspection of products and parts in use or ready for use.

One common NDT method is ultrasonic testing. It can be applied on CFRP by scanning over the
surface in a grid pattern to detect porosity (�gure 1.3).

probe

specimen

Figure 1.3: Scanning of a specimen. The phased array probe is moved horizontally over the surface.

The probe operates by phased array technique, which means that it contains an array of ultrasonic
pulse emitting elements, which can be delayed individually. The same elements also receive the ultrasound
echoes. By subsequent �ring it is possible to sweep through the material in the direction of the array.
Thus in the scanning process (�gure 1.3) the vertical resolution is obtained from multiple measurements of
a software-controlled linear scan. By moving the probe horizontally over the surface and repeating these
measurements at multiple locations the horizontal resolution is achieved. The inspection is performed
with a coupling medium (often water) between probe and sample.

Finally the result of an ultrasonic scan are the echo time series at each point of the grid. Each of
those is called an A-scan and holds the measured amplitudes for a �nite time interval starting from the
time of the emission of the pulse (�gure 1.4).

In CFRP an ultrasonic pulse gets re�ected at the front and the back of each layer due to the high
di�erences of acoustic impedance (cf. [8, p. 15f.]). This also applies to pores, but here the pulse also gets
scattered due to their shape or rough surface.
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Currently used classi�cation technique

Usually two quite strong re�ections occur when inspecting a CFRP part of simple geometry. The �rst
re�ection happens at the surface of the specimen (front-wall) directly at the probe, which emits the signal.
The second re�ection occurs at the back-wall, where the test material ends and the neighboring material
follows. In �gure 1.4 the peak of the back-wall echo (BWE) of an A-scan is marked by a green circle.
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Figure 1.4: Example of an A-Scan. The red rectangle marks the intermediate echoes and the green circle
marks the back-wall echo.

If the specimen is porous, the pulse gets re�ected and scattered at the pores before it reaches the
opposite surface (back-wall). Therefore the intensity is measurably smaller than it is for non-porous
specimens. The currently used method to classify each point on the grid as porous or non-porous only
depends on the amplitude of the BWE. At all points with a BWE lower than a reference threshold the
specimen is assumed to be porous (provided no other defects like delaminations�material separations
of larger size than pores�are present). All other points are considered to be non-porous. The reference
threshold usually is determined as a �xed fraction (e.g. −6 dB ≈ 1/2 or −12 dB ≈ 1/4) of the mean of the
BWE height in a non-porous region.

The BWE of a CFRP specimen can be visualized in a so called C-scan. One kind of C-scan shows
the BWE amplitudes at each point on the grid using a color map (�gure 1.5).
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Figure 1.5: Example of a C-scan
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1.3 Task

Obviously it is not possible to apply the currently used technique if there is no constant back-wall echo.
This is the case for example if the back surface of the material is bonded to another material of similar
density, if the back-wall is not parallel to the front wall, such that the pulse re�ection does not return
to the probe, or for sandwich materials. Such parts, for which it is currently not possible to measure
the porosity content, have to be designed in a way that they would have su�cient strength even if being
porous, which leads to a gain of weight (cf. [3]).

Hence an alternative classi�er only using the signal before the back-wall echo is sought-after.
Since the front-wall echo does not contain valuable information, only the part of the signal between

both walls, the intermediate echo, is relevant. In �gure 1.4 the intermediate echoes of an A-scan are
marked by a red rectangle.

The approach we follow here is to calculate a back-wall echo equivalent, on which again a threshold
classi�er can be applied. For the task of �nding a back-wall echo equivalent we use regression methods.
Afterwards a threshold is determined by optimizing for a speci�c quality measure of the classi�cation,
evaluated on the training data.

In this report we will present some regression models and statistically evaluate the classi�ers.

4



Chapter 2

Evaluation criteria

In order to rate the quality of the classi�ers we are going to present in chapter 3 for the application
of porosity in CFRP, we have to use specimens with known ground truth. Therefore we use specimens
providing back-wall echoes, by which the class can be determined using the conventional classi�cation
technique. This classi�cation is assumed to represent the truth, to which we compare the classi�cation
made by the new classi�ers, which only use the intermediate echoes of the same specimens.

Section 2.1 and 2.2 give background about means to assess classi�ers; section 2.3 shows the background
for correlation.

2.1 Normalized confusion matrix

A detailed way to present the classi�cation accuracy is the normalized confusion matrix, showing the
rates at which all combinations of true and predicted classes occur.

true positive rate:

TPR = P (predicted to be porous|in fact porous)

=
P (predicted to be porous and in fact porous)

P (in fact porous)

false negative rate:

FNR = P (predicted to be non-porous|in fact porous)

=
P (predicted to be non-porous and in fact porous)

P (in fact porous)

false positive rate:

FPR = P (predicted to be porous|in fact non-porous)

=
P (predicted to be porous and in fact non-porous)

P (in fact non-porous)

true negative rate:

TNR = P (predicted to be non-porous|in fact non-porous)

=
P (predicted to be non-porous and in fact non-porous)

P (in fact non-porous)

True Class

porous non-porous

Predicted Class
porous TPR FPR

non-porous FNR TNR∑︁
100% 100%

Table 2.1: Normalized confusion matrix for porosity tests

The prediction quality is good if the entries on the main diagonal, TPR (also called sensitivity) and
TNR (also called speci�city), are close to 100%. The distribution of the rates in the normalized confusion
matrix depends on the threshold used for the prediction. If for example the threshold is lower than every
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regression value, all sample points are predicted to be non-porous, meaning TPR = 0%, FPR = 0%,
FNR = 100% and TNR = 100%. With increasing threshold TPR and FPR increase and FNR and TNR
decrease. If the threshold �nally is higher than every regression value, all sample points are predicted to
be porous, meaning TPR = 100%, FPR = 100%, FNR = 0% and TNR = 0%.

Our goal is to achieve FPR < 10% while maintaining TPR > 90%. From the safety point of view, it
is important to have a low FNR, because it measures how many porous sample points are not detected
as such. By TPR+ FNR = 100% this is equivalent to a high TPR.

BWE threshold

BWE
equivalent
threshold

false negative

true positive

true negative

false positive

BWE

B
W
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eq
u
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t

Figure 2.1: Visualization of confusion matrix for threshold-based classi�cation

Balanced accuracy

One measure commonly used for classi�cation evaluation is the accuracy, de�ned as the part of correctly
classi�ed points,

acc = P (predicted to be porous and in fact porous)

+ P (predicted to be non-porous and in fact non-porous).

While this intuitively re�ects the quality of the class prediction, it does not take into account the size of
the true classes. This can be very misleading if the classes have drastically di�erent sizes, which is usually
the case for the application of quality assurance. Since the class of the defect sample points is typically
small, a quite good accuracy would be achieved by the simple classi�er that predicts every sample point
to be non-defect.

An alternative accuracy measure, which does take the class sizes into account, is the balanced accuracy,
de�ned as the mean of the diagonal of the normalized confusion matrix,

balAcc = 1
2 (TPR + TNR)

(cf. [6]).

2.2 Receiver operating characteristic curve

One way to display the classi�cation quality for various thresholds is the receiver operating characteristic
curve (ROC curve). It is given by the coordinates (x, y) = (FPR,TPR). Both rates increase mono-
tonically with the threshold; the resulting curve is the graph of a monotonically increasing function
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c : [0; 1] → [0; 1],FPR ↦→ TPR. The choice of a threshold is equivalent to picking a point from the
ROC-curve. One usually looks for a point in the top left corner.
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(a) ROC curve of a good classi�er
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Figure 2.2: ROC curve examples

The area under curve (AUC) is a quality measure that is calculated based on the ROC curve by
integrating,

AUC =

∫︂ 1

0

c(FPR) dFPR.

It signi�cantly di�ers from the rates in the normalized confusion matrix and the balanced accuracy in
that it summarizes their values for all possible thresholds. Desirably the TPR should reach high values
when the FPR is still low. This results in the curve bending strongly to the top left and a high area
under curve, like shown in �gure 2.2a. The AUC in �gure 2.2a is 99.5% and the AUC in �gure 2.2b is
76.3%. If the curve is close to a straight line, the classi�cation is not meaningful.

2.3 Correlation

Another evaluation approach is not to consider the true and predicted classes, but to directly compare
the BWE p and its equivalent q. The Pearson correlation coe�cient, de�ned by

corr =
cov(p, q)

σpσq
,

measures the linear dependence of variables (with cov being the covariance and σ denoting the standard
deviation). For a �nite series of n measurements it can be calculated by

corr =

∑︁n−1
i=0 (pi − p)(qi − q)√︃(︂∑︁n−1

i=0 (pi − p)2
)︂(︂∑︁n−1

i=0 (qi − q)2
)︂ .

Here p and q denote the mean values of p and q.
The correlation coe�cient can take values in the interval [−1, 1]. For the purpose of obtaining a good

equivalent of the BWE, a large correlation coe�cient value (close to 1) is desired.
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Chapter 3

Regression models

The general linear regression approach is based on the assumption that the BWE p can be approximated
by

p ≈ F (E)x,

where

• E =

⎡⎢⎣b
T
1
...
bTn

⎤⎥⎦ ∈ Rn×ms row-wise contains the intermediate echoes bk, k = 1, . . . , n of length ms,

• F : Rn×ms → Rn×m is the feature map, and

• x ∈ Rm is a vector of coe�cients.

We formulate the model as the minimization problem

x = argmin
x

∥F (E)x− p∥2. (3.1)

This is a typical linear least squares problem for the coe�cients x. Afterwards the BWE equivalent for
new test data Ẽ can be calculated by

q = F (Ẽ)x.

A simple way to include a trainable constant o�set in this model is to add a 1-column to F (E) and F (Ẽ).
The o�set is then given by an additional entry of x. We use this approach for all models.

Finally a threshold has to be chosen that is applied on the BWE equivalent for classi�cation. If not
stated otherwise, the classi�cation threshold is determined by maximizing the balanced accuracy of the
resulting classi�er on the training data E.

Solution of the linear least squares problem The main task is to solve

x = argmin
x

∥Ax− p∥2 = argmin
x

1
2∥Ax− p∥22.

This problem is always solvable in contrast to the possibly overdetermined system of linear equations
Ax = p. We assume x to be an arbitrary solution if it should be non-unique. The following methods for
solving this linear least squares problem can also be found in [4, p. 890�.].

First we note that the objective is convex. Hence we can minimize it by �nding the x for which its
derivative is zero,

∂

∂x
1
2∥Ax− p∥22 = AT (Ax− p) = 0.

This leads to the normal equation

ATAx = AT p, (3.2)

which is a linear system of equations and can be solved by well known methods.

8



This method is numerically disadvantageous, because the condition of the system matrix ATA depends
in a quadratic manner on the condition of A. An alternative is to compute the QR decomposition A = QR
with an orthogonal matrix Q and an upper triangle matrix R. Then the linear system of equations
Rx = QT p can be solved by back substitution for x. In practice we use the backslash operator x = A \ p
provided by Matlab R⃝, which is also documented to solve the least-squares approximation if the system
matrix A is not square.

In the next section 3.1 we introduce the 'time linear regression model' as the most classical approach
to our application. It serves as state-of-the-art comparison with the following, more elaborated model.
In section 3.2 we introduce our FFT-based linear regression model, and section 3.3 contains a description
of the competing wavelet model as introduced in [7].

3.1 Time-linear Regression

The simplest approach is to assume a linear connection between the columns of the intermediate echo
matrix E and the BWE vector p. This can be achieved by choosing the identity for the feature map F
in (3.1),

F (E) = E,

leading to the time-linear regression problem

x = argmin
x

∥E x− p∥2.

The BWE equivalent for new test data Ẽ is then given by

q = Ẽ x.

A drawback of this approach is the following: The time-linear regression assigns �xed coe�cients to all
time points and thus to all depths in the material. In case of a time shift due to a varying distance of
the probe to the surface the assignment changes, leading to the coe�cients being mapped to other time
points than they were trained for.

3.2 FFT-linear Regression

A new idea developed in this work is to apply linear regression on the amplitude spectrum, i.e. on the
magnitudes of the Fourier transform of the time series. The amplitude spectrum is invariant regarding
time shifts for periodic time series, which is an advantageous property for our application. Therefore we
choose F (E) to row-wise compute the absolute value of the discrete Fourier transform (FFT)1 of E,

(F (E))k,l =

⃓⃓⃓⃓
⃓⃓ms−1∑︂

j=0

Ek,je
−i2π jl

ms

⃓⃓⃓⃓
⃓⃓ , k = 0, . . . , n− 1, l = 0, . . . ,

⌊︂ms

2

⌋︂
. (3.3)

Note that we cut o� the FFT after m =
⌊︁
ms

2

⌋︁
+1 values, because the signal is real and thus the remaining

absolute values of the FFT are symmetric to the �rst ones and do not provide further information. Now
the problem reads

x = argmin
x

⃦⃦⃦⃦
⃦⃦
⎛⎝m−1∑︂

l=0

⃓⃓⃓⃓
⃓⃓ms−1∑︂

j=0

Ek,je
−i2π jl

ms

⃓⃓⃓⃓
⃓⃓ xl

⎞⎠
k=0,...,n−1

− p

⃦⃦⃦⃦
⃦⃦
2

and the solution can be used to calculate the BWE equivalent by

qk =

m−1∑︂
l=0

⃓⃓⃓⃓
⃓⃓ms−1∑︂

j=0

Ek,je
−i2π jl

ms

⃓⃓⃓⃓
⃓⃓ xl.

1The discrete Fourier transform is usually computed by the fast Fourier transform (FFT) algorithm.

9



Weighting in time domain

Next we consider some custom weightings of the signal in the time domain. With the choice of a row
vector w ∈ R1×ms of weighting coe�cients and an arbitrary function F̃ , possibly one of those proposed
for F above, we obtain another possibility for F ,

F (E) = F̃ (E ◦W ), W =

⎡⎢⎣w...
w

⎤⎥⎦ .

Here �◦� denotes point-by-point multiplication. While this approach does not make sense for the time-
linear Regression, as the linear coe�cients x would just be optimized to compensate for the change, one
can expect an in�uence if F is more complex in the sense that it does not just compute a linear mapping
F (E) = E A with a matrix A. We introduce two weightings for the FFT-amplitude-function (4.1) now.

10



Windowing

When applying the FFT the �nite time signal is implicitly continued in�nitely periodically. In general,
as in our application, we have to expect a discontinuity after each period. This leads to distortions in the
frequency domain, known as the leakage e�ect. To overcome this problem one can replace the rectangular
window function used when just taking a �nite time signal with a window function, which also applies a
weighting on the samples.

In particular we apply the Hann window (cf. [11, p. 239�.]) on the intermediate echoes. It smoothly
forces the values at the beginning and the end of the window to get near zero, achieving a signal that is
well continuable periodically, because the boundary values in the window match (�gure 3.1).
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Figure 3.1: Windowing of an A-scan: in both sub-�gures original at the top, Hann window in the middle
and windowed at the bottom.
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Time corrected gain

The material is known to damp the ultrasound signal by a �xed rate of approximately 1.5 dB/µs (�gure
3.2). Since this e�ect is independent of the damping and re�ecting e�ect of pores, compensating for this
e�ect is a useful preprocessing step for porosity detection, very common in ultrasonic testing of CFRP.
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Figure 3.2: TCG of an A-scan: in both sub-�gures original signal at the top, TCG function in the middle
and corrected signal at the bottom.
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3.3 Wavelet-based Linear Regression Models

A di�erent approach utilizing wavelet transformations for constructing a BWE equivalent is proposed by
Ki-Bok Kim et al. in [7]. Similar to the exponential functions in Fourier transforms, wavelets are another
basis of the function space L2, which have the property to be localized not only in the frequency domain
but also in the time domain. In this sense wavelet transforms can be compared to short time Fourier
transforms. The discrete wavelet transform (DWT) is based on the multiresolution analysis, which allows
to split a signal up into �ner and coarser scales. In [7] wavelets from the Daubechies wavelet family (�gure
3.3) are chosen, the DWT was calculated up to level 5, yielding the two signals A5 and D5. According
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Figure 3.3: The wavelet functions db4, db8 and db10 (from left to right) of the Daubechies wavelet family.

to [7, p. 13, l. 32�36], �the correlations between ultrasonic parameters and the porosity content suggest
that it is possible to predict the porosity content of the composite materials by measuring their peak
amplitudes and magnitudes of peak frequency of the backscattered signal, A5 and D5�. Therefore they
suggest the linear regression model

qk = [1, ln(AA5,k), ln(MA5,k), ln(AD5,k), ln(MD5,k)]⏞ ⏟⏟ ⏞
k-th row of F (E)

·[x1, . . . , x5]
T (3.4)

(cf. [7, eq. (9)]). Here AX,k denotes the peak amplitude of the signal X ∈ {A5, D5} for A-scan k and MX

denotes the magnitude of peak frequency. In [7] the db4 wavelet was chosen, since the evaluated wavelets
db4 up to db10 showed similar results.

We consider four wavelet-based models, the �rst one being (3.4) with the db4 wavelet. The other
models utilize more levels,

qk = [1, ln(AA1,k), ln(MA1,k), ln(AD1,k), ln(MD1,k), . . . , ln(AA7,k), ln(MA7,k), ln(AD7,k), ln(MD7,k)]

·[x1, . . . , x29]
T ,

(3.5)

where the db4, db8 and db10 wavelets are chosen for the second, third and fourth model, respectively.
The consideration of all signals A1, D1 up to A7, D7 enables the linear regression to choose the relevant
level(s) instead of picking level 5 a priori. Like in (3.4), [1, ln(AA1,k), . . . , ln(MD7,k)] constitutes the k-th
row of F (E) here.

13



Chapter 4

Evaluation

In this chapter we present classi�cation results of the di�erent time series analysis methods described
in chapter 3 on ultrasonic measurements of CFRP samples without and with porosity. After describing
the dataset in section 4.1 we motivate the investigations by showing that standard FFT results do not
lead to su�cient classi�cation results in section 4.2. The in�uence of time shifts on results with linear
regression in the time domain in section 4.3 are followed by investigations to the main results of this work,
FFT-linear regression in section 4.5 and 4.6, and to the wavelet approach in 4.6. Time shifts, validation
on other data sets and the use of smaller time series are investigated in section 4.7, 4.8 and 4.9; section
4.10 and 4.11 look at the regression coe�cients and regularization.

4.1 Dataset

We apply the methods proposed in chapter 3 on ultrasonic scans of industrially relevant specimens kindly
provided by Airbus Operations GmbH. The measurements have been taken with a phased array probe
with a center frequency of 5MHz. Parameters and measurement process are given in [2].

For each of two CFRP specimens, which we name B50 and B56, we have three scans, respectively.
These specimens have a thickness of 6mm and a layer thickness of approximately 0.25mm. Each scan
holds 4060 A-scans at the points of a 29× 140 grid, each A-scan sampled with fA = 100MHz for 9.98 µs.
A true BWE is contained in these A-scans, which is located between 4µs and 6 µs. We consider the part
from 1 µs to 4 µs as intermediate echoes. This part is not in�uenced by the back-wall, since the ultrasound
takes longer to reach the back-wall (and return to the probe afterwards).

For the reference threshold, which is applied on the true BWE to obtain the ground truth, we choose
−6 dB for our evaluation. The results for −12 dB are included in appendix A.

The two CFRP specimens di�er in their general amount of porosity. While B50 has a good quality,
B56 is porous. In order to contain both in one dataset and for the purpose of having distinct training
and evaluation parts, we merge half of the scans of B50 and B56 (one half containing 29× 70 A-scans).
We call the combination of the left halves B50+56l and the combination of the right halves B50+56r.
This allows for training on B50+56l and evaluation on B50+56r and vice versa.

4.2 Fourier transform

Before presenting results of regression models, a short motivation shall be given in this section. A common
approach in signal processing is using Fourier transform. We use the absolute value of the discrete Fourier
transform (FFT)1 of E,

(F (E))k,l =

⃓⃓⃓⃓
⃓⃓ms−1∑︂

j=0

Ek,je
−i2π jl

ms

⃓⃓⃓⃓
⃓⃓ , k = 0, . . . , n− 1, l = 0, . . . ,

⌊︂ms

2

⌋︂
. (4.1)

Note that we cut o� the FFT after
⌊︁
ms

2

⌋︁
+ 1 values, because the signal is real and thus the remaining

absolute values of the FFT are symmetric to the �rst ones and do not provide further information.
Out of the amplitude spectrum (magnitudes of the Fourier transformed time series, �gure 3.1 (b) top)

standard features can be determined such as

• the frequency at which the maximum magnitude occurs,

1The discrete Fourier transform is usually computed by the fast Fourier transform (FFT) algorithm.
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• the left and right cut-o� frequency at which the signal drops by −6 dB ≈ −50% compared to the
maximum magnitude and

• the bandwidth, the di�erence between right and left cut-o� frequency.

Using these features, only insu�cient results with balanced accuracies < 70% can be achieved (table 4.1).

feature balAcc [%] TPR [%] FPR [%] AUC corr

max. magnitude frequency 64.44 56.13 27.25 0.6494 −0.2479
left cut-o� frequency 50.27 50.27 49.73 0.5475 0.2338
right cut-o� frequency 66.08 66.09 33.92 0.7164 −0.2696

bandwidth 69.25 69.26 30.75 0.7447 −0.3783

Table 4.1: Di�erent quality measures applied on classi�cations by FFT standard features. All values are
averaged over the three scans of B50+56l. The intermediate echo gate is chosen from 1 µs to 4 µs and the
reference threshold is −6 dB; threshold for classi�cation is chosen such that TPR≈TNR.

Another approach is to use the sum of magnitudes of several neighbored frequencies as back-wall echo
equivalent. We looked therefore for the window that led to best classi�cation results. For 50 + 56l this
is 2.67MHz to 3.67MHz. With this approach, better classi�cation results can be obtained (table 4.1).
These are however still clearly below the goal of reaching ≥ 90% TPR and ≤ 10% FPR.

feature balAcc [%] TPR [%] FPR [%] AUC corr

summing of magnitudes
from 2.67MHz to 3.67MHz 77.16 77.16 22.84 0.8583 −0.5942

Table 4.2: Di�erent quality measures applied on classi�cations by FFT summing of frequency magnitudes;
the summing over frequency magnitudes with best classi�cation has been chosen. All values are averaged
over the three scans of B50+56l. The intermediate echo gate is chosen from 1 µs to 4 µs and the reference
threshold is −6 dB; threshold for classi�cation is chosen such that TPR≈TNR.

We propose to use linear regression on the amplitude spectrum instead as a new approach in this
report.

4.3 Time shifts tested on time-linear regression

Linear regression on time data was developed and evaluated in two former modeling projects within the
master degree studies in Industrial Mathematics in Bremen and has produced promising results. However,
as mentioned in section 3.1 time-linear regression is expected to be sensitive regarding time shifts, which
were not included in those tests. Time shifts in the intermediate echoes are very likely to occur when
leaving the lab environment, due to changes in appearance of the parts or changes in distance between
probe and sample. In our evaluation we simulated time shifts by adapting the intermediate echo gate for
the test time series but not for the training time series. The results are shown in �gure 4.1, including
those without shift at the bar at 0. To measure the quality we use the balanced accuracy as it summarizes
the normalized confusion matrix with a single number, which is also used for choosing the classi�cation
threshold on the training data. In the A-scans a main oscillation with a frequency about 5.6MHz is
observed. We try shifts of up to half a period (90 ns) in both directions.

As expected the best results are obtained without shift, while shifts of about half a period result in
balanced accuracies of around 50%, which is the expected rate for a random classi�cation, or even below.
This can be understood by the fact that coe�cients are mapped to time points, at which the signal may
have a signi�cantly di�erent magnitude or even the opposite sign, leading to mismatching weights in
the linear combination. On the other hand the results for small shifts demonstrate that the time-linear
regression is a reasonable method if the distance between the probe and the CFRP layers can be ensured
to be constant, and the build-up of the parts to be inspected is very reproducible.

4.4 Performance test of basic FFT-linear regression including
time shifts

This section shows a �rst evaluation of the new approach of linear regression based on FFT data. One
could expect the in�uence of time shifts on this regression to be small, because translations of a signal
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x(t) in time only change the phase but not the magnitude of the corresponding frequency spectrum
[F(x(t))](ω),

[F(x(t± t0))](ω) = [F(x(t))](ω) e±iωt0 ,

where
⃓⃓
e±iωt0

⃓⃓
= 1 for all ω.

Compared to the results for time-linear regression (�gure 4.1) the accuracy is higher on average (�gure
4.2). The decrease of accuracy after applying time shifts is due to the leakage e�ect that has a di�erent
impact on the amplitude spectrum for each time shift. For small negative time shifts the classi�cation
is still accurate in the considered example. This may be due to some shift-speci�c error of F (E) that is
almost uncorrelated with the weights x for these particular shifts. The high accuracy for small negative
time shifts that is reached with the speci�c intermediate echo gate can presumably not be generalized.

Nevertheless the FFT-linear regression is considered as a promising approach.
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Figure 4.1: E�ect of the time shift on the classi�cation result for time-linear regression. The regression
was trained on all scans of B50+56l and evaluated on each scan of B50+56r. The reference threshold is
−6 dB.
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Figure 4.2: E�ect of the time shift on the classi�cation result for FFT-linear regression. The regression
was trained on all scans of B50+56l and evaluated on each scan of B50+56r. The reference threshold is
−6 dB.
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4.5 Comparison of FFT-linear regression methods

Now we focus on the di�erent FFT-linear regression methods obtained by weighting in time domain. We
apply di�erent quality measures introduced in chapter 2 on classi�cations by the FFT-linear regression
methods introduced in chapter 3. Both TCG and windowing can be activated optionally, resulting in
four methods to compare.

TCG window balAcc [%] TPR [%] FPR [%] TNR [%] FNR [%] AUC corr

� � 96.31 98.31 5.70 94.30 1.69 0.9953 0.8807
✓ � 95.57 98.80 7.67 92.33 1.20 0.9944 0.8756
� ✓ 99.03 99.08 1.02 98.98 0.92 0.9995 0.9163
✓ ✓ 99.03 99.11 1.05 98.95 0.89 0.9996 0.9165

Table 4.3: Di�erent quality measures applied on classi�cations by FFT-linear regression methods. Here
no shifts of the intermediate echoes were simulated. All values are averaged over the three scans of
B50+56r after training on all scans of B50+56l. The intermediate echo gate is chosen from 1 µs to 4µs
and the reference threshold is −6 dB.

All quality measures verify that windowing improves the results of the basic method. Without window-
ing, TCG has a negative in�uence on the performance, but it marginally improves the correlation coe�-
cient when combined with windowing. The overall results in table 4.3 are very satisfying. For the methods
applying windowing one can summarize FPR,FNR < 2%, TPR,TNR > 98% and AUC > 99.9%.

Another way to display the classi�cation results is to directly plot the BWE equivalents against the
corresponding true BWE (�gure 4.3).
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Figure 4.3: Plots of BWE equivalents computed by the FFT-linear regression with windowing and TCG
over the corresponding true BWE for the three scans of B50+56r after training on all scans of B50+56l.
The reference thresholds are marked by blue lines and the classi�cation thresholds are marked by red
lines.

For maximal correlation (cf. chapter 2.3) all points would lie on a straight line. While this is not the
case the clouds are still almost separable by the BWE equivalent. Both the plots and the high correlation
coe�cient of over 0.85 suggest a strong relationship between the BWE and its equivalent, based on the
FFT of the intermediate echoes. However it must be expected that the classi�cation would be much less
accurate, if also BWEs of medium height would occur.

Comparing the C-scans of the original BWE with the ones of the BWE equivalent computed by the
FFT-linear regression with windowing and TCG shows that the errors made by the regression occur at
similar locations in all three scans, which means they are reproducible (�gure 4.4). Notice that no spatial
information is involved when calculating the BWE equivalents. Therefore the clear visual separation
between porous and non-porous points has no in�uence on the prediction results.
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Figure 4.4: C-scans of the original BWE (top) and the BWE equivalent computed by the FFT-linear
regression with windowing and TCG (bottom) for the three scans of B50+56r.
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4.6 Comparison of Wavelet-based Linear Regression Models

Next we try the Wavelet-based models described in section 3.3, derived from [7].

method balAcc [%] TPR [%] FPR [%] TNR [%] FNR [%] AUC corr

dwt_db4_lvl5 87.14 81.43 7.14 92.86 18.57 0.9235 0.6615
dwt_db4 93.83 93.94 6.29 93.71 6.06 0.9827 0.6015
dwt_db8 96.05 95.99 3.89 96.11 4.01 0.9907 0.8496
dwt_db10 93.44 91.30 4.42 95.58 8.70 0.9840 0.8048

Table 4.4: Di�erent quality measures applied on classi�cations by Wavelet-based linear regression meth-
ods. Here no shifts of the intermediate echoes were simulated. All values are averaged over the three
scans of B50+56r after training on all scans of B50+56l. The intermediate echo gate is chosen from 1µs
to 4µs and the reference threshold is −6 dB.
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Figure 4.5: Plots of BWE equivalents computed by the four di�erent DWT-based linear regressions over
the corresponding true BWE for the �rst scan of B50+56r after training on all scans of B50+56l. The
reference threshold is marked by a blue line and the classi�cation thresholds are marked by red lines.

Notice that the method only using level 5 performs remarkably worse than the other three methods,
which include all levels from 1 to 7. A possible explanation would be that for our data and intermediate
echo gate the level 5 determined in [7] is not suitable. Nevertheless it could be bene�cial to include many
levels as input to the regression model, unless one has to expect over�tting. As the train and the test set
are disjoint and the classi�cation is quite accurate this does not seem to occur on the data B50+56. For
all multi-level-methods we observe FPR,FNR < 10%, TPR,TNR > 90% and AUC > 98%.

For the �rst two methods the correlation coe�cient is much smaller. Because this does not match with
the balanced accuracies, we have a look at the BWE/BWE-equivalents plots (�gure 4.5). The plots show
that the loss of correlation is not caused by the BWE equivalents of the non-porous points but rather
of the porous points. Mainly the BWE equivalents of some porous points reach large negative values,
which lie far away from a linear �t through all points. However this is not important for the classi�cation,
since negative BWE equivalents always should be classi�ed as porous. Because of this observations and
the absence of medium-porous points, the classi�cation performance does not depend strongly on the
correlation.

Since some results of the DWT-based linear regressions get relatively close to the results of the
previous section, we will proceed our evaluation by applying time shifts to FFT-linear regression models
with weighting in time domain and to Wavelet-based linear regression models.
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4.7 Time shifts for FFT-linear and Wavelet-based linear regres-
sion models

Here we restrict ourselves to the comparison of the best methods deliviering the best results of each model
group, which are the FFT-linear regression with Hann windowing and TCG, and Multi-Level-DWT with
db8.
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Figure 4.6: E�ect of the time shift on the classi�cation result for FFT-linear regression with windowing
and TCG. The regression was trained on all scans of B50+56l and evaluated on each scan of B50+56r.
The reference threshold is −6 dB.

Windowing leads to great robustness of the FFT-linear regression regarding time shifts (cf. �gure 4.6).
The averaged balanced accuracy over all time shifts reaches 98.4% and for small time shifts almost 99%.
While we did assume that windowing would improve the performance for large time shifts, these results
exceeded our expectations. Note that for the reference threshold −12 dB the method is robust as well
(cf. �gure A.3), even though the performance is worse like observed for all methods.

The DWT-based linear regression on the contrary cannot handle time shifts, which is, however, no
surprise considering its explicit time dependency. It provides decent results for positive time shifts,
especially for large shifts, for which about 90% is reached (�gure 4.7). But already for small negative
time shifts the classi�cation is not much better than a random classi�cation. Since we require robustness
regarding time shifts, the FFT-linear regression with windowing and TCG should be preferred over the
DWT-based approach.

4.8 Validation on di�erent data sets of a specimen

To validate the good results of the FFT-linear regression with windowing and TCG, now additional
data sets of the specimen B50+56, of which the left and right half (B50+56l and B50+56r) were used
previously, are taken into account.

We consider four data sets in total. The �rst two are B50+56l and B50+56r, which we now call �left�
and �right�. The third one (�repeat�) is merged from repeated scans of the whole B50 and B56 specimens,
where the probe was moved with approximately twice the speed, leading to scans containing 29 × 70
A-scans, combined 29 × 140 A-scans. The last data set (��ipside�) contains the same scans as �repeat�
of the B50 specimen, but scans of the B56 specimen for which it was turned around such that its front-
and back-wall swapped positions.

All balanced accuracies in table 4.5 are remarkably over 90%. The entries in boxes on the diagonal
are trained and evaluated on the same data set, and thus clearly not representative for a real application
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Figure 4.7: E�ect of the time shift on the classi�cation result for multi-level-DWT with db8. The
regression was trained on all scans of B50+56l and evaluated on each scan of B50+56r. The reference
threshold is −6 dB.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 99.00 99.80 99.88 99.06 98.94 99.09 97.49 98.67 98.89 97.44 98.35 99.09
right 96.08 98.74 98.65 99.85 99.85 99.68 95.49 97.14 96.82 94.38 94.24 96.43
repeat 94.79 97.17 96.03 98.13 98.18 98.20 99.51 99.78 99.70 99.63 99.38 99.98
�ipside 92.77 95.05 94.51 93.77 95.54 95.10 99.58 98.87 98.55 99.73 99.73 99.98

Table 4.5: Validation on di�erent data sets of the B50 and B56 specimens using FFT-linear regression
with windowing and TCG. All values are balanced accuracies in percent. The �rst cell of each row
speci�es the data set used for training and the column header speci�es the data set and scan number
used for evaluation. The reference threshold is −6 dB.
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scenario. The only slightly worse results are observed when learning from �left� or �right� and evaluating
on �repeat� or ��ipside�, or vice versa, i.e. in the upper right or lower left 2× 2-submatrices.

The goal formulated in chapter 2 is to reach FPR > 90% and TPR < 10%. Table 4.6 shows that
the criterion for the FPR is ful�lled safely and the criterion for the TPR also is met with two minor
exceptions (88.76% and 89.56%, when training on �left� and evaluating on ��ipside�).

TPR on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 99.60 99.75 99.75 98.62 99.16 99.56 99.95 99.61 99.61 99.85 98.97 100.00
right 98.66 99.36 99.11 99.70 99.90 99.51 99.61 99.90 99.90 97.39 94.09 99.11
repeat 93.18 94.92 92.32 97.64 98.77 97.49 99.70 99.66 99.46 99.95 98.87 100.00
�ipside 88.76 91.67 89.56 91.97 95.71 92.76 99.70 97.83 97.14 100.00 99.56 100.00

FPR on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 1.61 0.15 0.00 0.49 1.28 1.38 4.98 2.27 1.82 4.98 2.27 1.82
right 6.49 1.87 1.82 0.00 0.20 0.15 8.62 5.62 6.26 8.62 5.62 6.26
repeat 3.61 0.59 0.25 1.38 2.41 1.08 0.69 0.10 0.05 0.69 0.10 0.05
�ipside 3.22 1.57 0.54 4.43 4.63 2.56 0.54 0.10 0.05 0.54 0.10 0.05

Table 4.6: Validation on di�erent data sets of the B50 and B56 specimens using FFT-linear regression
with windowing and TCG. All values are TPR (top) or FPR (bottom) in percent. The �rst cell of each
row speci�es the data set used for training and the column header speci�es the data set and scan number
used for evaluation. The reference threshold is −6 dB.

The small performance losses may be caused by an unfortunate choice of the classi�cation threshold,
which is determined by maximization of the balanced accuracy on the training data. Therefore we look
at the AUC, which is independent of the classi�cation threshold. The results in table 4.7 suggest that the
decreased accuracy is due to a more inaccurate regression, since the AUC also decreases for those cases.

Here again we tested to shift the intermediate echo gate for the evaluation data while keeping it �xed
for the training data. Only very small di�erences (< 2.5%) are observed between the balanced accuracies
of the validation without time shift (table 4.5) and with a time shift of approximately a quarter wave
length, ±50 ns (table 4.8 and 4.9).

AUC on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 0.9985 0.9999 1.0000 0.9994 0.9997 0.9996 0.9994 0.9995 0.9994 0.9992 0.9991 1.0000
right 0.9941 0.9995 0.9994 1.0000 1.0000 1.0000 0.9965 0.9996 0.9990 0.9898 0.9901 0.9973
repeat 0.9913 0.9969 0.9970 0.9985 0.9990 0.9982 0.9999 0.9999 1.0000 1.0000 0.9998 1.0000
�ipside 0.9880 0.9931 0.9943 0.9847 0.9918 0.9912 0.9999 0.9989 0.9993 1.0000 1.0000 1.0000

Table 4.7: Validation on di�erent data sets of the B50 and B56 specimens using FFT-linear regression
with windowing and TCG. The �rst cell of each row speci�es the data set used for training and the
column header speci�es the data set and scan number used for evaluation. The reference threshold is
−6 dB.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 98.44 99.26 99.46 98.37 98.79 99.01 98.84 99.46 99.41 98.72 98.00 99.70
right 96.29 98.94 98.74 99.68 99.66 99.56 97.19 98.89 98.37 95.30 93.62 97.93
repeat 93.26 95.86 94.46 97.46 97.88 97.27 99.61 99.73 99.21 99.75 99.04 100.00
�ipside 91.35 93.39 92.96 93.33 95.47 94.33 99.63 98.37 97.83 99.75 99.68 99.98

Table 4.8: Validation with a time shift of −50 ns (after training without shift) on di�erent data sets of the
B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values are balanced
accuracies in percent. The �rst cell of each row speci�es the data set used for training and the column
header speci�es the data set and scan number used for evaluation. The reference threshold is −6 dB.
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balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 98.46 99.56 99.48 98.60 98.55 98.35 95.64 97.02 97.12 95.64 97.00 97.27
right 95.11 98.03 97.34 99.85 99.68 99.33 93.55 95.37 94.48 93.03 93.57 94.36
repeat 95.19 97.66 97.00 97.91 97.91 98.28 99.26 99.56 99.70 99.38 99.31 99.88
�ipside 93.84 95.88 94.75 93.99 95.57 95.42 99.56 98.74 98.87 99.68 99.61 99.98

Table 4.9: Validation with a time shift of +50ns (after training without shift) on di�erent data sets of the
B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values are balanced
accuracies in percent. The �rst cell of each row speci�es the data set used for training and the column
header speci�es the data set and scan number used for evaluation. The reference threshold is −6 dB.
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4.9 Restriction to parts of the intermediate echo gate

So far we used the full intermediate echo gate from close after the front-wall echo (1 µs) up to close before
the BWE (4 µs). Now we test di�erent gates.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 95.65 96.03 96.95 96.18 97.00 95.34 96.06 92.73 94.33 96.38 95.22 96.95
right 93.87 95.00 95.27 97.22 97.88 97.64 93.99 90.37 90.34 94.14 91.87 92.36
repeat 92.59 93.35 92.73 94.43 94.85 93.99 97.56 94.38 95.39 96.31 94.14 97.49
�ipside 92.60 92.61 92.36 92.66 93.84 93.37 96.23 90.59 92.81 97.12 95.84 98.97

Table 4.10: Validation using only the middle part of the intermediate echoes (1.5 µs to 3.5µs) on di�erent
data sets of the B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values
are balanced accuracies in percent. The �rst cell of each row speci�es the data set used for training and
the column header speci�es the data set and scan number used for evaluation. The reference threshold
is −6 dB.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 94.89 96.38 98.87 93.00 93.77 92.61 90.20 93.40 91.55 86.72 89.21 94.41
right 88.26 91.68 95.25 98.37 97.29 96.28 87.96 93.79 91.85 85.27 88.84 94.06
repeat 90.95 93.20 95.47 93.99 92.61 92.81 96.16 97.09 96.06 94.04 94.70 99.11
�ipside 87.47 91.25 92.09 89.80 89.38 88.94 97.71 93.60 91.58 97.83 98.30 99.90

Table 4.11: Validation using only the �rst half of the intermediate echoes (1 µs to 2.5 µs) on di�erent data
sets of the B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values are
balanced accuracies in percent. The �rst cell of each row speci�es the data set used for training and the
column header speci�es the data set and scan number used for evaluation. The reference threshold is
−6 dB.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 98.21 98.89 98.99 98.25 98.18 98.45 96.23 97.39 96.97 96.60 95.20 97.17
right 96.34 97.29 98.28 99.04 98.89 98.77 95.76 97.73 98.18 94.14 94.14 98.08
repeat 94.68 96.58 96.92 96.80 97.00 97.00 98.84 98.40 98.72 98.20 96.85 99.66
�ipside 92.82 94.58 94.06 93.84 94.33 94.29 98.62 96.43 97.09 98.99 97.96 99.75

Table 4.12: Validation using only the second half of the intermediate echoes (2.5 µs to 4µs) on di�erent
data sets of the B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values
are balanced accuracies in percent. The �rst cell of each row speci�es the data set used for training and
the column header speci�es the data set and scan number used for evaluation. The reference threshold
is −6 dB.

Simply shrinking the gate from both sides slightly decreases the performance as expected (cf. table
4.10). When taking only the �rst half, the accuracy drops signi�cantly (cf. table 4.11). This can be
explained by the fact that no information about the part after 2.5µs is contained anymore. On the other
hand the second half is in�uenced by the �rst half of the intermediate echoes, since energy losses in the
�rst half (wave re�ections at pores) lead to di�erent results for the second half, even if the according part
of the sample was completely free of pores. This might be the reason why the results on this half are
much better (cf. table 4.12).
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4.10 Regression coe�cients

Now we are interested in the information learned by the FFT-linear regression with windowing and TCG,
which showed the best performance of the methods tried in this report. This information is the vector of
weighting coe�cients for the frequencies. It is displayed for the full B50 and B56 data set compared to
the �repeat� data set (�gure 4.8) and compared to ��ipside� (�gure 4.9).

At �rst sight one notices that the weights in the frequency range from 7MHz to 16.5MHz are almost
completely positive. From this these frequencies seem to appear more strongly in non-porous material
compared to porous material.

To consider the actual impact of a frequency on the BWE equivalent, not only its weighting coe�cient
but also its variance across all A-scans has to be taken into account. Therefore we view the product of
these two values, which we call the impact value,

xj · σ2 = xj ·
1

n

n∑︂
i=1

(︄
ei,j −

1

n

n∑︂
i=1

ei,j

)︄2

, j = 1, . . . ,m (4.2)

(cf. �gure 4.10 and �gure 4.11). This shows that all frequencies over 7MHz are almost irrelevant for
the BWE equivalent. These include the frequencies up to 16.5MHz with positive weights and the higher
frequencies, whose weighting does not show a concrete structure. Therefore they appear to only adjust to
some minor e�ects rather than meaningful aspects of the data. Instead the frequency range from 1MHz
to 5MHz seems to have a negative in�uence on the BWE.

The largest positive impact value for both training on the full B50 and B56 data set and on the
�repeat� data set is at 5.33MHz (�gure 4.10). On the contrary for the ��ipside� data set this frequency
has a slightly negative impact value (�gure 4.11). However the neighboring frequency 5.67MHz has the
largest positive impact here. We assume that these two frequencies are strongly coupled, for example
due to some blurriness caused by the windowing, and thus are nearly interchangeable. This might also
be the case for other (not necessarily neighboring) frequencies, which are coupled by physical e�ects not
further investigated.

Nevertheless the major characteristics of the impact values are similar for all training data sets viewed.
Therefore we conclude that a relation between the frequency spectrum and the porosity of CFRP seems
plausible and consider the FFT-based approach to be a decent choice.

26



0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

frequency [MHz]

co
effi

ci
en
t
va
lu
e

B50 and B56
B50 and B56 repeat

Figure 4.8: Coe�cient values of the FFT-linear regression with windowing and TCG. The training was
done on the full B50 and B56 data set (circles) and on the �repeat� data set (crosses).
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Figure 4.9: Coe�cient values of the FFT-linear regression with windowing and TCG. The training was
done on the full B50 and B56 data set (circles) and on the ��ipside� data set (crosses).
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Figure 4.10: Coe�cient values of the FFT-linear regression with windowing and TCG, multiplied with
the variance of the magnitude of the respective frequency in the training data set (impact value). The
training was done on the full B50 and B56 data set (circles) and on the �repeat� data set (crosses).
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Figure 4.11: Coe�cient values of the FFT-linear regression with windowing and TCG, multiplied with
the variance of the magnitude of the respective frequency in the training data set (impact value). The
training was done on the full B50 and B56 data set (circles) and on the ��ipside� data set (crosses).
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4.11 Regularization of the regression

We now consider the ℓ2-regularized version

x = argmin
x

∥F (E)x− p∥22 + λ∥x∥22.

of the minimization problem (3.1).
This regularized problem is solved analytically by

x =
(︁
F (E)TF (E) + λI

)︁−1
F (E)T p,

which is derived like the normal equation (3.2) by di�erentiating the objective and �nding its zero.
By adding the convex ℓ2-term, the solution x becomes more stable, which prevents over�tting. In our

case we do not expect great bene�ts, since the tests across the di�erent data sets of the B50 and B56
specimen already showed very good results. Table 4.13 shows the results for the regularized regression.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 98.46 99.66 99.88 99.19 99.43 99.80 97.86 98.42 98.72 97.81 97.56 98.99
right 95.99 99.09 99.56 99.78 99.75 99.51 95.81 97.39 96.28 95.05 95.22 95.91
repeat 94.85 97.68 98.18 97.54 96.90 97.71 99.58 99.56 99.56 99.63 99.31 99.95
�ipside 91.77 94.18 94.14 92.17 93.10 93.33 99.33 97.27 97.64 99.78 99.43 99.93

Table 4.13: Validation on di�erent data sets of the B50 and B56 specimens using FFT-linear regression
with windowing and TCG. All values are balanced accuracies in percent. The �rst cell of each row
speci�es the data set used for training and the column header speci�es the data set and scan number
used for evaluation. The reference threshold is −6 dB.

More interesting are the weights obtained with regularization, as shown in �gure 4.12 and 4.13. Clearly
the weights for the frequencies over 20MHz are regularized to nearly 0, in contrast to �gure 4.8 and 4.9.
The weights for frequencies up to 20MHz are however qualitatively similar with or without regularization.

Figures 4.14 and 4.15 show the corresponding impact values.
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Figure 4.12: Coe�cient values of the ℓ2-regularized FFT-linear regression with windowing and TCG. The
regularization parameter is λ = 105. The training was done on the full B50 and B56 data set (circles)
and on the �repeat� data set (crosses).
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Figure 4.13: Coe�cient values of the ℓ2-regularized FFT-linear regression with windowing and TCG. The
regularization parameter is λ = 105. The training was done on the full B50 and B56 data set (circles)
and on the ��ipside� data set (crosses).
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Figure 4.14: Coe�cient values of the ℓ2-regularized FFT-linear regression with windowing and TCG,
multiplied with the variance of the magnitude of the respective frequency in the training data set (impact
value). The regularization parameter is λ = 105. The training was done on the full B50 and B56 data
set (circles) and on the �repeat� data set (crosses).
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Figure 4.15: Coe�cient values of the ℓ2-regularized FFT-linear regression with windowing and TCG,
multiplied with the variance of the magnitude of the respective frequency in the training data set (impact
value). The regularization parameter is λ = 105. The training was done on the full B50 and B56 data
set (circles) and on the ��ipside� data set (crosses).
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Chapter 5

Conclusion

Methods for ultrasonic testing of carbon �ber reinforced polymers for porosity without a back-wall echo
have been investigated. These methods attempt to provide a replacement for the industrially used method
of back-wall echo reduction, which cannot be applied in certain situations. In particular linear regression
of time series data, its Fourier transform and its wavelet transform have been investigated.

Very good results were obtained by the FFT-linear regression with windowing and time corrected
gain. This method exceeds the goal formulated in chapter 2 of TPR > 90% and FPR < 10% in most
cases. The performance does not decrease signi�cantly in our time shift robustness test, where time shifts
are applied to the time series used for evaluation but not on the time series used for training.

Time-linear regression and wavelet-based linear regression also deliver good results, but do not reach
the same quality, especially with time shifts, where they tend to loose accuracy. To make the time-linear
regression more robust against time shifts, some kind of automatic phase alignment should be tested.
Such an approach was suggested by Kai-Wah Chan and Matthias Rick in a former modeling project.

The FFT-based approach has, in addition to better performance, the advantage that it allows more
easily to �nd a physical explanation of the regression coe�cients found. A reasonable next step is the
evaluation of the method on further data. It would be helpful to test specimens with a medium degree of
porosity, which are hard to produce. Furthermore, other methods directly providing classi�cation without
creating continuous back-wall echo equivalents as an intermediate step, such as a logistic regression
classi�er, could be tested.
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Appendix A

Results for lower reference threshold

In the main part of the report only the reference threshold −6 dB was considered. This appendix contains
results for the reference threshold −12 dB.

Method comparison

TCG window balAcc [%] TPR [%] FPR [%] TNR [%] FNR [%] AUC corr

� � 90.36 94.86 14.15 85.85 5.14 0.9455 0.8807
✓ � 90.41 94.93 14.10 85.90 5.07 0.9423 0.8756
� ✓ 90.96 91.91 9.99 90.01 8.09 0.9662 0.9163
✓ ✓ 91.08 92.02 9.87 90.13 7.98 0.9671 0.9165

Table A.1: Di�erent quality measures applied on classi�cations by FFT-linear regression methods. Here
no shifts of the intermediate echoes were simulated. All values are averaged over the three scans of
B50+56r after training on all scans of B50+56l. The intermediate echo gate is chosen from 1 µs to 4µs
and the reference threshold is −12 dB. Cf. section 4.5

method balAcc [%] TPR [%] FPR [%] TNR [%] FNR [%] AUC corr

dwt_db4_lvl5 84.48 80.04 11.08 88.92 19.96 0.8888 0.6615
dwt_db4 88.73 94.64 17.17 82.83 5.36 0.9381 0.6015
dwt_db8 90.27 92.39 11.85 88.15 7.61 0.9568 0.8496
dwt_db10 87.51 86.13 11.10 88.90 13.87 0.9446 0.8048

Table A.2: Di�erent quality measures applied on classi�cations by Wavelet-based linear regression meth-
ods. Here no shifts of the intermediate echoes were simulated. All values are averaged over the three
scans of B50+56r after training on all scans of B50+56l. The intermediate echo gate is chosen from 1µs
to 4µs and the reference threshold is −12 dB. Cf. section 4.6
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Figure A.1: E�ect of the time shift on the classi�cation result for time-linear regression. The regression
was trained on all scans of B50+56l and evaluated on each scan of B50+56r. The reference threshold is
−12 dB. Cf. section 4.3
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Figure A.2: E�ect of the time shift on the classi�cation result for FFT-linear regression. The regression
was trained on all scans of B50+56l and evaluated on each scan of B50+56r. The reference threshold is
−12 dB. Cf. section 4.4
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Figure A.3: E�ect of the time shift on the classi�cation result for FFT-linear regression with windowing
and TCG. The regression was trained on all scans of B50+56l and evaluated on each scan of B50+56r.
The reference threshold is −12 dB. Cf. section 4.7
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Figure A.4: E�ect of the time shift on the classi�cation result for DWT-based linear regression. The
regression was trained on all scans of B50+56l and evaluated on each scan of B50+56r. The reference
threshold is −12 dB. Cf. section 4.7
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Validation on di�erent data sets of a specimen (cf. section 4.8)

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 86.00 86.57 89.49 90.71 92.73 89.79 93.27 92.66 92.04 93.43 91.75 98.14
right 83.77 86.86 88.02 93.52 95.69 91.59 93.25 93.71 92.81 91.71 90.52 96.74
repeat 86.58 88.04 88.66 93.04 94.56 91.00 96.11 94.17 93.63 95.76 95.25 99.63
�ipside 86.18 87.21 86.84 88.57 90.57 87.34 95.58 91.79 91.95 95.80 96.42 99.63

Table A.3: Validation on di�erent data sets of the B50 and B56 specimens using FFT-linear regression
with windowing and TCG. All values are balanced accuracies in percent. The �rst cell of each row
speci�es the data set used for training and the column header speci�es the data set and scan number
used for evaluation. The reference threshold is −12 dB.

TPR on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 96.45 93.82 95.18 91.58 92.20 92.29 94.34 95.86 95.55 93.82 87.43 96.73
right 97.10 97.84 96.44 99.53 99.24 98.27 96.39 99.26 98.84 91.33 85.17 95.14
repeat 93.83 93.44 89.32 96.58 96.62 94.14 99.52 98.92 98.21 99.51 95.32 99.95
�ipside 89.35 88.34 83.45 86.93 87.84 85.75 98.01 92.86 93.47 99.73 97.84 99.95

FPR on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 24.45 20.69 16.21 10.16 6.74 12.71 7.80 10.54 11.46 6.95 3.94 0.44
right 29.57 24.12 20.40 12.49 7.86 15.09 9.89 11.85 13.22 7.90 4.12 1.66
repeat 20.67 17.36 11.99 10.50 7.50 12.14 7.30 10.58 10.94 7.99 4.82 0.68
�ipside 16.99 13.92 9.78 9.78 6.69 11.07 6.85 9.28 9.57 8.13 5.00 0.68

Table A.4: Validation on di�erent data sets of the B50 and B56 specimens using FFT-linear regression
with windowing and TCG. All values are TPR (top) or FPR (bottom) in percent. The �rst cell of each
row speci�es the data set used for training and the column header speci�es the data set and scan number
used for evaluation. The reference threshold is −12 dB.

AUC on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 0.9238 0.9293 0.9390 0.9637 0.9787 0.9589 0.9619 0.9635 0.9617 0.9760 0.9826 0.9992
right 0.9037 0.9144 0.9241 0.9737 0.9844 0.9628 0.9551 0.9656 0.9644 0.9729 0.9772 0.9969
repeat 0.9340 0.9424 0.9541 0.9655 0.9778 0.9593 0.9764 0.9695 0.9705 0.9768 0.9832 0.9991
�ipside 0.9360 0.9426 0.9530 0.9432 0.9673 0.9465 0.9784 0.9673 0.9672 0.9774 0.9846 0.9989

Table A.5: Validation on di�erent data sets of the B50 and B56 specimens using FFT-linear regression
with windowing and TCG. The �rst cell of each row speci�es the data set used for training and the
column header speci�es the data set and scan number used for evaluation. The reference threshold is
−12 dB.
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balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 85.09 85.17 87.17 89.69 91.24 88.11 91.87 91.20 90.37 90.64 88.10 96.23
right 83.63 86.04 87.25 93.45 95.19 91.19 92.95 93.71 92.73 89.46 87.60 95.32
repeat 86.47 87.37 87.33 91.99 93.79 90.08 96.03 93.75 93.03 95.57 94.55 99.56
�ipside 84.82 86.01 85.95 87.78 89.80 85.89 95.58 91.53 90.69 95.87 96.39 99.63

Table A.6: Validation with a time shift of −50 ns (after training without shift) on di�erent data sets of the
B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values are balanced
accuracies in percent. The �rst cell of each row speci�es the data set used for training and the column
header speci�es the data set and scan number used for evaluation. The reference threshold is −12 dB.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 85.62 86.69 89.20 91.16 94.00 90.60 93.89 93.50 92.71 94.72 94.31 98.89
right 83.85 86.80 88.42 93.49 95.79 91.75 92.85 93.41 92.38 92.18 92.01 96.95
repeat 86.30 87.67 88.89 93.39 94.88 91.53 96.03 94.18 93.66 95.74 95.68 99.66
�ipside 86.27 87.31 87.13 88.59 90.63 88.11 95.37 91.46 91.84 95.77 96.11 99.66

Table A.7: Validation with a time shift of +50ns (after training without shift) on di�erent data sets of the
B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values are balanced
accuracies in percent. The �rst cell of each row speci�es the data set used for training and the column
header speci�es the data set and scan number used for evaluation. The reference threshold is −12 dB.
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Restriction to parts of the intermediate echo gate for lower refer-
ence threshold (cf. section 4.9)

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 83.96 86.26 88.27 91.79 94.16 89.99 92.01 89.74 90.53 92.50 93.04 98.42
right 82.48 85.78 87.93 91.91 95.00 90.87 91.26 89.87 88.88 91.75 91.90 95.93
repeat 83.73 85.56 87.06 90.96 93.29 89.01 94.46 92.02 91.54 92.08 91.38 97.48
�ipside 83.30 85.76 87.00 91.86 94.36 89.91 93.09 89.42 90.60 93.63 93.98 98.67

Table A.8: Validation using only the middle part of the intermediate echoes (1.5 µs to 3.5 µs) on di�erent
data sets of the B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values
are balanced accuracies in percent. The �rst cell of each row speci�es the data set used for training and
the column header speci�es the data set and scan number used for evaluation. The reference threshold
is −12 dB.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 82.39 84.25 89.02 83.70 88.17 85.31 90.28 88.01 86.34 84.95 85.84 96.00
right 78.84 82.66 87.93 92.48 93.75 89.49 86.66 89.71 87.74 83.75 87.29 95.45
repeat 81.85 84.64 88.78 88.58 89.73 88.02 93.42 91.95 90.54 90.53 91.48 98.84
�ipside 79.44 82.84 86.32 84.24 86.52 83.78 94.21 89.42 87.48 94.02 95.50 99.56

Table A.9: Validation using only the �rst half of the intermediate echoes (1 µs to 2.5 µs) on di�erent data
sets of the B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values are
balanced accuracies in percent. The �rst cell of each row speci�es the data set used for training and the
column header speci�es the data set and scan number used for evaluation. The reference threshold is
−12 dB.

balAcc on: left right repeat �ipside
scan 1 2 3 1 2 3 1 2 3 1 2 3

left 83.71 86.18 88.45 92.06 94.31 90.66 92.25 92.28 91.49 92.80 92.71 97.42
right 82.95 85.45 87.46 92.91 95.16 90.78 92.38 92.31 91.60 90.81 90.21 97.13
repeat 82.71 85.48 87.68 92.15 94.03 90.00 95.39 93.90 93.00 93.99 94.87 99.29
�ipside 83.95 86.39 86.95 90.68 93.95 89.74 95.45 91.80 92.55 95.16 95.36 99.53

Table A.10: Validation using only the second half of the intermediate echoes (2.5 µs to 4µs) on di�erent
data sets of the B50 and B56 specimens using FFT-linear regression with windowing and TCG. All values
are balanced accuracies in percent. The �rst cell of each row speci�es the data set used for training and
the column header speci�es the data set and scan number used for evaluation. The reference threshold
is −12 dB.
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